]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/asm-generic/pgtable.h
UBUNTU: Ubuntu-raspi2-4.10.0-1002.4
[mirror_ubuntu-zesty-kernel.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
f25748e3
DW
4#include <linux/pfn.h>
5
673eae82 6#ifndef __ASSEMBLY__
9535239f 7#ifdef CONFIG_MMU
673eae82 8
fbd71844 9#include <linux/mm_types.h>
187f1882 10#include <linux/bug.h>
e61ce6ad 11#include <linux/errno.h>
fbd71844 12
235a8f02
KS
13#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
14 CONFIG_PGTABLE_LEVELS
15#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
16#endif
17
6ee8630e
HD
18/*
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
23 */
24#ifndef USER_PGTABLES_CEILING
25#define USER_PGTABLES_CEILING 0UL
26#endif
27
1da177e4 28#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
29extern int ptep_set_access_flags(struct vm_area_struct *vma,
30 unsigned long address, pte_t *ptep,
31 pte_t entry, int dirty);
32#endif
33
34#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
bd5e88ad 35#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e2cda322
AA
36extern int pmdp_set_access_flags(struct vm_area_struct *vma,
37 unsigned long address, pmd_t *pmdp,
38 pmd_t entry, int dirty);
bd5e88ad
VG
39#else
40static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
41 unsigned long address, pmd_t *pmdp,
42 pmd_t entry, int dirty)
43{
44 BUILD_BUG();
45 return 0;
46}
47#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
48#endif
49
50#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
51static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
52 unsigned long address,
53 pte_t *ptep)
54{
55 pte_t pte = *ptep;
56 int r = 1;
57 if (!pte_young(pte))
58 r = 0;
59 else
60 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
61 return r;
62}
63#endif
64
65#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
66#ifdef CONFIG_TRANSPARENT_HUGEPAGE
67static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
68 unsigned long address,
69 pmd_t *pmdp)
70{
71 pmd_t pmd = *pmdp;
72 int r = 1;
73 if (!pmd_young(pmd))
74 r = 0;
75 else
76 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
77 return r;
78}
bd5e88ad 79#else
e2cda322
AA
80static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
81 unsigned long address,
82 pmd_t *pmdp)
83{
bd5e88ad 84 BUILD_BUG();
e2cda322
AA
85 return 0;
86}
87#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
88#endif
89
90#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
91int ptep_clear_flush_young(struct vm_area_struct *vma,
92 unsigned long address, pte_t *ptep);
93#endif
94
95#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
bd5e88ad
VG
96#ifdef CONFIG_TRANSPARENT_HUGEPAGE
97extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
98 unsigned long address, pmd_t *pmdp);
99#else
100/*
101 * Despite relevant to THP only, this API is called from generic rmap code
102 * under PageTransHuge(), hence needs a dummy implementation for !THP
103 */
104static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
105 unsigned long address, pmd_t *pmdp)
106{
107 BUILD_BUG();
108 return 0;
109}
110#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
111#endif
112
1da177e4 113#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
114static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
115 unsigned long address,
116 pte_t *ptep)
117{
118 pte_t pte = *ptep;
119 pte_clear(mm, address, ptep);
120 return pte;
121}
122#endif
123
8809aa2d 124#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
e2cda322 125#ifdef CONFIG_TRANSPARENT_HUGEPAGE
8809aa2d
AK
126static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
127 unsigned long address,
128 pmd_t *pmdp)
e2cda322
AA
129{
130 pmd_t pmd = *pmdp;
2d28a227 131 pmd_clear(pmdp);
e2cda322 132 return pmd;
49b24d6b 133}
e2cda322 134#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
135#endif
136
8809aa2d 137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
fcbe08d6 138#ifdef CONFIG_TRANSPARENT_HUGEPAGE
8809aa2d 139static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
fcbe08d6
MS
140 unsigned long address, pmd_t *pmdp,
141 int full)
142{
8809aa2d 143 return pmdp_huge_get_and_clear(mm, address, pmdp);
fcbe08d6
MS
144}
145#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
146#endif
147
a600388d 148#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
149static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
150 unsigned long address, pte_t *ptep,
151 int full)
152{
153 pte_t pte;
154 pte = ptep_get_and_clear(mm, address, ptep);
155 return pte;
156}
a600388d
ZA
157#endif
158
9888a1ca
ZA
159/*
160 * Some architectures may be able to avoid expensive synchronization
161 * primitives when modifications are made to PTE's which are already
162 * not present, or in the process of an address space destruction.
163 */
164#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
165static inline void pte_clear_not_present_full(struct mm_struct *mm,
166 unsigned long address,
167 pte_t *ptep,
168 int full)
169{
170 pte_clear(mm, address, ptep);
171}
a600388d
ZA
172#endif
173
1da177e4 174#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
175extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
176 unsigned long address,
177 pte_t *ptep);
178#endif
179
8809aa2d
AK
180#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
181extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
e2cda322
AA
182 unsigned long address,
183 pmd_t *pmdp);
1da177e4
LT
184#endif
185
186#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 187struct mm_struct;
1da177e4
LT
188static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
189{
190 pte_t old_pte = *ptep;
191 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
192}
193#endif
194
d511ead1
AK
195#ifndef pte_savedwrite
196#define pte_savedwrite pte_write
197#endif
198
199#ifndef pte_mk_savedwrite
200#define pte_mk_savedwrite pte_mkwrite
201#endif
202
737f3a90
AK
203#ifndef pte_clear_savedwrite
204#define pte_clear_savedwrite pte_wrprotect
205#endif
206
d511ead1
AK
207#ifndef pmd_savedwrite
208#define pmd_savedwrite pmd_write
209#endif
210
211#ifndef pmd_mk_savedwrite
212#define pmd_mk_savedwrite pmd_mkwrite
213#endif
214
737f3a90
AK
215#ifndef pmd_clear_savedwrite
216#define pmd_clear_savedwrite pmd_wrprotect
217#endif
218
e2cda322
AA
219#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
220#ifdef CONFIG_TRANSPARENT_HUGEPAGE
221static inline void pmdp_set_wrprotect(struct mm_struct *mm,
222 unsigned long address, pmd_t *pmdp)
223{
224 pmd_t old_pmd = *pmdp;
225 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
226}
bd5e88ad 227#else
e2cda322
AA
228static inline void pmdp_set_wrprotect(struct mm_struct *mm,
229 unsigned long address, pmd_t *pmdp)
230{
bd5e88ad 231 BUILD_BUG();
e2cda322
AA
232}
233#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
234#endif
235
15a25b2e
AK
236#ifndef pmdp_collapse_flush
237#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f28b6ff8
AK
238extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
239 unsigned long address, pmd_t *pmdp);
15a25b2e
AK
240#else
241static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
242 unsigned long address,
243 pmd_t *pmdp)
244{
245 BUILD_BUG();
246 return *pmdp;
247}
248#define pmdp_collapse_flush pmdp_collapse_flush
249#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
250#endif
251
e3ebcf64 252#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
253extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
254 pgtable_t pgtable);
e3ebcf64
GS
255#endif
256
257#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 258extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
e3ebcf64
GS
259#endif
260
46dcde73
GS
261#ifndef __HAVE_ARCH_PMDP_INVALIDATE
262extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
263 pmd_t *pmdp);
264#endif
265
c777e2a8
AK
266#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
267static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
268 unsigned long address, pmd_t *pmdp)
269{
270
271}
272#endif
273
1da177e4 274#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
275static inline int pte_same(pte_t pte_a, pte_t pte_b)
276{
277 return pte_val(pte_a) == pte_val(pte_b);
278}
279#endif
280
45961722
KW
281#ifndef __HAVE_ARCH_PTE_UNUSED
282/*
283 * Some architectures provide facilities to virtualization guests
284 * so that they can flag allocated pages as unused. This allows the
285 * host to transparently reclaim unused pages. This function returns
286 * whether the pte's page is unused.
287 */
288static inline int pte_unused(pte_t pte)
289{
290 return 0;
291}
292#endif
293
e2cda322
AA
294#ifndef __HAVE_ARCH_PMD_SAME
295#ifdef CONFIG_TRANSPARENT_HUGEPAGE
296static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
297{
298 return pmd_val(pmd_a) == pmd_val(pmd_b);
299}
300#else /* CONFIG_TRANSPARENT_HUGEPAGE */
301static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
302{
bd5e88ad 303 BUILD_BUG();
e2cda322
AA
304 return 0;
305}
306#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
307#endif
308
1da177e4
LT
309#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
310#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
311#endif
312
0b0968a3 313#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 314#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
315#endif
316
2c3cf556 317#ifndef pte_accessible
20841405 318# define pte_accessible(mm, pte) ((void)(pte), 1)
2c3cf556
RR
319#endif
320
61c77326
SL
321#ifndef flush_tlb_fix_spurious_fault
322#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
323#endif
324
0634a632
PM
325#ifndef pgprot_noncached
326#define pgprot_noncached(prot) (prot)
327#endif
328
2520bd31 329#ifndef pgprot_writecombine
330#define pgprot_writecombine pgprot_noncached
331#endif
332
d1b4bfbf
TK
333#ifndef pgprot_writethrough
334#define pgprot_writethrough pgprot_noncached
335#endif
336
8b921acf
LD
337#ifndef pgprot_device
338#define pgprot_device pgprot_noncached
339#endif
340
64e45507
PF
341#ifndef pgprot_modify
342#define pgprot_modify pgprot_modify
343static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
344{
345 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
346 newprot = pgprot_noncached(newprot);
347 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
348 newprot = pgprot_writecombine(newprot);
349 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
350 newprot = pgprot_device(newprot);
351 return newprot;
352}
353#endif
354
1da177e4 355/*
8f6c99c1
HD
356 * When walking page tables, get the address of the next boundary,
357 * or the end address of the range if that comes earlier. Although no
358 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
359 */
360
1da177e4
LT
361#define pgd_addr_end(addr, end) \
362({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
363 (__boundary - 1 < (end) - 1)? __boundary: (end); \
364})
1da177e4
LT
365
366#ifndef pud_addr_end
367#define pud_addr_end(addr, end) \
368({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
369 (__boundary - 1 < (end) - 1)? __boundary: (end); \
370})
371#endif
372
373#ifndef pmd_addr_end
374#define pmd_addr_end(addr, end) \
375({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
376 (__boundary - 1 < (end) - 1)? __boundary: (end); \
377})
378#endif
379
1da177e4
LT
380/*
381 * When walking page tables, we usually want to skip any p?d_none entries;
382 * and any p?d_bad entries - reporting the error before resetting to none.
383 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
384 */
385void pgd_clear_bad(pgd_t *);
386void pud_clear_bad(pud_t *);
387void pmd_clear_bad(pmd_t *);
388
389static inline int pgd_none_or_clear_bad(pgd_t *pgd)
390{
391 if (pgd_none(*pgd))
392 return 1;
393 if (unlikely(pgd_bad(*pgd))) {
394 pgd_clear_bad(pgd);
395 return 1;
396 }
397 return 0;
398}
399
400static inline int pud_none_or_clear_bad(pud_t *pud)
401{
402 if (pud_none(*pud))
403 return 1;
404 if (unlikely(pud_bad(*pud))) {
405 pud_clear_bad(pud);
406 return 1;
407 }
408 return 0;
409}
410
411static inline int pmd_none_or_clear_bad(pmd_t *pmd)
412{
413 if (pmd_none(*pmd))
414 return 1;
415 if (unlikely(pmd_bad(*pmd))) {
416 pmd_clear_bad(pmd);
417 return 1;
418 }
419 return 0;
420}
9535239f 421
1ea0704e
JF
422static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
423 unsigned long addr,
424 pte_t *ptep)
425{
426 /*
427 * Get the current pte state, but zero it out to make it
428 * non-present, preventing the hardware from asynchronously
429 * updating it.
430 */
431 return ptep_get_and_clear(mm, addr, ptep);
432}
433
434static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
435 unsigned long addr,
436 pte_t *ptep, pte_t pte)
437{
438 /*
439 * The pte is non-present, so there's no hardware state to
440 * preserve.
441 */
442 set_pte_at(mm, addr, ptep, pte);
443}
444
445#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
446/*
447 * Start a pte protection read-modify-write transaction, which
448 * protects against asynchronous hardware modifications to the pte.
449 * The intention is not to prevent the hardware from making pte
450 * updates, but to prevent any updates it may make from being lost.
451 *
452 * This does not protect against other software modifications of the
453 * pte; the appropriate pte lock must be held over the transation.
454 *
455 * Note that this interface is intended to be batchable, meaning that
456 * ptep_modify_prot_commit may not actually update the pte, but merely
457 * queue the update to be done at some later time. The update must be
458 * actually committed before the pte lock is released, however.
459 */
460static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
461 unsigned long addr,
462 pte_t *ptep)
463{
464 return __ptep_modify_prot_start(mm, addr, ptep);
465}
466
467/*
468 * Commit an update to a pte, leaving any hardware-controlled bits in
469 * the PTE unmodified.
470 */
471static inline void ptep_modify_prot_commit(struct mm_struct *mm,
472 unsigned long addr,
473 pte_t *ptep, pte_t pte)
474{
475 __ptep_modify_prot_commit(mm, addr, ptep, pte);
476}
477#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 478#endif /* CONFIG_MMU */
1ea0704e 479
9535239f
GU
480/*
481 * A facility to provide lazy MMU batching. This allows PTE updates and
482 * page invalidations to be delayed until a call to leave lazy MMU mode
483 * is issued. Some architectures may benefit from doing this, and it is
484 * beneficial for both shadow and direct mode hypervisors, which may batch
485 * the PTE updates which happen during this window. Note that using this
486 * interface requires that read hazards be removed from the code. A read
487 * hazard could result in the direct mode hypervisor case, since the actual
488 * write to the page tables may not yet have taken place, so reads though
489 * a raw PTE pointer after it has been modified are not guaranteed to be
490 * up to date. This mode can only be entered and left under the protection of
491 * the page table locks for all page tables which may be modified. In the UP
492 * case, this is required so that preemption is disabled, and in the SMP case,
493 * it must synchronize the delayed page table writes properly on other CPUs.
494 */
495#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
496#define arch_enter_lazy_mmu_mode() do {} while (0)
497#define arch_leave_lazy_mmu_mode() do {} while (0)
498#define arch_flush_lazy_mmu_mode() do {} while (0)
499#endif
500
501/*
7fd7d83d
JF
502 * A facility to provide batching of the reload of page tables and
503 * other process state with the actual context switch code for
504 * paravirtualized guests. By convention, only one of the batched
505 * update (lazy) modes (CPU, MMU) should be active at any given time,
506 * entry should never be nested, and entry and exits should always be
507 * paired. This is for sanity of maintaining and reasoning about the
508 * kernel code. In this case, the exit (end of the context switch) is
509 * in architecture-specific code, and so doesn't need a generic
510 * definition.
9535239f 511 */
7fd7d83d 512#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 513#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
514#endif
515
0f8975ec
PE
516#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
517static inline int pte_soft_dirty(pte_t pte)
518{
519 return 0;
520}
521
522static inline int pmd_soft_dirty(pmd_t pmd)
523{
524 return 0;
525}
526
527static inline pte_t pte_mksoft_dirty(pte_t pte)
528{
529 return pte;
530}
531
532static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
533{
534 return pmd;
535}
179ef71c 536
a7b76174
MS
537static inline pte_t pte_clear_soft_dirty(pte_t pte)
538{
539 return pte;
540}
541
542static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
543{
544 return pmd;
545}
546
179ef71c
CG
547static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
548{
549 return pte;
550}
551
552static inline int pte_swp_soft_dirty(pte_t pte)
553{
554 return 0;
555}
556
557static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
558{
559 return pte;
560}
0f8975ec
PE
561#endif
562
34801ba9 563#ifndef __HAVE_PFNMAP_TRACKING
564/*
5180da41
SS
565 * Interfaces that can be used by architecture code to keep track of
566 * memory type of pfn mappings specified by the remap_pfn_range,
567 * vm_insert_pfn.
568 */
569
570/*
571 * track_pfn_remap is called when a _new_ pfn mapping is being established
572 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 573 */
5180da41 574static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
575 unsigned long pfn, unsigned long addr,
576 unsigned long size)
34801ba9 577{
578 return 0;
579}
580
581/*
5180da41
SS
582 * track_pfn_insert is called when a _new_ single pfn is established
583 * by vm_insert_pfn().
584 */
308a047c
BP
585static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
586 pfn_t pfn)
5180da41 587{
5180da41
SS
588}
589
590/*
591 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 592 * copied through copy_page_range().
593 */
5180da41 594static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 595{
596 return 0;
597}
598
599/*
d9fe4fab 600 * untrack_pfn is called while unmapping a pfnmap for a region.
34801ba9 601 * untrack can be called for a specific region indicated by pfn and size or
5180da41 602 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 603 */
5180da41
SS
604static inline void untrack_pfn(struct vm_area_struct *vma,
605 unsigned long pfn, unsigned long size)
34801ba9 606{
607}
d9fe4fab
TK
608
609/*
610 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
611 */
612static inline void untrack_pfn_moved(struct vm_area_struct *vma)
613{
614}
34801ba9 615#else
5180da41 616extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
617 unsigned long pfn, unsigned long addr,
618 unsigned long size);
308a047c
BP
619extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
620 pfn_t pfn);
5180da41
SS
621extern int track_pfn_copy(struct vm_area_struct *vma);
622extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
623 unsigned long size);
d9fe4fab 624extern void untrack_pfn_moved(struct vm_area_struct *vma);
34801ba9 625#endif
626
816422ad
KS
627#ifdef __HAVE_COLOR_ZERO_PAGE
628static inline int is_zero_pfn(unsigned long pfn)
629{
630 extern unsigned long zero_pfn;
631 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
632 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
633}
634
2f91ec8c
KS
635#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
636
816422ad
KS
637#else
638static inline int is_zero_pfn(unsigned long pfn)
639{
640 extern unsigned long zero_pfn;
641 return pfn == zero_pfn;
642}
643
644static inline unsigned long my_zero_pfn(unsigned long addr)
645{
646 extern unsigned long zero_pfn;
647 return zero_pfn;
648}
649#endif
650
1a5a9906
AA
651#ifdef CONFIG_MMU
652
5f6e8da7
AA
653#ifndef CONFIG_TRANSPARENT_HUGEPAGE
654static inline int pmd_trans_huge(pmd_t pmd)
655{
656 return 0;
657}
e2cda322
AA
658#ifndef __HAVE_ARCH_PMD_WRITE
659static inline int pmd_write(pmd_t pmd)
660{
661 BUG();
662 return 0;
663}
664#endif /* __HAVE_ARCH_PMD_WRITE */
1a5a9906
AA
665#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
666
26c19178
AA
667#ifndef pmd_read_atomic
668static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
669{
670 /*
671 * Depend on compiler for an atomic pmd read. NOTE: this is
672 * only going to work, if the pmdval_t isn't larger than
673 * an unsigned long.
674 */
675 return *pmdp;
676}
677#endif
678
953c66c2
AK
679#ifndef arch_needs_pgtable_deposit
680#define arch_needs_pgtable_deposit() (false)
681#endif
1a5a9906
AA
682/*
683 * This function is meant to be used by sites walking pagetables with
684 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
685 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
686 * into a null pmd and the transhuge page fault can convert a null pmd
687 * into an hugepmd or into a regular pmd (if the hugepage allocation
688 * fails). While holding the mmap_sem in read mode the pmd becomes
689 * stable and stops changing under us only if it's not null and not a
690 * transhuge pmd. When those races occurs and this function makes a
691 * difference vs the standard pmd_none_or_clear_bad, the result is
692 * undefined so behaving like if the pmd was none is safe (because it
693 * can return none anyway). The compiler level barrier() is critically
694 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
695 *
696 * For 32bit kernels with a 64bit large pmd_t this automatically takes
697 * care of reading the pmd atomically to avoid SMP race conditions
698 * against pmd_populate() when the mmap_sem is hold for reading by the
699 * caller (a special atomic read not done by "gcc" as in the generic
700 * version above, is also needed when THP is disabled because the page
701 * fault can populate the pmd from under us).
1a5a9906
AA
702 */
703static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
704{
26c19178 705 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
706 /*
707 * The barrier will stabilize the pmdval in a register or on
708 * the stack so that it will stop changing under the code.
e4eed03f
AA
709 *
710 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
711 * pmd_read_atomic is allowed to return a not atomic pmdval
712 * (for example pointing to an hugepage that has never been
713 * mapped in the pmd). The below checks will only care about
714 * the low part of the pmd with 32bit PAE x86 anyway, with the
715 * exception of pmd_none(). So the important thing is that if
716 * the low part of the pmd is found null, the high part will
717 * be also null or the pmd_none() check below would be
718 * confused.
1a5a9906
AA
719 */
720#ifdef CONFIG_TRANSPARENT_HUGEPAGE
721 barrier();
722#endif
ee53664b 723 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
1a5a9906
AA
724 return 1;
725 if (unlikely(pmd_bad(pmdval))) {
ee53664b 726 pmd_clear_bad(pmd);
1a5a9906
AA
727 return 1;
728 }
729 return 0;
730}
731
732/*
733 * This is a noop if Transparent Hugepage Support is not built into
734 * the kernel. Otherwise it is equivalent to
735 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
736 * places that already verified the pmd is not none and they want to
737 * walk ptes while holding the mmap sem in read mode (write mode don't
738 * need this). If THP is not enabled, the pmd can't go away under the
739 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
740 * run a pmd_trans_unstable before walking the ptes after
741 * split_huge_page_pmd returns (because it may have run when the pmd
742 * become null, but then a page fault can map in a THP and not a
743 * regular page).
744 */
745static inline int pmd_trans_unstable(pmd_t *pmd)
746{
747#ifdef CONFIG_TRANSPARENT_HUGEPAGE
748 return pmd_none_or_trans_huge_or_clear_bad(pmd);
749#else
750 return 0;
5f6e8da7 751#endif
1a5a9906
AA
752}
753
e7bb4b6d
MG
754#ifndef CONFIG_NUMA_BALANCING
755/*
756 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
757 * the only case the kernel cares is for NUMA balancing and is only ever set
758 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
759 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
760 * is the responsibility of the caller to distinguish between PROT_NONE
761 * protections and NUMA hinting fault protections.
762 */
763static inline int pte_protnone(pte_t pte)
764{
765 return 0;
766}
767
768static inline int pmd_protnone(pmd_t pmd)
769{
770 return 0;
771}
772#endif /* CONFIG_NUMA_BALANCING */
773
1a5a9906 774#endif /* CONFIG_MMU */
5f6e8da7 775
e61ce6ad
TK
776#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
777int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
778int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
b9820d8f
TK
779int pud_clear_huge(pud_t *pud);
780int pmd_clear_huge(pmd_t *pmd);
e61ce6ad
TK
781#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
782static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
783{
784 return 0;
785}
786static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
787{
788 return 0;
789}
b9820d8f
TK
790static inline int pud_clear_huge(pud_t *pud)
791{
792 return 0;
793}
794static inline int pmd_clear_huge(pmd_t *pmd)
795{
796 return 0;
797}
e61ce6ad
TK
798#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
799
458aa76d
AK
800#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
801#ifdef CONFIG_TRANSPARENT_HUGEPAGE
802/*
803 * ARCHes with special requirements for evicting THP backing TLB entries can
804 * implement this. Otherwise also, it can help optimize normal TLB flush in
805 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
806 * entire TLB TLB if flush span is greater than a threshold, which will
807 * likely be true for a single huge page. Thus a single thp flush will
808 * invalidate the entire TLB which is not desitable.
809 * e.g. see arch/arc: flush_pmd_tlb_range
810 */
811#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
812#else
813#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
814#endif
815#endif
816
08ea8c07
BX
817struct file;
818int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
819 unsigned long size, pgprot_t *vma_prot);
1da177e4
LT
820#endif /* !__ASSEMBLY__ */
821
40d158e6
AV
822#ifndef io_remap_pfn_range
823#define io_remap_pfn_range remap_pfn_range
824#endif
825
fd8cfd30
HD
826#ifndef has_transparent_hugepage
827#ifdef CONFIG_TRANSPARENT_HUGEPAGE
828#define has_transparent_hugepage() 1
829#else
830#define has_transparent_hugepage() 0
831#endif
832#endif
833
1da177e4 834#endif /* _ASM_GENERIC_PGTABLE_H */