]> git.proxmox.com Git - mirror_qemu.git/blame - hw/timer/mc146818rtc.c
hw/rdma: Free all receive buffers when QP is destroyed
[mirror_qemu.git] / hw / timer / mc146818rtc.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU MC146818 RTC emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
e688df6b 24
b6a0aa05 25#include "qemu/osdep.h"
f348b6d1
VB
26#include "qemu/cutils.h"
27#include "qemu/bcd.h"
83c9f4ca 28#include "hw/hw.h"
1de7afc9 29#include "qemu/timer.h"
9c17d615 30#include "sysemu/sysemu.h"
1dfb1b2d 31#include "sysemu/replay.h"
0d09e41a 32#include "hw/timer/mc146818rtc.h"
e688df6b 33#include "qapi/error.h"
a6c7040f 34#include "qapi/qapi-commands-target.h"
183e4281 35#include "qapi/qapi-events-target.h"
7b1b5d19 36#include "qapi/visitor.h"
f98167ea 37#include "exec/address-spaces.h"
80cabfad 38
d362e757 39#ifdef TARGET_I386
0d09e41a 40#include "hw/i386/apic.h"
d362e757
JK
41#endif
42
80cabfad 43//#define DEBUG_CMOS
aa6f63ff 44//#define DEBUG_COALESCED
80cabfad 45
ec51e364
IY
46#ifdef DEBUG_CMOS
47# define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
48#else
49# define CMOS_DPRINTF(format, ...) do { } while (0)
50#endif
51
aa6f63ff
BS
52#ifdef DEBUG_COALESCED
53# define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
54#else
55# define DPRINTF_C(format, ...) do { } while (0)
56#endif
57
00cf5774
PB
58#define SEC_PER_MIN 60
59#define MIN_PER_HOUR 60
60#define SEC_PER_HOUR 3600
61#define HOUR_PER_DAY 24
62#define SEC_PER_DAY 86400
56038ef6 63
dd17765b 64#define RTC_REINJECT_ON_ACK_COUNT 20
e46deaba 65#define RTC_CLOCK_RATE 32768
13566fe3 66#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
ba32edab 67
0e41271e
AF
68#define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
69
1d914fa0 70typedef struct RTCState {
0e41271e
AF
71 ISADevice parent_obj;
72
b2c5009b 73 MemoryRegion io;
f98167ea 74 MemoryRegion coalesced_io;
dff38e7b
FB
75 uint8_t cmos_data[128];
76 uint8_t cmos_index;
32e0c826 77 int32_t base_year;
56038ef6
YZ
78 uint64_t base_rtc;
79 uint64_t last_update;
80 int64_t offset;
d537cf6c 81 qemu_irq irq;
18c6e2ff 82 int it_shift;
dff38e7b
FB
83 /* periodic timer */
84 QEMUTimer *periodic_timer;
85 int64_t next_periodic_time;
56038ef6
YZ
86 /* update-ended timer */
87 QEMUTimer *update_timer;
00cf5774 88 uint64_t next_alarm_time;
ba32edab 89 uint16_t irq_reinject_on_ack_count;
73822ec8
AL
90 uint32_t irq_coalesced;
91 uint32_t period;
93b66569 92 QEMUTimer *coalesced_timer;
17604dac 93 Notifier clock_reset_notifier;
433acf0d 94 LostTickPolicy lost_tick_policy;
da98c8eb 95 Notifier suspend_notifier;
f2ae8abf 96 QLIST_ENTRY(RTCState) link;
1d914fa0 97} RTCState;
dff38e7b
FB
98
99static void rtc_set_time(RTCState *s);
56038ef6 100static void rtc_update_time(RTCState *s);
e2826cf4 101static void rtc_set_cmos(RTCState *s, const struct tm *tm);
56038ef6 102static inline int rtc_from_bcd(RTCState *s, int a);
00cf5774 103static uint64_t get_next_alarm(RTCState *s);
56038ef6 104
41a9b8b2
YZ
105static inline bool rtc_running(RTCState *s)
106{
107 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
108 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
109}
110
56038ef6
YZ
111static uint64_t get_guest_rtc_ns(RTCState *s)
112{
884f17c2 113 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
56038ef6 114
9be38598 115 return s->base_rtc * NANOSECONDS_PER_SECOND +
73bcb24d 116 guest_clock - s->last_update + s->offset;
56038ef6 117}
dff38e7b 118
93b66569
AL
119static void rtc_coalesced_timer_update(RTCState *s)
120{
121 if (s->irq_coalesced == 0) {
bc72ad67 122 timer_del(s->coalesced_timer);
93b66569
AL
123 } else {
124 /* divide each RTC interval to 2 - 8 smaller intervals */
7cd9681b 125 int c = MIN(s->irq_coalesced, 7) + 1;
884f17c2 126 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
bd618eab 127 periodic_clock_to_ns(s->period / c);
bc72ad67 128 timer_mod(s->coalesced_timer, next_clock);
93b66569
AL
129 }
130}
131
e0c8b950
XG
132static QLIST_HEAD(, RTCState) rtc_devices =
133 QLIST_HEAD_INITIALIZER(rtc_devices);
134
388ad5d2 135#ifdef TARGET_I386
e0c8b950
XG
136void qmp_rtc_reset_reinjection(Error **errp)
137{
138 RTCState *s;
139
140 QLIST_FOREACH(s, &rtc_devices, link) {
141 s->irq_coalesced = 0;
142 }
143}
144
145static bool rtc_policy_slew_deliver_irq(RTCState *s)
146{
147 apic_reset_irq_delivered();
148 qemu_irq_raise(s->irq);
149 return apic_get_irq_delivered();
150}
151
93b66569
AL
152static void rtc_coalesced_timer(void *opaque)
153{
154 RTCState *s = opaque;
155
156 if (s->irq_coalesced != 0) {
93b66569 157 s->cmos_data[RTC_REG_C] |= 0xc0;
aa6f63ff 158 DPRINTF_C("cmos: injecting from timer\n");
e0c8b950 159 if (rtc_policy_slew_deliver_irq(s)) {
93b66569 160 s->irq_coalesced--;
aa6f63ff
BS
161 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
162 s->irq_coalesced);
93b66569
AL
163 }
164 }
165
166 rtc_coalesced_timer_update(s);
167}
e0c8b950
XG
168#else
169static bool rtc_policy_slew_deliver_irq(RTCState *s)
170{
171 assert(0);
172 return false;
173}
93b66569
AL
174#endif
175
369b4135 176static uint32_t rtc_periodic_clock_ticks(RTCState *s)
dff38e7b 177{
369b4135
TY
178 int period_code;
179
180 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
181 return 0;
182 }
dff38e7b
FB
183
184 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
369b4135 185
bd618eab 186 return periodic_period_to_clock(period_code);
369b4135
TY
187}
188
189/*
190 * handle periodic timer. @old_period indicates the periodic timer update
191 * is just due to period adjustment.
192 */
193static void
194periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period)
195{
196 uint32_t period;
197 int64_t cur_clock, next_irq_clock, lost_clock = 0;
198
199 period = rtc_periodic_clock_ticks(s);
200
201 if (period) {
dff38e7b 202 /* compute 32 khz clock */
73bcb24d
RS
203 cur_clock =
204 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
205
369b4135
TY
206 /*
207 * if the periodic timer's update is due to period re-configuration,
208 * we should count the clock since last interrupt.
209 */
210 if (old_period) {
211 int64_t last_periodic_clock, next_periodic_clock;
212
213 next_periodic_clock = muldiv64(s->next_periodic_time,
214 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
215 last_periodic_clock = next_periodic_clock - old_period;
216 lost_clock = cur_clock - last_periodic_clock;
217 assert(lost_clock >= 0);
218 }
219
369b4135
TY
220 /*
221 * s->irq_coalesced can change for two reasons:
222 *
223 * a) if one or more periodic timer interrupts have been lost,
224 * lost_clock will be more that a period.
225 *
226 * b) when the period may be reconfigured, we expect the OS to
227 * treat delayed tick as the new period. So, when switching
228 * from a shorter to a longer period, scale down the missing,
229 * because the OS will treat past delayed ticks as longer
230 * (leftovers are put back into lost_clock). When switching
231 * to a shorter period, scale up the missing ticks since the
232 * OS handler will treat past delayed ticks as shorter.
233 */
234 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
235 uint32_t old_irq_coalesced = s->irq_coalesced;
236
237 s->period = period;
238 lost_clock += old_irq_coalesced * old_period;
239 s->irq_coalesced = lost_clock / s->period;
240 lost_clock %= s->period;
241 if (old_irq_coalesced != s->irq_coalesced ||
242 old_period != s->period) {
243 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
244 "period scaled from %d to %d\n", old_irq_coalesced,
245 s->irq_coalesced, old_period, s->period);
246 rtc_coalesced_timer_update(s);
247 }
388ad5d2 248 } else {
369b4135
TY
249 /*
250 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
251 * is not used, we should make the time progress anyway.
252 */
253 lost_clock = MIN(lost_clock, period);
254 }
255
256 assert(lost_clock >= 0 && lost_clock <= period);
257
258 next_irq_clock = cur_clock + period - lost_clock;
bd618eab 259 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
bc72ad67 260 timer_mod(s->periodic_timer, s->next_periodic_time);
dff38e7b 261 } else {
73822ec8 262 s->irq_coalesced = 0;
bc72ad67 263 timer_del(s->periodic_timer);
dff38e7b
FB
264 }
265}
266
267static void rtc_periodic_timer(void *opaque)
268{
269 RTCState *s = opaque;
270
369b4135 271 periodic_timer_update(s, s->next_periodic_time, 0);
663447d4 272 s->cmos_data[RTC_REG_C] |= REG_C_PF;
100d9891 273 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
663447d4 274 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
104059da 275 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
ba32edab 276 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
e0c8b950
XG
277 s->irq_reinject_on_ack_count = 0;
278 if (!rtc_policy_slew_deliver_irq(s)) {
93b66569
AL
279 s->irq_coalesced++;
280 rtc_coalesced_timer_update(s);
aa6f63ff
BS
281 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
282 s->irq_coalesced);
93b66569
AL
283 }
284 } else
e0c8b950 285 qemu_irq_raise(s->irq);
100d9891 286 }
dff38e7b 287}
80cabfad 288
56038ef6
YZ
289/* handle update-ended timer */
290static void check_update_timer(RTCState *s)
291{
292 uint64_t next_update_time;
293 uint64_t guest_nsec;
00cf5774 294 int next_alarm_sec;
56038ef6 295
41a9b8b2
YZ
296 /* From the data sheet: "Holding the dividers in reset prevents
297 * interrupts from operating, while setting the SET bit allows"
6a51d83a 298 * them to occur.
56038ef6 299 */
41a9b8b2 300 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
33f21e4f 301 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
bc72ad67 302 timer_del(s->update_timer);
41a9b8b2
YZ
303 return;
304 }
56038ef6 305
13566fe3 306 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
884f17c2 307 next_update_time = qemu_clock_get_ns(rtc_clock)
13566fe3 308 + NANOSECONDS_PER_SECOND - guest_nsec;
00cf5774
PB
309
310 /* Compute time of next alarm. One second is already accounted
311 * for in next_update_time.
312 */
313 next_alarm_sec = get_next_alarm(s);
13566fe3
SH
314 s->next_alarm_time = next_update_time +
315 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
00cf5774 316
33f21e4f
PB
317 /* If update_in_progress latched the UIP bit, we must keep the timer
318 * programmed to the next second, so that UIP is cleared. Otherwise,
319 * if UF is already set, we might be able to optimize.
320 */
321 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
322 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
6a51d83a
PB
323 /* If AF cannot change (i.e. either it is set already, or
324 * SET=1 and then the time is not updated), nothing to do.
325 */
326 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
327 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
328 timer_del(s->update_timer);
329 return;
330 }
331
00cf5774
PB
332 /* UF is set, but AF is clear. Program the timer to target
333 * the alarm time. */
334 next_update_time = s->next_alarm_time;
335 }
e93379b0 336 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
bc72ad67 337 timer_mod(s->update_timer, next_update_time);
56038ef6
YZ
338 }
339}
340
341static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
342{
343 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
344 hour %= 12;
345 if (s->cmos_data[RTC_HOURS] & 0x80) {
346 hour += 12;
347 }
348 }
349 return hour;
350}
351
00cf5774 352static uint64_t get_next_alarm(RTCState *s)
56038ef6 353{
00cf5774
PB
354 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
355 int32_t hour, min, sec;
356
357 rtc_update_time(s);
56038ef6
YZ
358
359 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
360 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
361 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
00cf5774 362 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
56038ef6
YZ
363
364 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
365 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
366 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
367 cur_hour = convert_hour(s, cur_hour);
368
00cf5774
PB
369 if (alarm_hour == -1) {
370 alarm_hour = cur_hour;
371 if (alarm_min == -1) {
372 alarm_min = cur_min;
373 if (alarm_sec == -1) {
374 alarm_sec = cur_sec + 1;
375 } else if (cur_sec > alarm_sec) {
376 alarm_min++;
377 }
378 } else if (cur_min == alarm_min) {
379 if (alarm_sec == -1) {
380 alarm_sec = cur_sec + 1;
381 } else {
382 if (cur_sec > alarm_sec) {
383 alarm_hour++;
384 }
385 }
386 if (alarm_sec == SEC_PER_MIN) {
387 /* wrap to next hour, minutes is not in don't care mode */
388 alarm_sec = 0;
389 alarm_hour++;
390 }
391 } else if (cur_min > alarm_min) {
392 alarm_hour++;
393 }
394 } else if (cur_hour == alarm_hour) {
395 if (alarm_min == -1) {
396 alarm_min = cur_min;
397 if (alarm_sec == -1) {
398 alarm_sec = cur_sec + 1;
399 } else if (cur_sec > alarm_sec) {
400 alarm_min++;
401 }
402
403 if (alarm_sec == SEC_PER_MIN) {
404 alarm_sec = 0;
405 alarm_min++;
406 }
407 /* wrap to next day, hour is not in don't care mode */
408 alarm_min %= MIN_PER_HOUR;
409 } else if (cur_min == alarm_min) {
410 if (alarm_sec == -1) {
411 alarm_sec = cur_sec + 1;
412 }
413 /* wrap to next day, hours+minutes not in don't care mode */
414 alarm_sec %= SEC_PER_MIN;
415 }
56038ef6 416 }
56038ef6 417
00cf5774
PB
418 /* values that are still don't care fire at the next min/sec */
419 if (alarm_min == -1) {
420 alarm_min = 0;
421 }
422 if (alarm_sec == -1) {
423 alarm_sec = 0;
424 }
425
426 /* keep values in range */
427 if (alarm_sec == SEC_PER_MIN) {
428 alarm_sec = 0;
429 alarm_min++;
430 }
431 if (alarm_min == MIN_PER_HOUR) {
432 alarm_min = 0;
433 alarm_hour++;
434 }
435 alarm_hour %= HOUR_PER_DAY;
436
437 hour = alarm_hour - cur_hour;
438 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
439 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
440 return sec <= 0 ? sec + SEC_PER_DAY : sec;
56038ef6
YZ
441}
442
443static void rtc_update_timer(void *opaque)
444{
445 RTCState *s = opaque;
446 int32_t irqs = REG_C_UF;
447 int32_t new_irqs;
448
41a9b8b2
YZ
449 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
450
56038ef6
YZ
451 /* UIP might have been latched, update time and clear it. */
452 rtc_update_time(s);
453 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
454
884f17c2 455 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
56038ef6
YZ
456 irqs |= REG_C_AF;
457 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
fb064112 458 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
56038ef6
YZ
459 }
460 }
00cf5774 461
56038ef6
YZ
462 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
463 s->cmos_data[RTC_REG_C] |= irqs;
464 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
465 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
466 qemu_irq_raise(s->irq);
467 }
468 check_update_timer(s);
469}
470
0da8c842
AG
471static void cmos_ioport_write(void *opaque, hwaddr addr,
472 uint64_t data, unsigned size)
80cabfad 473{
b41a2cd1 474 RTCState *s = opaque;
369b4135 475 uint32_t old_period;
9a6e2dcf 476 bool update_periodic_timer;
80cabfad
FB
477
478 if ((addr & 1) == 0) {
479 s->cmos_index = data & 0x7f;
480 } else {
c5539cb4 481 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
ec51e364 482 s->cmos_index, data);
dff38e7b 483 switch(s->cmos_index) {
80cabfad
FB
484 case RTC_SECONDS_ALARM:
485 case RTC_MINUTES_ALARM:
486 case RTC_HOURS_ALARM:
80cabfad 487 s->cmos_data[s->cmos_index] = data;
56038ef6 488 check_update_timer(s);
80cabfad 489 break;
7cd9681b 490 case RTC_IBM_PS2_CENTURY_BYTE:
e67edb94
PB
491 s->cmos_index = RTC_CENTURY;
492 /* fall through */
493 case RTC_CENTURY:
80cabfad
FB
494 case RTC_SECONDS:
495 case RTC_MINUTES:
496 case RTC_HOURS:
497 case RTC_DAY_OF_WEEK:
498 case RTC_DAY_OF_MONTH:
499 case RTC_MONTH:
500 case RTC_YEAR:
501 s->cmos_data[s->cmos_index] = data;
dff38e7b 502 /* if in set mode, do not update the time */
41a9b8b2 503 if (rtc_running(s)) {
dff38e7b 504 rtc_set_time(s);
56038ef6 505 check_update_timer(s);
dff38e7b 506 }
80cabfad
FB
507 break;
508 case RTC_REG_A:
9a6e2dcf 509 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
369b4135 510 old_period = rtc_periodic_clock_ticks(s);
9a6e2dcf 511
41a9b8b2
YZ
512 if ((data & 0x60) == 0x60) {
513 if (rtc_running(s)) {
514 rtc_update_time(s);
515 }
516 /* What happens to UIP when divider reset is enabled is
517 * unclear from the datasheet. Shouldn't matter much
518 * though.
519 */
520 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
521 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
522 (data & 0x70) <= 0x20) {
523 /* when the divider reset is removed, the first update cycle
524 * begins one-half second later*/
525 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
526 s->offset = 500000000;
527 rtc_set_time(s);
528 }
529 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
530 }
dff38e7b
FB
531 /* UIP bit is read only */
532 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
533 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
9a6e2dcf
XG
534
535 if (update_periodic_timer) {
369b4135
TY
536 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
537 old_period);
9a6e2dcf
XG
538 }
539
56038ef6 540 check_update_timer(s);
dff38e7b 541 break;
80cabfad 542 case RTC_REG_B:
9a6e2dcf
XG
543 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
544 & REG_B_PIE;
369b4135 545 old_period = rtc_periodic_clock_ticks(s);
9a6e2dcf 546
dff38e7b 547 if (data & REG_B_SET) {
56038ef6 548 /* update cmos to when the rtc was stopping */
41a9b8b2 549 if (rtc_running(s)) {
56038ef6
YZ
550 rtc_update_time(s);
551 }
dff38e7b
FB
552 /* set mode: reset UIP mode */
553 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
554 data &= ~REG_B_UIE;
555 } else {
556 /* if disabling set mode, update the time */
41a9b8b2
YZ
557 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
558 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
13566fe3 559 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
dff38e7b
FB
560 rtc_set_time(s);
561 }
562 }
9324cc50
YZ
563 /* if an interrupt flag is already set when the interrupt
564 * becomes enabled, raise an interrupt immediately. */
565 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
566 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
567 qemu_irq_raise(s->irq);
568 } else {
569 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
570 qemu_irq_lower(s->irq);
571 }
bedc572e 572 s->cmos_data[RTC_REG_B] = data;
9a6e2dcf
XG
573
574 if (update_periodic_timer) {
369b4135
TY
575 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
576 old_period);
9a6e2dcf
XG
577 }
578
56038ef6 579 check_update_timer(s);
80cabfad
FB
580 break;
581 case RTC_REG_C:
582 case RTC_REG_D:
583 /* cannot write to them */
584 break;
585 default:
586 s->cmos_data[s->cmos_index] = data;
587 break;
588 }
589 }
590}
591
abd0c6bd 592static inline int rtc_to_bcd(RTCState *s, int a)
80cabfad 593{
6f1bf24d 594 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
dff38e7b
FB
595 return a;
596 } else {
597 return ((a / 10) << 4) | (a % 10);
598 }
80cabfad
FB
599}
600
abd0c6bd 601static inline int rtc_from_bcd(RTCState *s, int a)
80cabfad 602{
00cf5774
PB
603 if ((a & 0xc0) == 0xc0) {
604 return -1;
605 }
6f1bf24d 606 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
dff38e7b
FB
607 return a;
608 } else {
609 return ((a >> 4) * 10) + (a & 0x0f);
610 }
611}
612
e2826cf4 613static void rtc_get_time(RTCState *s, struct tm *tm)
dff38e7b 614{
abd0c6bd
PB
615 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
616 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
617 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
3b89eb43
PB
618 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
619 tm->tm_hour %= 12;
620 if (s->cmos_data[RTC_HOURS] & 0x80) {
621 tm->tm_hour += 12;
622 }
43f493af 623 }
abd0c6bd
PB
624 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
625 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
626 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
b8994faf
PB
627 tm->tm_year =
628 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
629 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
e2826cf4
PB
630}
631
632static void rtc_set_time(RTCState *s)
633{
634 struct tm tm;
80cd3478 635
e2826cf4 636 rtc_get_time(s, &tm);
e2826cf4 637 s->base_rtc = mktimegm(&tm);
884f17c2 638 s->last_update = qemu_clock_get_ns(rtc_clock);
56038ef6 639
3ab72385 640 qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
43f493af
FB
641}
642
e2826cf4 643static void rtc_set_cmos(RTCState *s, const struct tm *tm)
43f493af 644{
42fc73a1 645 int year;
dff38e7b 646
abd0c6bd
PB
647 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
648 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
c29cd656 649 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
43f493af 650 /* 24 hour format */
abd0c6bd 651 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
43f493af
FB
652 } else {
653 /* 12 hour format */
3b89eb43
PB
654 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
655 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
43f493af
FB
656 if (tm->tm_hour >= 12)
657 s->cmos_data[RTC_HOURS] |= 0x80;
658 }
abd0c6bd
PB
659 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
660 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
661 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
b8994faf
PB
662 year = tm->tm_year + 1900 - s->base_year;
663 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
664 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
43f493af
FB
665}
666
56038ef6 667static void rtc_update_time(RTCState *s)
43f493af 668{
56038ef6
YZ
669 struct tm ret;
670 time_t guest_sec;
671 int64_t guest_nsec;
672
673 guest_nsec = get_guest_rtc_ns(s);
13566fe3 674 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
56038ef6 675 gmtime_r(&guest_sec, &ret);
02c6ccc6
AH
676
677 /* Is SET flag of Register B disabled? */
678 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
679 rtc_set_cmos(s, &ret);
680 }
43f493af
FB
681}
682
56038ef6 683static int update_in_progress(RTCState *s)
43f493af 684{
56038ef6 685 int64_t guest_nsec;
3b46e624 686
41a9b8b2 687 if (!rtc_running(s)) {
56038ef6 688 return 0;
dff38e7b 689 }
e93379b0
AB
690 if (timer_pending(s->update_timer)) {
691 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
56038ef6 692 /* Latch UIP until the timer expires. */
884f17c2
AB
693 if (qemu_clock_get_ns(rtc_clock) >=
694 (next_update_time - UIP_HOLD_LENGTH)) {
56038ef6
YZ
695 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
696 return 1;
dff38e7b
FB
697 }
698 }
699
56038ef6
YZ
700 guest_nsec = get_guest_rtc_ns(s);
701 /* UIP bit will be set at last 244us of every second. */
13566fe3
SH
702 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
703 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
56038ef6 704 return 1;
dff38e7b 705 }
56038ef6 706 return 0;
80cabfad
FB
707}
708
0da8c842
AG
709static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
710 unsigned size)
80cabfad 711{
b41a2cd1 712 RTCState *s = opaque;
80cabfad
FB
713 int ret;
714 if ((addr & 1) == 0) {
715 return 0xff;
716 } else {
717 switch(s->cmos_index) {
7cd9681b 718 case RTC_IBM_PS2_CENTURY_BYTE:
e67edb94
PB
719 s->cmos_index = RTC_CENTURY;
720 /* fall through */
721 case RTC_CENTURY:
80cabfad
FB
722 case RTC_SECONDS:
723 case RTC_MINUTES:
724 case RTC_HOURS:
725 case RTC_DAY_OF_WEEK:
726 case RTC_DAY_OF_MONTH:
727 case RTC_MONTH:
728 case RTC_YEAR:
56038ef6
YZ
729 /* if not in set mode, calibrate cmos before
730 * reading*/
41a9b8b2 731 if (rtc_running(s)) {
56038ef6
YZ
732 rtc_update_time(s);
733 }
80cabfad
FB
734 ret = s->cmos_data[s->cmos_index];
735 break;
736 case RTC_REG_A:
33f21e4f 737 ret = s->cmos_data[s->cmos_index];
56038ef6 738 if (update_in_progress(s)) {
33f21e4f 739 ret |= REG_A_UIP;
56038ef6 740 }
80cabfad
FB
741 break;
742 case RTC_REG_C:
743 ret = s->cmos_data[s->cmos_index];
d537cf6c 744 qemu_irq_lower(s->irq);
fbc15e27 745 s->cmos_data[RTC_REG_C] = 0x00;
56038ef6
YZ
746 if (ret & (REG_C_UF | REG_C_AF)) {
747 check_update_timer(s);
748 }
e0c8b950 749
ba32edab 750 if(s->irq_coalesced &&
fbc15e27 751 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
ba32edab
GN
752 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
753 s->irq_reinject_on_ack_count++;
fbc15e27 754 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
aa6f63ff 755 DPRINTF_C("cmos: injecting on ack\n");
e0c8b950 756 if (rtc_policy_slew_deliver_irq(s)) {
ba32edab 757 s->irq_coalesced--;
aa6f63ff
BS
758 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
759 s->irq_coalesced);
760 }
ba32edab 761 }
80cabfad
FB
762 break;
763 default:
764 ret = s->cmos_data[s->cmos_index];
765 break;
766 }
ec51e364
IY
767 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
768 s->cmos_index, ret);
80cabfad
FB
769 return ret;
770 }
771}
772
1d914fa0 773void rtc_set_memory(ISADevice *dev, int addr, int val)
dff38e7b 774{
0e41271e 775 RTCState *s = MC146818_RTC(dev);
dff38e7b
FB
776 if (addr >= 0 && addr <= 127)
777 s->cmos_data[addr] = val;
778}
779
b8b7456d
IM
780int rtc_get_memory(ISADevice *dev, int addr)
781{
782 RTCState *s = MC146818_RTC(dev);
783 assert(addr >= 0 && addr <= 127);
784 return s->cmos_data[addr];
785}
786
1d914fa0 787static void rtc_set_date_from_host(ISADevice *dev)
ea55ffb3 788{
0e41271e 789 RTCState *s = MC146818_RTC(dev);
f6503059 790 struct tm tm;
ea55ffb3 791
f6503059 792 qemu_get_timedate(&tm, 0);
56038ef6
YZ
793
794 s->base_rtc = mktimegm(&tm);
884f17c2 795 s->last_update = qemu_clock_get_ns(rtc_clock);
56038ef6
YZ
796 s->offset = 0;
797
798 /* set the CMOS date */
e2826cf4 799 rtc_set_cmos(s, &tm);
ea55ffb3
TS
800}
801
44b1ff31 802static int rtc_pre_save(void *opaque)
3cf294ee
JB
803{
804 RTCState *s = opaque;
805
806 rtc_update_time(s);
44b1ff31
DDAG
807
808 return 0;
3cf294ee
JB
809}
810
6b075b8a 811static int rtc_post_load(void *opaque, int version_id)
80cabfad 812{
dff38e7b
FB
813 RTCState *s = opaque;
814
3cf294ee 815 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
56038ef6
YZ
816 rtc_set_time(s);
817 s->offset = 0;
818 check_update_timer(s);
819 }
820
1dfb1b2d
PD
821 /* The periodic timer is deterministic in record/replay mode,
822 * so there is no need to update it after loading the vmstate.
823 * Reading RTC here would misalign record and replay.
824 */
825 if (replay_mode == REPLAY_MODE_NONE) {
826 uint64_t now = qemu_clock_get_ns(rtc_clock);
827 if (now < s->next_periodic_time ||
828 now > (s->next_periodic_time + get_max_clock_jump())) {
369b4135 829 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0);
1dfb1b2d 830 }
ae46e239
PD
831 }
832
048c74c4 833 if (version_id >= 2) {
104059da 834 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
048c74c4
JQ
835 rtc_coalesced_timer_update(s);
836 }
048c74c4 837 }
73822ec8
AL
838 return 0;
839}
73822ec8 840
5cd8cada
JQ
841static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
842{
843 RTCState *s = (RTCState *)opaque;
844 return s->irq_reinject_on_ack_count != 0;
845}
846
0b102153 847static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
bb426311 848 .name = "mc146818rtc/irq_reinject_on_ack_count",
0b102153
PD
849 .version_id = 1,
850 .minimum_version_id = 1,
5cd8cada 851 .needed = rtc_irq_reinject_on_ack_count_needed,
0b102153
PD
852 .fields = (VMStateField[]) {
853 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
854 VMSTATE_END_OF_LIST()
855 }
856};
857
6b075b8a
JQ
858static const VMStateDescription vmstate_rtc = {
859 .name = "mc146818rtc",
56038ef6 860 .version_id = 3,
6b075b8a 861 .minimum_version_id = 1,
3cf294ee 862 .pre_save = rtc_pre_save,
6b075b8a 863 .post_load = rtc_post_load,
d49805ae 864 .fields = (VMStateField[]) {
6b075b8a
JQ
865 VMSTATE_BUFFER(cmos_data, RTCState),
866 VMSTATE_UINT8(cmos_index, RTCState),
89166459 867 VMSTATE_UNUSED(7*4),
e720677e 868 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
6b075b8a 869 VMSTATE_INT64(next_periodic_time, RTCState),
56038ef6 870 VMSTATE_UNUSED(3*8),
6b075b8a
JQ
871 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
872 VMSTATE_UINT32_V(period, RTCState, 2),
56038ef6
YZ
873 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
874 VMSTATE_UINT64_V(last_update, RTCState, 3),
875 VMSTATE_INT64_V(offset, RTCState, 3),
e720677e 876 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
00cf5774 877 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
6b075b8a 878 VMSTATE_END_OF_LIST()
0b102153 879 },
5cd8cada
JQ
880 .subsections = (const VMStateDescription*[]) {
881 &vmstate_rtc_irq_reinject_on_ack_count,
882 NULL
6b075b8a
JQ
883 }
884};
885
17604dac
JK
886static void rtc_notify_clock_reset(Notifier *notifier, void *data)
887{
888 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
889 int64_t now = *(int64_t *)data;
890
0e41271e 891 rtc_set_date_from_host(ISA_DEVICE(s));
369b4135 892 periodic_timer_update(s, now, 0);
56038ef6 893 check_update_timer(s);
388ad5d2 894
104059da 895 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
17604dac
JK
896 rtc_coalesced_timer_update(s);
897 }
17604dac
JK
898}
899
da98c8eb
GH
900/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
901 BIOS will read it and start S3 resume at POST Entry */
902static void rtc_notify_suspend(Notifier *notifier, void *data)
903{
904 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
0e41271e 905 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
da98c8eb
GH
906}
907
eeb7c03c
GN
908static void rtc_reset(void *opaque)
909{
910 RTCState *s = opaque;
911
72716184
AL
912 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
913 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
56038ef6 914 check_update_timer(s);
eeb7c03c 915
72716184 916 qemu_irq_lower(s->irq);
eeb7c03c 917
104059da 918 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
433acf0d 919 s->irq_coalesced = 0;
7cd9681b 920 s->irq_reinject_on_ack_count = 0;
433acf0d 921 }
eeb7c03c
GN
922}
923
b2c5009b 924static const MemoryRegionOps cmos_ops = {
0da8c842
AG
925 .read = cmos_ioport_read,
926 .write = cmos_ioport_write,
927 .impl = {
928 .min_access_size = 1,
929 .max_access_size = 1,
930 },
931 .endianness = DEVICE_LITTLE_ENDIAN,
b2c5009b
RH
932};
933
8e099d14 934static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
18297050 935{
0e41271e 936 RTCState *s = MC146818_RTC(obj);
18297050 937
56038ef6 938 rtc_update_time(s);
8e099d14 939 rtc_get_time(s, current_tm);
18297050
AL
940}
941
db895a1e 942static void rtc_realizefn(DeviceState *dev, Error **errp)
dff38e7b 943{
db895a1e 944 ISADevice *isadev = ISA_DEVICE(dev);
0e41271e 945 RTCState *s = MC146818_RTC(dev);
32e0c826 946 int base = 0x70;
80cabfad 947
80cabfad
FB
948 s->cmos_data[RTC_REG_A] = 0x26;
949 s->cmos_data[RTC_REG_B] = 0x02;
950 s->cmos_data[RTC_REG_C] = 0x00;
951 s->cmos_data[RTC_REG_D] = 0x80;
952
b8994faf
PB
953 /* This is for historical reasons. The default base year qdev property
954 * was set to 2000 for most machine types before the century byte was
955 * implemented.
956 *
957 * This if statement means that the century byte will be always 0
958 * (at least until 2079...) for base_year = 1980, but will be set
959 * correctly for base_year = 2000.
960 */
961 if (s->base_year == 2000) {
962 s->base_year = 0;
963 }
964
db895a1e 965 rtc_set_date_from_host(isadev);
ea55ffb3 966
433acf0d 967 switch (s->lost_tick_policy) {
4aa70a0e 968#ifdef TARGET_I386
104059da 969 case LOST_TICK_POLICY_SLEW:
6875204c 970 s->coalesced_timer =
884f17c2 971 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
433acf0d 972 break;
4aa70a0e 973#endif
104059da 974 case LOST_TICK_POLICY_DISCARD:
433acf0d
JK
975 break;
976 default:
db895a1e
AF
977 error_setg(errp, "Invalid lost tick policy.");
978 return;
433acf0d 979 }
433acf0d 980
884f17c2
AB
981 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
982 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
56038ef6 983 check_update_timer(s);
dff38e7b 984
17604dac 985 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
13c0cbae 986 qemu_clock_register_reset_notifier(rtc_clock,
884f17c2 987 &s->clock_reset_notifier);
17604dac 988
da98c8eb
GH
989 s->suspend_notifier.notify = rtc_notify_suspend;
990 qemu_register_suspend_notifier(&s->suspend_notifier);
991
853dca12 992 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
db895a1e 993 isa_register_ioport(isadev, &s->io, base);
dff38e7b 994
f98167ea
PH
995 /* register rtc 0x70 port for coalesced_pio */
996 memory_region_set_flush_coalesced(&s->io);
997 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
998 s, "rtc-index", 1);
999 memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
1000 memory_region_add_coalescing(&s->coalesced_io, 0, 1);
1001
db895a1e 1002 qdev_set_legacy_instance_id(dev, base, 3);
a08d4367 1003 qemu_register_reset(rtc_reset, s);
18297050 1004
8e099d14 1005 object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
654a36d8 1006
3638439d 1007 qdev_init_gpio_out(dev, &s->irq, 1);
32e0c826
GH
1008}
1009
6c646a11 1010ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
32e0c826 1011{
0e41271e
AF
1012 DeviceState *dev;
1013 ISADevice *isadev;
7d932dfd 1014 RTCState *s;
eeb7c03c 1015
0e41271e
AF
1016 isadev = isa_create(bus, TYPE_MC146818_RTC);
1017 dev = DEVICE(isadev);
1018 s = MC146818_RTC(isadev);
1019 qdev_prop_set_int32(dev, "base_year", base_year);
1020 qdev_init_nofail(dev);
7d932dfd 1021 if (intercept_irq) {
3638439d 1022 qdev_connect_gpio_out(dev, 0, intercept_irq);
7d932dfd 1023 } else {
3638439d 1024 isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
7d932dfd 1025 }
f2ae8abf
MT
1026 QLIST_INSERT_HEAD(&rtc_devices, s, link);
1027
29551fdc
TH
1028 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(s),
1029 "date", NULL);
1030
0e41271e 1031 return isadev;
80cabfad
FB
1032}
1033
39bffca2
AL
1034static Property mc146818rtc_properties[] = {
1035 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
1036 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
104059da 1037 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
39bffca2
AL
1038 DEFINE_PROP_END_OF_LIST(),
1039};
1040
bf7bb91e 1041static void rtc_resetdev(DeviceState *d)
1042{
1043 RTCState *s = MC146818_RTC(d);
1044
1045 /* Reason: VM do suspend self will set 0xfe
1046 * Reset any values other than 0xfe(Guest suspend case) */
1047 if (s->cmos_data[0x0f] != 0xfe) {
1048 s->cmos_data[0x0f] = 0x00;
1049 }
1050}
1051
8f04ee08
AL
1052static void rtc_class_initfn(ObjectClass *klass, void *data)
1053{
39bffca2 1054 DeviceClass *dc = DEVICE_CLASS(klass);
db895a1e
AF
1055
1056 dc->realize = rtc_realizefn;
bf7bb91e 1057 dc->reset = rtc_resetdev;
39bffca2
AL
1058 dc->vmsd = &vmstate_rtc;
1059 dc->props = mc146818rtc_properties;
f3b17640 1060 /* Reason: needs to be wired up by rtc_init() */
e90f2a8c 1061 dc->user_creatable = false;
8f04ee08
AL
1062}
1063
8c43a6f0 1064static const TypeInfo mc146818rtc_info = {
0e41271e 1065 .name = TYPE_MC146818_RTC,
39bffca2
AL
1066 .parent = TYPE_ISA_DEVICE,
1067 .instance_size = sizeof(RTCState),
1068 .class_init = rtc_class_initfn,
32e0c826
GH
1069};
1070
83f7d43a 1071static void mc146818rtc_register_types(void)
100d9891 1072{
39bffca2 1073 type_register_static(&mc146818rtc_info);
100d9891 1074}
83f7d43a
AF
1075
1076type_init(mc146818rtc_register_types)