]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/asm-generic/pgtable.h
macvlan: do not assume mac_header is set in macvlan_broadcast()
[mirror_ubuntu-bionic-kernel.git] / include / asm-generic / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _ASM_GENERIC_PGTABLE_H
3#define _ASM_GENERIC_PGTABLE_H
4
f25748e3
DW
5#include <linux/pfn.h>
6
673eae82 7#ifndef __ASSEMBLY__
9535239f 8#ifdef CONFIG_MMU
673eae82 9
fbd71844 10#include <linux/mm_types.h>
187f1882 11#include <linux/bug.h>
e61ce6ad 12#include <linux/errno.h>
fbd71844 13
c2febafc
KS
14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
15 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
235a8f02
KS
17#endif
18
6ee8630e
HD
19/*
20 * On almost all architectures and configurations, 0 can be used as the
21 * upper ceiling to free_pgtables(): on many architectures it has the same
22 * effect as using TASK_SIZE. However, there is one configuration which
23 * must impose a more careful limit, to avoid freeing kernel pgtables.
24 */
25#ifndef USER_PGTABLES_CEILING
26#define USER_PGTABLES_CEILING 0UL
27#endif
28
1da177e4 29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
30extern int ptep_set_access_flags(struct vm_area_struct *vma,
31 unsigned long address, pte_t *ptep,
32 pte_t entry, int dirty);
33#endif
34
35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
bd5e88ad 36#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e2cda322
AA
37extern int pmdp_set_access_flags(struct vm_area_struct *vma,
38 unsigned long address, pmd_t *pmdp,
39 pmd_t entry, int dirty);
a00cc7d9
MW
40extern int pudp_set_access_flags(struct vm_area_struct *vma,
41 unsigned long address, pud_t *pudp,
42 pud_t entry, int dirty);
bd5e88ad
VG
43#else
44static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
45 unsigned long address, pmd_t *pmdp,
46 pmd_t entry, int dirty)
47{
48 BUILD_BUG();
49 return 0;
50}
a00cc7d9
MW
51static inline int pudp_set_access_flags(struct vm_area_struct *vma,
52 unsigned long address, pud_t *pudp,
53 pud_t entry, int dirty)
54{
55 BUILD_BUG();
56 return 0;
57}
bd5e88ad 58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
59#endif
60
61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pte_t *ptep)
65{
66 pte_t pte = *ptep;
67 int r = 1;
68 if (!pte_young(pte))
69 r = 0;
70 else
71 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
72 return r;
73}
74#endif
75
76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
77#ifdef CONFIG_TRANSPARENT_HUGEPAGE
78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
79 unsigned long address,
80 pmd_t *pmdp)
81{
82 pmd_t pmd = *pmdp;
83 int r = 1;
84 if (!pmd_young(pmd))
85 r = 0;
86 else
87 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
88 return r;
89}
bd5e88ad 90#else
e2cda322
AA
91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
92 unsigned long address,
93 pmd_t *pmdp)
94{
bd5e88ad 95 BUILD_BUG();
e2cda322
AA
96 return 0;
97}
98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
99#endif
100
101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
102int ptep_clear_flush_young(struct vm_area_struct *vma,
103 unsigned long address, pte_t *ptep);
104#endif
105
106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
bd5e88ad
VG
107#ifdef CONFIG_TRANSPARENT_HUGEPAGE
108extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
109 unsigned long address, pmd_t *pmdp);
110#else
111/*
112 * Despite relevant to THP only, this API is called from generic rmap code
113 * under PageTransHuge(), hence needs a dummy implementation for !THP
114 */
115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
116 unsigned long address, pmd_t *pmdp)
117{
118 BUILD_BUG();
119 return 0;
120}
121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
122#endif
123
1da177e4 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
125static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
126 unsigned long address,
127 pte_t *ptep)
128{
129 pte_t pte = *ptep;
130 pte_clear(mm, address, ptep);
131 return pte;
132}
133#endif
134
e2cda322 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
8809aa2d
AK
137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
138 unsigned long address,
139 pmd_t *pmdp)
e2cda322
AA
140{
141 pmd_t pmd = *pmdp;
2d28a227 142 pmd_clear(pmdp);
e2cda322 143 return pmd;
49b24d6b 144}
a00cc7d9
MW
145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
148 unsigned long address,
149 pud_t *pudp)
150{
151 pud_t pud = *pudp;
152
153 pud_clear(pudp);
154 return pud;
155}
156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
e2cda322 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4 158
fcbe08d6 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
8809aa2d 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
fcbe08d6
MS
162 unsigned long address, pmd_t *pmdp,
163 int full)
164{
8809aa2d 165 return pmdp_huge_get_and_clear(mm, address, pmdp);
fcbe08d6 166}
fcbe08d6
MS
167#endif
168
a00cc7d9
MW
169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
171 unsigned long address, pud_t *pudp,
172 int full)
173{
174 return pudp_huge_get_and_clear(mm, address, pudp);
175}
176#endif
177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178
a600388d 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
181 unsigned long address, pte_t *ptep,
182 int full)
183{
184 pte_t pte;
185 pte = ptep_get_and_clear(mm, address, ptep);
186 return pte;
187}
a600388d
ZA
188#endif
189
9888a1ca
ZA
190/*
191 * Some architectures may be able to avoid expensive synchronization
192 * primitives when modifications are made to PTE's which are already
193 * not present, or in the process of an address space destruction.
194 */
195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
196static inline void pte_clear_not_present_full(struct mm_struct *mm,
197 unsigned long address,
198 pte_t *ptep,
199 int full)
200{
201 pte_clear(mm, address, ptep);
202}
a600388d
ZA
203#endif
204
1da177e4 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
206extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
207 unsigned long address,
208 pte_t *ptep);
209#endif
210
8809aa2d
AK
211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
e2cda322
AA
213 unsigned long address,
214 pmd_t *pmdp);
a00cc7d9
MW
215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
216 unsigned long address,
217 pud_t *pudp);
1da177e4
LT
218#endif
219
220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 221struct mm_struct;
1da177e4
LT
222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
223{
224 pte_t old_pte = *ptep;
225 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
226}
227#endif
228
288bc549
AK
229#ifndef pte_savedwrite
230#define pte_savedwrite pte_write
231#endif
232
233#ifndef pte_mk_savedwrite
234#define pte_mk_savedwrite pte_mkwrite
235#endif
236
595cd8f2
AK
237#ifndef pte_clear_savedwrite
238#define pte_clear_savedwrite pte_wrprotect
239#endif
240
288bc549
AK
241#ifndef pmd_savedwrite
242#define pmd_savedwrite pmd_write
243#endif
244
245#ifndef pmd_mk_savedwrite
246#define pmd_mk_savedwrite pmd_mkwrite
247#endif
248
595cd8f2
AK
249#ifndef pmd_clear_savedwrite
250#define pmd_clear_savedwrite pmd_wrprotect
251#endif
252
e2cda322
AA
253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
254#ifdef CONFIG_TRANSPARENT_HUGEPAGE
255static inline void pmdp_set_wrprotect(struct mm_struct *mm,
256 unsigned long address, pmd_t *pmdp)
257{
258 pmd_t old_pmd = *pmdp;
259 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
260}
bd5e88ad 261#else
e2cda322
AA
262static inline void pmdp_set_wrprotect(struct mm_struct *mm,
263 unsigned long address, pmd_t *pmdp)
264{
bd5e88ad 265 BUILD_BUG();
e2cda322
AA
266}
267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268#endif
a00cc7d9
MW
269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
271static inline void pudp_set_wrprotect(struct mm_struct *mm,
272 unsigned long address, pud_t *pudp)
273{
274 pud_t old_pud = *pudp;
275
276 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
277}
278#else
279static inline void pudp_set_wrprotect(struct mm_struct *mm,
280 unsigned long address, pud_t *pudp)
281{
282 BUILD_BUG();
283}
284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
285#endif
e2cda322 286
15a25b2e
AK
287#ifndef pmdp_collapse_flush
288#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f28b6ff8
AK
289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
290 unsigned long address, pmd_t *pmdp);
15a25b2e
AK
291#else
292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
293 unsigned long address,
294 pmd_t *pmdp)
295{
296 BUILD_BUG();
297 return *pmdp;
298}
299#define pmdp_collapse_flush pmdp_collapse_flush
300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
301#endif
302
e3ebcf64 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
305 pgtable_t pgtable);
e3ebcf64
GS
306#endif
307
308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
e3ebcf64
GS
310#endif
311
b3715e8e
KS
312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
313/*
314 * This is an implementation of pmdp_establish() that is only suitable for an
315 * architecture that doesn't have hardware dirty/accessed bits. In this case we
316 * can't race with CPU which sets these bits and non-atomic aproach is fine.
317 */
318static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
319 unsigned long address, pmd_t *pmdp, pmd_t pmd)
320{
321 pmd_t old_pmd = *pmdp;
322 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
323 return old_pmd;
324}
325#endif
326
46dcde73
GS
327#ifndef __HAVE_ARCH_PMDP_INVALIDATE
328extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
329 pmd_t *pmdp);
330#endif
331
c777e2a8
AK
332#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
333static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
334 unsigned long address, pmd_t *pmdp)
335{
336
337}
338#endif
339
1da177e4 340#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
341static inline int pte_same(pte_t pte_a, pte_t pte_b)
342{
343 return pte_val(pte_a) == pte_val(pte_b);
344}
345#endif
346
45961722
KW
347#ifndef __HAVE_ARCH_PTE_UNUSED
348/*
349 * Some architectures provide facilities to virtualization guests
350 * so that they can flag allocated pages as unused. This allows the
351 * host to transparently reclaim unused pages. This function returns
352 * whether the pte's page is unused.
353 */
354static inline int pte_unused(pte_t pte)
355{
356 return 0;
357}
358#endif
359
e7884f8e
KS
360#ifndef pte_access_permitted
361#define pte_access_permitted(pte, write) \
362 (pte_present(pte) && (!(write) || pte_write(pte)))
363#endif
364
365#ifndef pmd_access_permitted
366#define pmd_access_permitted(pmd, write) \
367 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
368#endif
369
370#ifndef pud_access_permitted
371#define pud_access_permitted(pud, write) \
372 (pud_present(pud) && (!(write) || pud_write(pud)))
373#endif
374
375#ifndef p4d_access_permitted
376#define p4d_access_permitted(p4d, write) \
377 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
378#endif
379
380#ifndef pgd_access_permitted
381#define pgd_access_permitted(pgd, write) \
382 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
383#endif
384
e2cda322
AA
385#ifndef __HAVE_ARCH_PMD_SAME
386#ifdef CONFIG_TRANSPARENT_HUGEPAGE
387static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
388{
389 return pmd_val(pmd_a) == pmd_val(pmd_b);
390}
a00cc7d9
MW
391
392static inline int pud_same(pud_t pud_a, pud_t pud_b)
393{
394 return pud_val(pud_a) == pud_val(pud_b);
395}
e2cda322
AA
396#else /* CONFIG_TRANSPARENT_HUGEPAGE */
397static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
398{
bd5e88ad 399 BUILD_BUG();
e2cda322
AA
400 return 0;
401}
a00cc7d9
MW
402
403static inline int pud_same(pud_t pud_a, pud_t pud_b)
404{
405 BUILD_BUG();
406 return 0;
407}
e2cda322 408#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
409#endif
410
1da177e4
LT
411#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
412#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
413#endif
414
0b0968a3 415#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 416#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
417#endif
418
2c3cf556 419#ifndef pte_accessible
20841405 420# define pte_accessible(mm, pte) ((void)(pte), 1)
2c3cf556
RR
421#endif
422
61c77326
SL
423#ifndef flush_tlb_fix_spurious_fault
424#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
425#endif
426
0634a632
PM
427#ifndef pgprot_noncached
428#define pgprot_noncached(prot) (prot)
429#endif
430
2520bd31 431#ifndef pgprot_writecombine
432#define pgprot_writecombine pgprot_noncached
433#endif
434
d1b4bfbf
TK
435#ifndef pgprot_writethrough
436#define pgprot_writethrough pgprot_noncached
437#endif
438
8b921acf
LD
439#ifndef pgprot_device
440#define pgprot_device pgprot_noncached
441#endif
442
64e45507
PF
443#ifndef pgprot_modify
444#define pgprot_modify pgprot_modify
445static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
446{
447 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
448 newprot = pgprot_noncached(newprot);
449 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
450 newprot = pgprot_writecombine(newprot);
451 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
452 newprot = pgprot_device(newprot);
453 return newprot;
454}
455#endif
456
1da177e4 457/*
8f6c99c1
HD
458 * When walking page tables, get the address of the next boundary,
459 * or the end address of the range if that comes earlier. Although no
460 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
461 */
462
1da177e4
LT
463#define pgd_addr_end(addr, end) \
464({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
465 (__boundary - 1 < (end) - 1)? __boundary: (end); \
466})
1da177e4 467
c2febafc
KS
468#ifndef p4d_addr_end
469#define p4d_addr_end(addr, end) \
470({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
471 (__boundary - 1 < (end) - 1)? __boundary: (end); \
472})
473#endif
474
1da177e4
LT
475#ifndef pud_addr_end
476#define pud_addr_end(addr, end) \
477({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
478 (__boundary - 1 < (end) - 1)? __boundary: (end); \
479})
480#endif
481
482#ifndef pmd_addr_end
483#define pmd_addr_end(addr, end) \
484({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
485 (__boundary - 1 < (end) - 1)? __boundary: (end); \
486})
487#endif
488
1da177e4
LT
489/*
490 * When walking page tables, we usually want to skip any p?d_none entries;
491 * and any p?d_bad entries - reporting the error before resetting to none.
492 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
493 */
494void pgd_clear_bad(pgd_t *);
c2febafc 495void p4d_clear_bad(p4d_t *);
1da177e4
LT
496void pud_clear_bad(pud_t *);
497void pmd_clear_bad(pmd_t *);
498
499static inline int pgd_none_or_clear_bad(pgd_t *pgd)
500{
501 if (pgd_none(*pgd))
502 return 1;
503 if (unlikely(pgd_bad(*pgd))) {
504 pgd_clear_bad(pgd);
505 return 1;
506 }
507 return 0;
508}
509
c2febafc
KS
510static inline int p4d_none_or_clear_bad(p4d_t *p4d)
511{
512 if (p4d_none(*p4d))
513 return 1;
514 if (unlikely(p4d_bad(*p4d))) {
515 p4d_clear_bad(p4d);
516 return 1;
517 }
518 return 0;
519}
520
1da177e4
LT
521static inline int pud_none_or_clear_bad(pud_t *pud)
522{
523 if (pud_none(*pud))
524 return 1;
525 if (unlikely(pud_bad(*pud))) {
526 pud_clear_bad(pud);
527 return 1;
528 }
529 return 0;
530}
531
532static inline int pmd_none_or_clear_bad(pmd_t *pmd)
533{
534 if (pmd_none(*pmd))
535 return 1;
536 if (unlikely(pmd_bad(*pmd))) {
537 pmd_clear_bad(pmd);
538 return 1;
539 }
540 return 0;
541}
9535239f 542
1ea0704e
JF
543static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
544 unsigned long addr,
545 pte_t *ptep)
546{
547 /*
548 * Get the current pte state, but zero it out to make it
549 * non-present, preventing the hardware from asynchronously
550 * updating it.
551 */
552 return ptep_get_and_clear(mm, addr, ptep);
553}
554
555static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
556 unsigned long addr,
557 pte_t *ptep, pte_t pte)
558{
559 /*
560 * The pte is non-present, so there's no hardware state to
561 * preserve.
562 */
563 set_pte_at(mm, addr, ptep, pte);
564}
565
566#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
567/*
568 * Start a pte protection read-modify-write transaction, which
569 * protects against asynchronous hardware modifications to the pte.
570 * The intention is not to prevent the hardware from making pte
571 * updates, but to prevent any updates it may make from being lost.
572 *
573 * This does not protect against other software modifications of the
574 * pte; the appropriate pte lock must be held over the transation.
575 *
576 * Note that this interface is intended to be batchable, meaning that
577 * ptep_modify_prot_commit may not actually update the pte, but merely
578 * queue the update to be done at some later time. The update must be
579 * actually committed before the pte lock is released, however.
580 */
581static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
582 unsigned long addr,
583 pte_t *ptep)
584{
585 return __ptep_modify_prot_start(mm, addr, ptep);
586}
587
588/*
589 * Commit an update to a pte, leaving any hardware-controlled bits in
590 * the PTE unmodified.
591 */
592static inline void ptep_modify_prot_commit(struct mm_struct *mm,
593 unsigned long addr,
594 pte_t *ptep, pte_t pte)
595{
596 __ptep_modify_prot_commit(mm, addr, ptep, pte);
597}
598#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 599#endif /* CONFIG_MMU */
1ea0704e 600
21729f81
TL
601/*
602 * No-op macros that just return the current protection value. Defined here
603 * because these macros can be used used even if CONFIG_MMU is not defined.
604 */
605#ifndef pgprot_encrypted
606#define pgprot_encrypted(prot) (prot)
607#endif
608
609#ifndef pgprot_decrypted
610#define pgprot_decrypted(prot) (prot)
611#endif
612
9535239f
GU
613/*
614 * A facility to provide lazy MMU batching. This allows PTE updates and
615 * page invalidations to be delayed until a call to leave lazy MMU mode
616 * is issued. Some architectures may benefit from doing this, and it is
617 * beneficial for both shadow and direct mode hypervisors, which may batch
618 * the PTE updates which happen during this window. Note that using this
619 * interface requires that read hazards be removed from the code. A read
620 * hazard could result in the direct mode hypervisor case, since the actual
621 * write to the page tables may not yet have taken place, so reads though
622 * a raw PTE pointer after it has been modified are not guaranteed to be
623 * up to date. This mode can only be entered and left under the protection of
624 * the page table locks for all page tables which may be modified. In the UP
625 * case, this is required so that preemption is disabled, and in the SMP case,
626 * it must synchronize the delayed page table writes properly on other CPUs.
627 */
628#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
629#define arch_enter_lazy_mmu_mode() do {} while (0)
630#define arch_leave_lazy_mmu_mode() do {} while (0)
631#define arch_flush_lazy_mmu_mode() do {} while (0)
632#endif
633
634/*
7fd7d83d
JF
635 * A facility to provide batching of the reload of page tables and
636 * other process state with the actual context switch code for
637 * paravirtualized guests. By convention, only one of the batched
638 * update (lazy) modes (CPU, MMU) should be active at any given time,
639 * entry should never be nested, and entry and exits should always be
640 * paired. This is for sanity of maintaining and reasoning about the
641 * kernel code. In this case, the exit (end of the context switch) is
642 * in architecture-specific code, and so doesn't need a generic
643 * definition.
9535239f 644 */
7fd7d83d 645#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 646#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
647#endif
648
ab6e3d09
NH
649#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
650#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
651static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
652{
653 return pmd;
654}
655
656static inline int pmd_swp_soft_dirty(pmd_t pmd)
657{
658 return 0;
659}
660
661static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
662{
663 return pmd;
664}
665#endif
666#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
0f8975ec
PE
667static inline int pte_soft_dirty(pte_t pte)
668{
669 return 0;
670}
671
672static inline int pmd_soft_dirty(pmd_t pmd)
673{
674 return 0;
675}
676
677static inline pte_t pte_mksoft_dirty(pte_t pte)
678{
679 return pte;
680}
681
682static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
683{
684 return pmd;
685}
179ef71c 686
a7b76174
MS
687static inline pte_t pte_clear_soft_dirty(pte_t pte)
688{
689 return pte;
690}
691
692static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
693{
694 return pmd;
695}
696
179ef71c
CG
697static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
698{
699 return pte;
700}
701
702static inline int pte_swp_soft_dirty(pte_t pte)
703{
704 return 0;
705}
706
707static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
708{
709 return pte;
710}
ab6e3d09
NH
711
712static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
713{
714 return pmd;
715}
716
717static inline int pmd_swp_soft_dirty(pmd_t pmd)
718{
719 return 0;
720}
721
722static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
723{
724 return pmd;
725}
0f8975ec
PE
726#endif
727
34801ba9 728#ifndef __HAVE_PFNMAP_TRACKING
729/*
5180da41
SS
730 * Interfaces that can be used by architecture code to keep track of
731 * memory type of pfn mappings specified by the remap_pfn_range,
732 * vm_insert_pfn.
733 */
734
735/*
736 * track_pfn_remap is called when a _new_ pfn mapping is being established
737 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 738 */
5180da41 739static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
740 unsigned long pfn, unsigned long addr,
741 unsigned long size)
34801ba9 742{
743 return 0;
744}
745
746/*
5180da41
SS
747 * track_pfn_insert is called when a _new_ single pfn is established
748 * by vm_insert_pfn().
749 */
308a047c
BP
750static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
751 pfn_t pfn)
5180da41 752{
5180da41
SS
753}
754
755/*
756 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 757 * copied through copy_page_range().
758 */
5180da41 759static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 760{
761 return 0;
762}
763
764/*
d9fe4fab 765 * untrack_pfn is called while unmapping a pfnmap for a region.
34801ba9 766 * untrack can be called for a specific region indicated by pfn and size or
5180da41 767 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 768 */
5180da41
SS
769static inline void untrack_pfn(struct vm_area_struct *vma,
770 unsigned long pfn, unsigned long size)
34801ba9 771{
772}
d9fe4fab
TK
773
774/*
775 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
776 */
777static inline void untrack_pfn_moved(struct vm_area_struct *vma)
778{
779}
34801ba9 780#else
5180da41 781extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
782 unsigned long pfn, unsigned long addr,
783 unsigned long size);
308a047c
BP
784extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
785 pfn_t pfn);
5180da41
SS
786extern int track_pfn_copy(struct vm_area_struct *vma);
787extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
788 unsigned long size);
d9fe4fab 789extern void untrack_pfn_moved(struct vm_area_struct *vma);
34801ba9 790#endif
791
816422ad
KS
792#ifdef __HAVE_COLOR_ZERO_PAGE
793static inline int is_zero_pfn(unsigned long pfn)
794{
795 extern unsigned long zero_pfn;
796 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
797 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
798}
799
2f91ec8c
KS
800#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
801
816422ad
KS
802#else
803static inline int is_zero_pfn(unsigned long pfn)
804{
805 extern unsigned long zero_pfn;
806 return pfn == zero_pfn;
807}
808
809static inline unsigned long my_zero_pfn(unsigned long addr)
810{
811 extern unsigned long zero_pfn;
812 return zero_pfn;
813}
814#endif
815
1a5a9906
AA
816#ifdef CONFIG_MMU
817
5f6e8da7
AA
818#ifndef CONFIG_TRANSPARENT_HUGEPAGE
819static inline int pmd_trans_huge(pmd_t pmd)
820{
821 return 0;
822}
e4e40e02 823#ifndef pmd_write
e2cda322
AA
824static inline int pmd_write(pmd_t pmd)
825{
826 BUG();
827 return 0;
828}
e4e40e02 829#endif /* pmd_write */
1a5a9906
AA
830#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
831
1501899a
DW
832#ifndef pud_write
833static inline int pud_write(pud_t pud)
834{
835 BUG();
836 return 0;
837}
838#endif /* pud_write */
839
a00cc7d9
MW
840#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
841 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
842 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
843static inline int pud_trans_huge(pud_t pud)
844{
845 return 0;
846}
847#endif
848
26c19178
AA
849#ifndef pmd_read_atomic
850static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
851{
852 /*
853 * Depend on compiler for an atomic pmd read. NOTE: this is
854 * only going to work, if the pmdval_t isn't larger than
855 * an unsigned long.
856 */
857 return *pmdp;
858}
859#endif
860
953c66c2
AK
861#ifndef arch_needs_pgtable_deposit
862#define arch_needs_pgtable_deposit() (false)
863#endif
1a5a9906
AA
864/*
865 * This function is meant to be used by sites walking pagetables with
866 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
867 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
868 * into a null pmd and the transhuge page fault can convert a null pmd
869 * into an hugepmd or into a regular pmd (if the hugepage allocation
870 * fails). While holding the mmap_sem in read mode the pmd becomes
871 * stable and stops changing under us only if it's not null and not a
872 * transhuge pmd. When those races occurs and this function makes a
873 * difference vs the standard pmd_none_or_clear_bad, the result is
874 * undefined so behaving like if the pmd was none is safe (because it
875 * can return none anyway). The compiler level barrier() is critically
876 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
877 *
878 * For 32bit kernels with a 64bit large pmd_t this automatically takes
879 * care of reading the pmd atomically to avoid SMP race conditions
880 * against pmd_populate() when the mmap_sem is hold for reading by the
881 * caller (a special atomic read not done by "gcc" as in the generic
882 * version above, is also needed when THP is disabled because the page
883 * fault can populate the pmd from under us).
1a5a9906
AA
884 */
885static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
886{
26c19178 887 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
888 /*
889 * The barrier will stabilize the pmdval in a register or on
890 * the stack so that it will stop changing under the code.
e4eed03f
AA
891 *
892 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
893 * pmd_read_atomic is allowed to return a not atomic pmdval
894 * (for example pointing to an hugepage that has never been
895 * mapped in the pmd). The below checks will only care about
896 * the low part of the pmd with 32bit PAE x86 anyway, with the
897 * exception of pmd_none(). So the important thing is that if
898 * the low part of the pmd is found null, the high part will
899 * be also null or the pmd_none() check below would be
900 * confused.
1a5a9906
AA
901 */
902#ifdef CONFIG_TRANSPARENT_HUGEPAGE
903 barrier();
904#endif
84c3fc4e
ZY
905 /*
906 * !pmd_present() checks for pmd migration entries
907 *
908 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
909 * But using that requires moving current function and pmd_trans_unstable()
910 * to linux/swapops.h to resovle dependency, which is too much code move.
911 *
912 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
913 * because !pmd_present() pages can only be under migration not swapped
914 * out.
915 *
916 * pmd_none() is preseved for future condition checks on pmd migration
917 * entries and not confusing with this function name, although it is
918 * redundant with !pmd_present().
919 */
920 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
921 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1a5a9906
AA
922 return 1;
923 if (unlikely(pmd_bad(pmdval))) {
ee53664b 924 pmd_clear_bad(pmd);
1a5a9906
AA
925 return 1;
926 }
927 return 0;
928}
929
930/*
931 * This is a noop if Transparent Hugepage Support is not built into
932 * the kernel. Otherwise it is equivalent to
933 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
934 * places that already verified the pmd is not none and they want to
935 * walk ptes while holding the mmap sem in read mode (write mode don't
936 * need this). If THP is not enabled, the pmd can't go away under the
937 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
938 * run a pmd_trans_unstable before walking the ptes after
939 * split_huge_page_pmd returns (because it may have run when the pmd
940 * become null, but then a page fault can map in a THP and not a
941 * regular page).
942 */
943static inline int pmd_trans_unstable(pmd_t *pmd)
944{
945#ifdef CONFIG_TRANSPARENT_HUGEPAGE
946 return pmd_none_or_trans_huge_or_clear_bad(pmd);
947#else
948 return 0;
5f6e8da7 949#endif
1a5a9906
AA
950}
951
e7bb4b6d
MG
952#ifndef CONFIG_NUMA_BALANCING
953/*
954 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
955 * the only case the kernel cares is for NUMA balancing and is only ever set
956 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
957 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
958 * is the responsibility of the caller to distinguish between PROT_NONE
959 * protections and NUMA hinting fault protections.
960 */
961static inline int pte_protnone(pte_t pte)
962{
963 return 0;
964}
965
966static inline int pmd_protnone(pmd_t pmd)
967{
968 return 0;
969}
970#endif /* CONFIG_NUMA_BALANCING */
971
1a5a9906 972#endif /* CONFIG_MMU */
5f6e8da7 973
e61ce6ad 974#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
c2febafc
KS
975
976#ifndef __PAGETABLE_P4D_FOLDED
977int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
978int p4d_clear_huge(p4d_t *p4d);
979#else
980static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
981{
982 return 0;
983}
984static inline int p4d_clear_huge(p4d_t *p4d)
985{
986 return 0;
987}
988#endif /* !__PAGETABLE_P4D_FOLDED */
989
e61ce6ad
TK
990int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
991int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
b9820d8f
TK
992int pud_clear_huge(pud_t *pud);
993int pmd_clear_huge(pmd_t *pmd);
51fd23e9
CP
994int pud_free_pmd_page(pud_t *pud, unsigned long addr);
995int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
e61ce6ad 996#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
c2febafc
KS
997static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
998{
999 return 0;
1000}
e61ce6ad
TK
1001static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1002{
1003 return 0;
1004}
1005static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1006{
1007 return 0;
1008}
c2febafc
KS
1009static inline int p4d_clear_huge(p4d_t *p4d)
1010{
1011 return 0;
1012}
b9820d8f
TK
1013static inline int pud_clear_huge(pud_t *pud)
1014{
1015 return 0;
1016}
1017static inline int pmd_clear_huge(pmd_t *pmd)
1018{
1019 return 0;
1020}
51fd23e9 1021static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
d9aaf32a
TK
1022{
1023 return 0;
1024}
51fd23e9 1025static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
d9aaf32a
TK
1026{
1027 return 0;
1028}
e61ce6ad
TK
1029#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1030
458aa76d
AK
1031#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1032#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1033/*
1034 * ARCHes with special requirements for evicting THP backing TLB entries can
1035 * implement this. Otherwise also, it can help optimize normal TLB flush in
1036 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1037 * entire TLB TLB if flush span is greater than a threshold, which will
1038 * likely be true for a single huge page. Thus a single thp flush will
1039 * invalidate the entire TLB which is not desitable.
1040 * e.g. see arch/arc: flush_pmd_tlb_range
1041 */
1042#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
a00cc7d9 1043#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
458aa76d
AK
1044#else
1045#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
a00cc7d9 1046#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
458aa76d
AK
1047#endif
1048#endif
1049
08ea8c07
BX
1050struct file;
1051int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1052 unsigned long size, pgprot_t *vma_prot);
613e396b
TG
1053
1054#ifndef CONFIG_X86_ESPFIX64
1055static inline void init_espfix_bsp(void) { }
1056#endif
1057
c42eba51
JK
1058#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1059static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1060{
1061 return true;
1062}
1063
1064static inline bool arch_has_pfn_modify_check(void)
1065{
1066 return false;
1067}
1068#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1069
1da177e4
LT
1070#endif /* !__ASSEMBLY__ */
1071
40d158e6
AV
1072#ifndef io_remap_pfn_range
1073#define io_remap_pfn_range remap_pfn_range
1074#endif
1075
fd8cfd30
HD
1076#ifndef has_transparent_hugepage
1077#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1078#define has_transparent_hugepage() 1
1079#else
1080#define has_transparent_hugepage() 0
1081#endif
1082#endif
1083
e9fb805a
MS
1084/*
1085 * On some architectures it depends on the mm if the p4d/pud or pmd
1086 * layer of the page table hierarchy is folded or not.
1087 */
1088#ifndef mm_p4d_folded
1089#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1090#endif
1091
1092#ifndef mm_pud_folded
1093#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1094#endif
1095
1096#ifndef mm_pmd_folded
1097#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1098#endif
1099
1da177e4 1100#endif /* _ASM_GENERIC_PGTABLE_H */