]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/asm-arm/pgtable.h
Merge master.kernel.org:/home/rmk/linux-2.6-serial
[mirror_ubuntu-artful-kernel.git] / include / asm-arm / pgtable.h
CommitLineData
1da177e4
LT
1/*
2 * linux/include/asm-arm/pgtable.h
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_PGTABLE_H
11#define _ASMARM_PGTABLE_H
12
13#include <asm-generic/4level-fixup.h>
14
15#include <asm/memory.h>
16#include <asm/proc-fns.h>
17#include <asm/arch/vmalloc.h>
18
5c3073e6
RK
19/*
20 * Just any arbitrary offset to the start of the vmalloc VM area: the
21 * current 8MB value just means that there will be a 8MB "hole" after the
22 * physical memory until the kernel virtual memory starts. That means that
23 * any out-of-bounds memory accesses will hopefully be caught.
24 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
25 * area for the same reason. ;)
26 *
27 * Note that platforms may override VMALLOC_START, but they must provide
28 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
29 * which may not overlap IO space.
30 */
31#ifndef VMALLOC_START
32#define VMALLOC_OFFSET (8*1024*1024)
33#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
34#endif
35
1da177e4
LT
36/*
37 * Hardware-wise, we have a two level page table structure, where the first
38 * level has 4096 entries, and the second level has 256 entries. Each entry
39 * is one 32-bit word. Most of the bits in the second level entry are used
40 * by hardware, and there aren't any "accessed" and "dirty" bits.
41 *
42 * Linux on the other hand has a three level page table structure, which can
43 * be wrapped to fit a two level page table structure easily - using the PGD
44 * and PTE only. However, Linux also expects one "PTE" table per page, and
45 * at least a "dirty" bit.
46 *
47 * Therefore, we tweak the implementation slightly - we tell Linux that we
48 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
49 * hardware pointers to the second level.) The second level contains two
50 * hardware PTE tables arranged contiguously, followed by Linux versions
51 * which contain the state information Linux needs. We, therefore, end up
52 * with 512 entries in the "PTE" level.
53 *
54 * This leads to the page tables having the following layout:
55 *
56 * pgd pte
57 * | |
58 * +--------+ +0
59 * | |-----> +------------+ +0
60 * +- - - - + +4 | h/w pt 0 |
61 * | |-----> +------------+ +1024
62 * +--------+ +8 | h/w pt 1 |
63 * | | +------------+ +2048
64 * +- - - - + | Linux pt 0 |
65 * | | +------------+ +3072
66 * +--------+ | Linux pt 1 |
67 * | | +------------+ +4096
68 *
69 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
70 * PTE_xxx for definitions of bits appearing in the "h/w pt".
71 *
72 * PMD_xxx definitions refer to bits in the first level page table.
73 *
74 * The "dirty" bit is emulated by only granting hardware write permission
75 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
76 * means that a write to a clean page will cause a permission fault, and
77 * the Linux MM layer will mark the page dirty via handle_pte_fault().
78 * For the hardware to notice the permission change, the TLB entry must
79 * be flushed, and ptep_establish() does that for us.
80 *
81 * The "accessed" or "young" bit is emulated by a similar method; we only
82 * allow accesses to the page if the "young" bit is set. Accesses to the
83 * page will cause a fault, and handle_pte_fault() will set the young bit
84 * for us as long as the page is marked present in the corresponding Linux
85 * PTE entry. Again, ptep_establish() will ensure that the TLB is up to
86 * date.
87 *
88 * However, when the "young" bit is cleared, we deny access to the page
89 * by clearing the hardware PTE. Currently Linux does not flush the TLB
90 * for us in this case, which means the TLB will retain the transation
91 * until either the TLB entry is evicted under pressure, or a context
92 * switch which changes the user space mapping occurs.
93 */
94#define PTRS_PER_PTE 512
95#define PTRS_PER_PMD 1
96#define PTRS_PER_PGD 2048
97
98/*
99 * PMD_SHIFT determines the size of the area a second-level page table can map
100 * PGDIR_SHIFT determines what a third-level page table entry can map
101 */
102#define PMD_SHIFT 21
103#define PGDIR_SHIFT 21
104
105#define LIBRARY_TEXT_START 0x0c000000
106
107#ifndef __ASSEMBLY__
108extern void __pte_error(const char *file, int line, unsigned long val);
109extern void __pmd_error(const char *file, int line, unsigned long val);
110extern void __pgd_error(const char *file, int line, unsigned long val);
111
112#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
113#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
114#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
115#endif /* !__ASSEMBLY__ */
116
117#define PMD_SIZE (1UL << PMD_SHIFT)
118#define PMD_MASK (~(PMD_SIZE-1))
119#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
120#define PGDIR_MASK (~(PGDIR_SIZE-1))
121
6119be0b
HD
122/*
123 * This is the lowest virtual address we can permit any user space
124 * mapping to be mapped at. This is particularly important for
125 * non-high vector CPUs.
126 */
127#define FIRST_USER_ADDRESS PAGE_SIZE
128
1da177e4
LT
129#define FIRST_USER_PGD_NR 1
130#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
131
132/*
133 * ARMv6 supersection address mask and size definitions.
134 */
135#define SUPERSECTION_SHIFT 24
136#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
137#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
138
139/*
140 * Hardware page table definitions.
141 *
142 * + Level 1 descriptor (PMD)
143 * - common
144 */
145#define PMD_TYPE_MASK (3 << 0)
146#define PMD_TYPE_FAULT (0 << 0)
147#define PMD_TYPE_TABLE (1 << 0)
148#define PMD_TYPE_SECT (2 << 0)
149#define PMD_BIT4 (1 << 4)
150#define PMD_DOMAIN(x) ((x) << 5)
151#define PMD_PROTECTION (1 << 9) /* v5 */
152/*
153 * - section
154 */
155#define PMD_SECT_BUFFERABLE (1 << 2)
156#define PMD_SECT_CACHEABLE (1 << 3)
157#define PMD_SECT_AP_WRITE (1 << 10)
158#define PMD_SECT_AP_READ (1 << 11)
159#define PMD_SECT_TEX(x) ((x) << 12) /* v5 */
160#define PMD_SECT_APX (1 << 15) /* v6 */
161#define PMD_SECT_S (1 << 16) /* v6 */
162#define PMD_SECT_nG (1 << 17) /* v6 */
163#define PMD_SECT_SUPER (1 << 18) /* v6 */
164
165#define PMD_SECT_UNCACHED (0)
166#define PMD_SECT_BUFFERED (PMD_SECT_BUFFERABLE)
167#define PMD_SECT_WT (PMD_SECT_CACHEABLE)
168#define PMD_SECT_WB (PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE)
169#define PMD_SECT_MINICACHE (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE)
170#define PMD_SECT_WBWA (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE)
7efb8300 171#define PMD_SECT_NONSHARED_DEV (PMD_SECT_TEX(2))
1da177e4
LT
172
173/*
174 * - coarse table (not used)
175 */
176
177/*
178 * + Level 2 descriptor (PTE)
179 * - common
180 */
181#define PTE_TYPE_MASK (3 << 0)
182#define PTE_TYPE_FAULT (0 << 0)
183#define PTE_TYPE_LARGE (1 << 0)
184#define PTE_TYPE_SMALL (2 << 0)
185#define PTE_TYPE_EXT (3 << 0) /* v5 */
186#define PTE_BUFFERABLE (1 << 2)
187#define PTE_CACHEABLE (1 << 3)
188
189/*
190 * - extended small page/tiny page
191 */
1b9749e7 192#define PTE_EXT_XN (1 << 0) /* v6 */
1da177e4 193#define PTE_EXT_AP_MASK (3 << 4)
1b9749e7
RK
194#define PTE_EXT_AP0 (1 << 4)
195#define PTE_EXT_AP1 (2 << 4)
1da177e4 196#define PTE_EXT_AP_UNO_SRO (0 << 4)
1b9749e7
RK
197#define PTE_EXT_AP_UNO_SRW (PTE_EXT_AP0)
198#define PTE_EXT_AP_URO_SRW (PTE_EXT_AP1)
199#define PTE_EXT_AP_URW_SRW (PTE_EXT_AP1|PTE_EXT_AP0)
1da177e4 200#define PTE_EXT_TEX(x) ((x) << 6) /* v5 */
1b9749e7
RK
201#define PTE_EXT_APX (1 << 9) /* v6 */
202#define PTE_EXT_SHARED (1 << 10) /* v6 */
203#define PTE_EXT_NG (1 << 11) /* v6 */
1da177e4
LT
204
205/*
206 * - small page
207 */
208#define PTE_SMALL_AP_MASK (0xff << 4)
209#define PTE_SMALL_AP_UNO_SRO (0x00 << 4)
210#define PTE_SMALL_AP_UNO_SRW (0x55 << 4)
211#define PTE_SMALL_AP_URO_SRW (0xaa << 4)
212#define PTE_SMALL_AP_URW_SRW (0xff << 4)
213
214/*
215 * "Linux" PTE definitions.
216 *
217 * We keep two sets of PTEs - the hardware and the linux version.
218 * This allows greater flexibility in the way we map the Linux bits
219 * onto the hardware tables, and allows us to have YOUNG and DIRTY
220 * bits.
221 *
222 * The PTE table pointer refers to the hardware entries; the "Linux"
223 * entries are stored 1024 bytes below.
224 */
225#define L_PTE_PRESENT (1 << 0)
226#define L_PTE_FILE (1 << 1) /* only when !PRESENT */
227#define L_PTE_YOUNG (1 << 1)
228#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
229#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
230#define L_PTE_USER (1 << 4)
231#define L_PTE_WRITE (1 << 5)
232#define L_PTE_EXEC (1 << 6)
233#define L_PTE_DIRTY (1 << 7)
6626a707
RK
234#define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */
235#define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */
1da177e4
LT
236
237#ifndef __ASSEMBLY__
238
239#include <asm/domain.h>
240
241#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_USER))
242#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL))
243
244/*
245 * The following macros handle the cache and bufferable bits...
246 */
247#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
248#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
249
250extern pgprot_t pgprot_kernel;
251
252#define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
253#define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
254#define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
255#define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
256#define PAGE_KERNEL pgprot_kernel
257
258#endif /* __ASSEMBLY__ */
259
260/*
261 * The table below defines the page protection levels that we insert into our
262 * Linux page table version. These get translated into the best that the
263 * architecture can perform. Note that on most ARM hardware:
264 * 1) We cannot do execute protection
265 * 2) If we could do execute protection, then read is implied
266 * 3) write implies read permissions
267 */
268#define __P000 PAGE_NONE
269#define __P001 PAGE_READONLY
270#define __P010 PAGE_COPY
271#define __P011 PAGE_COPY
272#define __P100 PAGE_READONLY
273#define __P101 PAGE_READONLY
274#define __P110 PAGE_COPY
275#define __P111 PAGE_COPY
276
277#define __S000 PAGE_NONE
278#define __S001 PAGE_READONLY
279#define __S010 PAGE_SHARED
280#define __S011 PAGE_SHARED
281#define __S100 PAGE_READONLY
282#define __S101 PAGE_READONLY
283#define __S110 PAGE_SHARED
284#define __S111 PAGE_SHARED
285
286#ifndef __ASSEMBLY__
287/*
288 * ZERO_PAGE is a global shared page that is always zero: used
289 * for zero-mapped memory areas etc..
290 */
291extern struct page *empty_zero_page;
292#define ZERO_PAGE(vaddr) (empty_zero_page)
293
294#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
295#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
296
297#define pte_none(pte) (!pte_val(pte))
298#define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
299#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
300#define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
301#define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
302#define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
303#define pte_unmap(pte) do { } while (0)
304#define pte_unmap_nested(pte) do { } while (0)
305
306#define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
307#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
308
309/*
310 * The following only work if pte_present() is true.
311 * Undefined behaviour if not..
312 */
313#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
314#define pte_read(pte) (pte_val(pte) & L_PTE_USER)
315#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
316#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
317#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
318#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
319
320/*
321 * The following only works if pte_present() is not true.
322 */
323#define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
324#define pte_to_pgoff(x) (pte_val(x) >> 2)
325#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
326
327#define PTE_FILE_MAX_BITS 30
328
329#define PTE_BIT_FUNC(fn,op) \
330static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
331
332/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
333/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
334PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
335PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
336PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
337PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC);
338PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
339PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
340PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
341PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
342
343/*
344 * Mark the prot value as uncacheable and unbufferable.
345 */
346#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
347#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
348
349#define pmd_none(pmd) (!pmd_val(pmd))
350#define pmd_present(pmd) (pmd_val(pmd))
351#define pmd_bad(pmd) (pmd_val(pmd) & 2)
352
353#define copy_pmd(pmdpd,pmdps) \
354 do { \
355 pmdpd[0] = pmdps[0]; \
356 pmdpd[1] = pmdps[1]; \
357 flush_pmd_entry(pmdpd); \
358 } while (0)
359
360#define pmd_clear(pmdp) \
361 do { \
362 pmdp[0] = __pmd(0); \
363 pmdp[1] = __pmd(0); \
364 clean_pmd_entry(pmdp); \
365 } while (0)
366
367static inline pte_t *pmd_page_kernel(pmd_t pmd)
368{
369 unsigned long ptr;
370
371 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
372 ptr += PTRS_PER_PTE * sizeof(void *);
373
374 return __va(ptr);
375}
376
377#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
378
379/*
380 * Permanent address of a page. We never have highmem, so this is trivial.
381 */
382#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
383
384/*
385 * Conversion functions: convert a page and protection to a page entry,
386 * and a page entry and page directory to the page they refer to.
387 */
388#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
389
390/*
391 * The "pgd_xxx()" functions here are trivial for a folded two-level
392 * setup: the pgd is never bad, and a pmd always exists (as it's folded
393 * into the pgd entry)
394 */
395#define pgd_none(pgd) (0)
396#define pgd_bad(pgd) (0)
397#define pgd_present(pgd) (1)
398#define pgd_clear(pgdp) do { } while (0)
399#define set_pgd(pgd,pgdp) do { } while (0)
400
1da177e4
LT
401/* to find an entry in a page-table-directory */
402#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
403
404#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
405
406/* to find an entry in a kernel page-table-directory */
407#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
408
409/* Find an entry in the second-level page table.. */
410#define pmd_offset(dir, addr) ((pmd_t *)(dir))
411
412/* Find an entry in the third-level page table.. */
413#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
414
415static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
416{
417 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
418 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
419 return pte;
420}
421
422extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
423
424/* Encode and decode a swap entry.
425 *
426 * We support up to 32GB of swap on 4k machines
427 */
428#define __swp_type(x) (((x).val >> 2) & 0x7f)
429#define __swp_offset(x) ((x).val >> 9)
430#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
431#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
432#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
433
434/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
435/* FIXME: this is not correct */
436#define kern_addr_valid(addr) (1)
437
438#include <asm-generic/pgtable.h>
439
440/*
441 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
442 */
443#define HAVE_ARCH_UNMAPPED_AREA
444
445/*
33bf5610 446 * remap a physical page `pfn' of size `size' with page protection `prot'
1da177e4
LT
447 * into virtual address `from'
448 */
1da177e4
LT
449#define io_remap_pfn_range(vma,from,pfn,size,prot) \
450 remap_pfn_range(vma, from, pfn, size, prot)
451
452#define MK_IOSPACE_PFN(space, pfn) (pfn)
453#define GET_IOSPACE(pfn) 0
454#define GET_PFN(pfn) (pfn)
455
456#define pgtable_cache_init() do { } while (0)
457
458#endif /* !__ASSEMBLY__ */
459
460#endif /* _ASMARM_PGTABLE_H */