]> git.proxmox.com Git - mirror_qemu.git/blame - hw/timer/aspeed_timer.c
qga: Make qemu-ga compile statically for Windows
[mirror_qemu.git] / hw / timer / aspeed_timer.c
CommitLineData
c04bd47d
AJ
1/*
2 * ASPEED AST2400 Timer
3 *
4 * Andrew Jeffery <andrew@aj.id.au>
5 *
6 * Copyright (C) 2016 IBM Corp.
7 *
8 * This code is licensed under the GPL version 2 or later. See
9 * the COPYING file in the top-level directory.
10 */
11
12#include "qemu/osdep.h"
c04bd47d
AJ
13#include "hw/sysbus.h"
14#include "hw/timer/aspeed_timer.h"
15#include "qemu-common.h"
16#include "qemu/bitops.h"
c04bd47d 17#include "qemu/timer.h"
22b31af2 18#include "qemu/log.h"
c04bd47d
AJ
19#include "trace.h"
20
21#define TIMER_NR_REGS 4
22
23#define TIMER_CTRL_BITS 4
24#define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
25
26#define TIMER_CLOCK_USE_EXT true
27#define TIMER_CLOCK_EXT_HZ 1000000
28#define TIMER_CLOCK_USE_APB false
29#define TIMER_CLOCK_APB_HZ 24000000
30
31#define TIMER_REG_STATUS 0
32#define TIMER_REG_RELOAD 1
33#define TIMER_REG_MATCH_FIRST 2
34#define TIMER_REG_MATCH_SECOND 3
35
36#define TIMER_FIRST_CAP_PULSE 4
37
38enum timer_ctrl_op {
39 op_enable = 0,
40 op_external_clock,
41 op_overflow_interrupt,
42 op_pulse_enable
43};
44
45/**
46 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
47 * structs, as it's a waste of memory. The ptimer BH callback needs to know
48 * whether a specific AspeedTimer is enabled, but this information is held in
49 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
50 * arbitrary AspeedTimer to AspeedTimerCtrlState.
51 */
52static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
53{
54 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
55 return container_of(timers, AspeedTimerCtrlState, timers);
56}
57
58static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
59{
60 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
61}
62
63static inline bool timer_enabled(AspeedTimer *t)
64{
65 return timer_ctrl_status(t, op_enable);
66}
67
68static inline bool timer_overflow_interrupt(AspeedTimer *t)
69{
70 return timer_ctrl_status(t, op_overflow_interrupt);
71}
72
73static inline bool timer_can_pulse(AspeedTimer *t)
74{
75 return t->id >= TIMER_FIRST_CAP_PULSE;
76}
77
1d3e65aa
AJ
78static inline bool timer_external_clock(AspeedTimer *t)
79{
80 return timer_ctrl_status(t, op_external_clock);
81}
82
83static uint32_t clock_rates[] = { TIMER_CLOCK_APB_HZ, TIMER_CLOCK_EXT_HZ };
84
85static inline uint32_t calculate_rate(struct AspeedTimer *t)
86{
87 return clock_rates[timer_external_clock(t)];
88}
89
90static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
91{
92 uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
93 uint32_t rate = calculate_rate(t);
94 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
95
96 return t->reload - MIN(t->reload, ticks);
97}
98
99static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
100{
101 uint64_t delta_ns;
102 uint64_t delta_ticks;
103
104 delta_ticks = t->reload - MIN(t->reload, ticks);
105 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
106
107 return t->start + delta_ns;
108}
109
110static uint64_t calculate_next(struct AspeedTimer *t)
111{
112 uint64_t next = 0;
113 uint32_t rate = calculate_rate(t);
114
115 while (!next) {
116 /* We don't know the relationship between the values in the match
117 * registers, so sort using MAX/MIN/zero. We sort in that order as the
118 * timer counts down to zero. */
119 uint64_t seq[] = {
120 calculate_time(t, MAX(t->match[0], t->match[1])),
121 calculate_time(t, MIN(t->match[0], t->match[1])),
122 calculate_time(t, 0),
123 };
124 uint64_t reload_ns;
125 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
126
127 if (now < seq[0]) {
128 next = seq[0];
129 } else if (now < seq[1]) {
130 next = seq[1];
131 } else if (now < seq[2]) {
132 next = seq[2];
133 } else {
134 reload_ns = muldiv64(t->reload, NANOSECONDS_PER_SECOND, rate);
135 t->start = now - ((now - t->start) % reload_ns);
136 }
137 }
138
139 return next;
140}
141
c04bd47d
AJ
142static void aspeed_timer_expire(void *opaque)
143{
144 AspeedTimer *t = opaque;
1d3e65aa
AJ
145 bool interrupt = false;
146 uint32_t ticks;
c04bd47d 147
1d3e65aa
AJ
148 if (!timer_enabled(t)) {
149 return;
150 }
151
152 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
153
154 if (!ticks) {
155 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
156 } else if (ticks <= MIN(t->match[0], t->match[1])) {
157 interrupt = true;
158 } else if (ticks <= MAX(t->match[0], t->match[1])) {
159 interrupt = true;
160 }
161
162 if (interrupt) {
c04bd47d
AJ
163 t->level = !t->level;
164 qemu_set_irq(t->irq, t->level);
165 }
1d3e65aa
AJ
166
167 timer_mod(&t->timer, calculate_next(t));
c04bd47d
AJ
168}
169
170static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
171{
172 uint64_t value;
173
174 switch (reg) {
175 case TIMER_REG_STATUS:
1d3e65aa 176 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
c04bd47d
AJ
177 break;
178 case TIMER_REG_RELOAD:
179 value = t->reload;
180 break;
181 case TIMER_REG_MATCH_FIRST:
182 case TIMER_REG_MATCH_SECOND:
183 value = t->match[reg - 2];
184 break;
185 default:
186 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
187 __func__, reg);
188 value = 0;
189 break;
190 }
191 return value;
192}
193
194static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
195{
196 AspeedTimerCtrlState *s = opaque;
197 const int reg = (offset & 0xf) / 4;
198 uint64_t value;
199
200 switch (offset) {
201 case 0x30: /* Control Register */
202 value = s->ctrl;
203 break;
204 case 0x34: /* Control Register 2 */
205 value = s->ctrl2;
206 break;
207 case 0x00 ... 0x2c: /* Timers 1 - 4 */
208 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
209 break;
210 case 0x40 ... 0x8c: /* Timers 5 - 8 */
211 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
212 break;
213 /* Illegal */
214 case 0x38:
215 case 0x3C:
216 default:
217 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
218 __func__, offset);
219 value = 0;
220 break;
221 }
222 trace_aspeed_timer_read(offset, size, value);
223 return value;
224}
225
226static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
227 uint32_t value)
228{
229 AspeedTimer *t;
230
231 trace_aspeed_timer_set_value(timer, reg, value);
232 t = &s->timers[timer];
233 switch (reg) {
234 case TIMER_REG_STATUS:
235 if (timer_enabled(t)) {
1d3e65aa
AJ
236 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
237 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
238 uint32_t rate = calculate_rate(t);
239
240 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
241 timer_mod(&t->timer, calculate_next(t));
c04bd47d
AJ
242 }
243 break;
244 case TIMER_REG_RELOAD:
245 t->reload = value;
c04bd47d
AJ
246 break;
247 case TIMER_REG_MATCH_FIRST:
248 case TIMER_REG_MATCH_SECOND:
1d3e65aa
AJ
249 t->match[reg - 2] = value;
250 if (timer_enabled(t)) {
251 timer_mod(&t->timer, calculate_next(t));
c04bd47d
AJ
252 }
253 break;
254 default:
255 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
256 __func__, reg);
257 break;
258 }
259}
260
261/* Control register operations are broken out into helpers that can be
cb8d4c8f 262 * explicitly called on aspeed_timer_reset(), but also from
c04bd47d
AJ
263 * aspeed_timer_ctrl_op().
264 */
265
266static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
267{
268 trace_aspeed_timer_ctrl_enable(t->id, enable);
269 if (enable) {
1d3e65aa
AJ
270 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
271 timer_mod(&t->timer, calculate_next(t));
c04bd47d 272 } else {
1d3e65aa 273 timer_del(&t->timer);
c04bd47d
AJ
274 }
275}
276
277static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
278{
279 trace_aspeed_timer_ctrl_external_clock(t->id, enable);
c04bd47d
AJ
280}
281
282static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
283{
284 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
285}
286
287static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
288{
289 if (timer_can_pulse(t)) {
290 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
291 } else {
292 qemu_log_mask(LOG_GUEST_ERROR,
293 "%s: Timer does not support pulse mode\n", __func__);
294 }
295}
296
297/**
298 * Given the actions are fixed in number and completely described in helper
299 * functions, dispatch with a lookup table rather than manage control flow with
300 * a switch statement.
301 */
302static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
303 [op_enable] = aspeed_timer_ctrl_enable,
304 [op_external_clock] = aspeed_timer_ctrl_external_clock,
305 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
306 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
307};
308
309/**
310 * Conditionally affect changes chosen by a timer's control bit.
311 *
312 * The aspeed_timer_ctrl_op() interface is convenient for the
313 * aspeed_timer_set_ctrl() function as the "no change" early exit can be
314 * calculated for all operations, which cleans up the caller code. However the
315 * interface isn't convenient for the reset function where we want to enter a
316 * specific state without artificially constructing old and new values that
317 * will fall through the change guard (and motivates extracting the actions
318 * out to helper functions).
319 *
320 * @t: The timer to manipulate
321 * @op: The type of operation to be performed
322 * @old: The old state of the timer's control bits
323 * @new: The incoming state for the timer's control bits
324 */
325static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
326 uint8_t old, uint8_t new)
327{
328 const uint8_t mask = BIT(op);
329 const bool enable = !!(new & mask);
330 const bool changed = ((old ^ new) & mask);
331 if (!changed) {
332 return;
333 }
334 ctrl_ops[op](t, enable);
335}
336
337static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
338{
339 int i;
340 int shift;
341 uint8_t t_old, t_new;
342 AspeedTimer *t;
343 const uint8_t enable_mask = BIT(op_enable);
344
345 /* Handle a dependency between the 'enable' and remaining three
346 * configuration bits - i.e. if more than one bit in the control set has
347 * changed, including the 'enable' bit, then we want either disable the
348 * timer and perform configuration, or perform configuration and then
349 * enable the timer
350 */
351 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
352 t = &s->timers[i];
353 shift = (i * TIMER_CTRL_BITS);
354 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
355 t_new = (reg >> shift) & TIMER_CTRL_MASK;
356
357 /* If we are disabling, do so first */
358 if ((t_old & enable_mask) && !(t_new & enable_mask)) {
359 aspeed_timer_ctrl_enable(t, false);
360 }
361 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
362 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
363 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
364 /* If we are enabling, do so last */
365 if (!(t_old & enable_mask) && (t_new & enable_mask)) {
366 aspeed_timer_ctrl_enable(t, true);
367 }
368 }
369 s->ctrl = reg;
370}
371
372static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
373{
374 trace_aspeed_timer_set_ctrl2(value);
375}
376
377static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
378 unsigned size)
379{
380 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
381 const int reg = (offset & 0xf) / 4;
382 AspeedTimerCtrlState *s = opaque;
383
384 switch (offset) {
385 /* Control Registers */
386 case 0x30:
387 aspeed_timer_set_ctrl(s, tv);
388 break;
389 case 0x34:
390 aspeed_timer_set_ctrl2(s, tv);
391 break;
392 /* Timer Registers */
393 case 0x00 ... 0x2c:
394 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
395 break;
396 case 0x40 ... 0x8c:
397 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
398 break;
399 /* Illegal */
400 case 0x38:
401 case 0x3C:
402 default:
403 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
404 __func__, offset);
405 break;
406 }
407}
408
409static const MemoryRegionOps aspeed_timer_ops = {
410 .read = aspeed_timer_read,
411 .write = aspeed_timer_write,
412 .endianness = DEVICE_LITTLE_ENDIAN,
413 .valid.min_access_size = 4,
414 .valid.max_access_size = 4,
415 .valid.unaligned = false,
416};
417
418static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
419{
c04bd47d
AJ
420 AspeedTimer *t = &s->timers[id];
421
422 t->id = id;
1d3e65aa 423 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
c04bd47d
AJ
424}
425
426static void aspeed_timer_realize(DeviceState *dev, Error **errp)
427{
428 int i;
429 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
430 AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
431
432 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
433 aspeed_init_one_timer(s, i);
434 sysbus_init_irq(sbd, &s->timers[i].irq);
435 }
436 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
437 TYPE_ASPEED_TIMER, 0x1000);
438 sysbus_init_mmio(sbd, &s->iomem);
439}
440
441static void aspeed_timer_reset(DeviceState *dev)
442{
443 int i;
444 AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
445
446 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
447 AspeedTimer *t = &s->timers[i];
cb8d4c8f 448 /* Explicitly call helpers to avoid any conditional behaviour through
c04bd47d
AJ
449 * aspeed_timer_set_ctrl().
450 */
451 aspeed_timer_ctrl_enable(t, false);
452 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
453 aspeed_timer_ctrl_overflow_interrupt(t, false);
454 aspeed_timer_ctrl_pulse_enable(t, false);
455 t->level = 0;
456 t->reload = 0;
457 t->match[0] = 0;
458 t->match[1] = 0;
459 }
460 s->ctrl = 0;
461 s->ctrl2 = 0;
462}
463
464static const VMStateDescription vmstate_aspeed_timer = {
465 .name = "aspeed.timer",
1d3e65aa
AJ
466 .version_id = 2,
467 .minimum_version_id = 2,
c04bd47d
AJ
468 .fields = (VMStateField[]) {
469 VMSTATE_UINT8(id, AspeedTimer),
470 VMSTATE_INT32(level, AspeedTimer),
1d3e65aa 471 VMSTATE_TIMER(timer, AspeedTimer),
c04bd47d
AJ
472 VMSTATE_UINT32(reload, AspeedTimer),
473 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
474 VMSTATE_END_OF_LIST()
475 }
476};
477
478static const VMStateDescription vmstate_aspeed_timer_state = {
479 .name = "aspeed.timerctrl",
480 .version_id = 1,
481 .minimum_version_id = 1,
482 .fields = (VMStateField[]) {
483 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
484 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
485 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
1d3e65aa 486 ASPEED_TIMER_NR_TIMERS, 2, vmstate_aspeed_timer,
c04bd47d
AJ
487 AspeedTimer),
488 VMSTATE_END_OF_LIST()
489 }
490};
491
492static void timer_class_init(ObjectClass *klass, void *data)
493{
494 DeviceClass *dc = DEVICE_CLASS(klass);
495
496 dc->realize = aspeed_timer_realize;
497 dc->reset = aspeed_timer_reset;
498 dc->desc = "ASPEED Timer";
499 dc->vmsd = &vmstate_aspeed_timer_state;
500}
501
502static const TypeInfo aspeed_timer_info = {
503 .name = TYPE_ASPEED_TIMER,
504 .parent = TYPE_SYS_BUS_DEVICE,
505 .instance_size = sizeof(AspeedTimerCtrlState),
506 .class_init = timer_class_init,
507};
508
509static void aspeed_timer_register_types(void)
510{
511 type_register_static(&aspeed_timer_info);
512}
513
514type_init(aspeed_timer_register_types)