]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/asm-generic/pgtable.h
mm/gup: Drop the arch_pte_access_permitted() MMU callback
[mirror_ubuntu-bionic-kernel.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
f25748e3
DW
4#include <linux/pfn.h>
5
673eae82 6#ifndef __ASSEMBLY__
9535239f 7#ifdef CONFIG_MMU
673eae82 8
fbd71844 9#include <linux/mm_types.h>
187f1882 10#include <linux/bug.h>
e61ce6ad 11#include <linux/errno.h>
fbd71844 12
c2febafc
KS
13#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
14 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
15#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
235a8f02
KS
16#endif
17
6ee8630e
HD
18/*
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
23 */
24#ifndef USER_PGTABLES_CEILING
25#define USER_PGTABLES_CEILING 0UL
26#endif
27
1da177e4 28#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
29extern int ptep_set_access_flags(struct vm_area_struct *vma,
30 unsigned long address, pte_t *ptep,
31 pte_t entry, int dirty);
32#endif
33
34#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
bd5e88ad 35#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e2cda322
AA
36extern int pmdp_set_access_flags(struct vm_area_struct *vma,
37 unsigned long address, pmd_t *pmdp,
38 pmd_t entry, int dirty);
a00cc7d9
MW
39extern int pudp_set_access_flags(struct vm_area_struct *vma,
40 unsigned long address, pud_t *pudp,
41 pud_t entry, int dirty);
bd5e88ad
VG
42#else
43static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
44 unsigned long address, pmd_t *pmdp,
45 pmd_t entry, int dirty)
46{
47 BUILD_BUG();
48 return 0;
49}
a00cc7d9
MW
50static inline int pudp_set_access_flags(struct vm_area_struct *vma,
51 unsigned long address, pud_t *pudp,
52 pud_t entry, int dirty)
53{
54 BUILD_BUG();
55 return 0;
56}
bd5e88ad 57#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
58#endif
59
60#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
61static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
62 unsigned long address,
63 pte_t *ptep)
64{
65 pte_t pte = *ptep;
66 int r = 1;
67 if (!pte_young(pte))
68 r = 0;
69 else
70 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
71 return r;
72}
73#endif
74
75#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
76#ifdef CONFIG_TRANSPARENT_HUGEPAGE
77static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
78 unsigned long address,
79 pmd_t *pmdp)
80{
81 pmd_t pmd = *pmdp;
82 int r = 1;
83 if (!pmd_young(pmd))
84 r = 0;
85 else
86 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
87 return r;
88}
bd5e88ad 89#else
e2cda322
AA
90static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
91 unsigned long address,
92 pmd_t *pmdp)
93{
bd5e88ad 94 BUILD_BUG();
e2cda322
AA
95 return 0;
96}
97#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
98#endif
99
100#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
101int ptep_clear_flush_young(struct vm_area_struct *vma,
102 unsigned long address, pte_t *ptep);
103#endif
104
105#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
bd5e88ad
VG
106#ifdef CONFIG_TRANSPARENT_HUGEPAGE
107extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
108 unsigned long address, pmd_t *pmdp);
109#else
110/*
111 * Despite relevant to THP only, this API is called from generic rmap code
112 * under PageTransHuge(), hence needs a dummy implementation for !THP
113 */
114static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
115 unsigned long address, pmd_t *pmdp)
116{
117 BUILD_BUG();
118 return 0;
119}
120#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
121#endif
122
1da177e4 123#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
124static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
125 unsigned long address,
126 pte_t *ptep)
127{
128 pte_t pte = *ptep;
129 pte_clear(mm, address, ptep);
130 return pte;
131}
132#endif
133
e2cda322 134#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 135#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
8809aa2d
AK
136static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
137 unsigned long address,
138 pmd_t *pmdp)
e2cda322
AA
139{
140 pmd_t pmd = *pmdp;
2d28a227 141 pmd_clear(pmdp);
e2cda322 142 return pmd;
49b24d6b 143}
a00cc7d9
MW
144#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
145#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
146static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
147 unsigned long address,
148 pud_t *pudp)
149{
150 pud_t pud = *pudp;
151
152 pud_clear(pudp);
153 return pud;
154}
155#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
e2cda322 156#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4 157
fcbe08d6 158#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 159#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
8809aa2d 160static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
fcbe08d6
MS
161 unsigned long address, pmd_t *pmdp,
162 int full)
163{
8809aa2d 164 return pmdp_huge_get_and_clear(mm, address, pmdp);
fcbe08d6 165}
fcbe08d6
MS
166#endif
167
a00cc7d9
MW
168#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
169static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
170 unsigned long address, pud_t *pudp,
171 int full)
172{
173 return pudp_huge_get_and_clear(mm, address, pudp);
174}
175#endif
176#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
177
a600388d 178#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
179static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
180 unsigned long address, pte_t *ptep,
181 int full)
182{
183 pte_t pte;
184 pte = ptep_get_and_clear(mm, address, ptep);
185 return pte;
186}
a600388d
ZA
187#endif
188
9888a1ca
ZA
189/*
190 * Some architectures may be able to avoid expensive synchronization
191 * primitives when modifications are made to PTE's which are already
192 * not present, or in the process of an address space destruction.
193 */
194#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
195static inline void pte_clear_not_present_full(struct mm_struct *mm,
196 unsigned long address,
197 pte_t *ptep,
198 int full)
199{
200 pte_clear(mm, address, ptep);
201}
a600388d
ZA
202#endif
203
1da177e4 204#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
205extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
206 unsigned long address,
207 pte_t *ptep);
208#endif
209
8809aa2d
AK
210#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
211extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
e2cda322
AA
212 unsigned long address,
213 pmd_t *pmdp);
a00cc7d9
MW
214extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
215 unsigned long address,
216 pud_t *pudp);
1da177e4
LT
217#endif
218
219#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 220struct mm_struct;
1da177e4
LT
221static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
222{
223 pte_t old_pte = *ptep;
224 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
225}
226#endif
227
288bc549
AK
228#ifndef pte_savedwrite
229#define pte_savedwrite pte_write
230#endif
231
232#ifndef pte_mk_savedwrite
233#define pte_mk_savedwrite pte_mkwrite
234#endif
235
595cd8f2
AK
236#ifndef pte_clear_savedwrite
237#define pte_clear_savedwrite pte_wrprotect
238#endif
239
288bc549
AK
240#ifndef pmd_savedwrite
241#define pmd_savedwrite pmd_write
242#endif
243
244#ifndef pmd_mk_savedwrite
245#define pmd_mk_savedwrite pmd_mkwrite
246#endif
247
595cd8f2
AK
248#ifndef pmd_clear_savedwrite
249#define pmd_clear_savedwrite pmd_wrprotect
250#endif
251
e2cda322
AA
252#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
253#ifdef CONFIG_TRANSPARENT_HUGEPAGE
254static inline void pmdp_set_wrprotect(struct mm_struct *mm,
255 unsigned long address, pmd_t *pmdp)
256{
257 pmd_t old_pmd = *pmdp;
258 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
259}
bd5e88ad 260#else
e2cda322
AA
261static inline void pmdp_set_wrprotect(struct mm_struct *mm,
262 unsigned long address, pmd_t *pmdp)
263{
bd5e88ad 264 BUILD_BUG();
e2cda322
AA
265}
266#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
267#endif
a00cc7d9
MW
268#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
269#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
270static inline void pudp_set_wrprotect(struct mm_struct *mm,
271 unsigned long address, pud_t *pudp)
272{
273 pud_t old_pud = *pudp;
274
275 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
276}
277#else
278static inline void pudp_set_wrprotect(struct mm_struct *mm,
279 unsigned long address, pud_t *pudp)
280{
281 BUILD_BUG();
282}
283#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
284#endif
e2cda322 285
15a25b2e
AK
286#ifndef pmdp_collapse_flush
287#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f28b6ff8
AK
288extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
289 unsigned long address, pmd_t *pmdp);
15a25b2e
AK
290#else
291static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
292 unsigned long address,
293 pmd_t *pmdp)
294{
295 BUILD_BUG();
296 return *pmdp;
297}
298#define pmdp_collapse_flush pmdp_collapse_flush
299#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
300#endif
301
e3ebcf64 302#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
303extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
304 pgtable_t pgtable);
e3ebcf64
GS
305#endif
306
307#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 308extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
e3ebcf64
GS
309#endif
310
46dcde73
GS
311#ifndef __HAVE_ARCH_PMDP_INVALIDATE
312extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
313 pmd_t *pmdp);
314#endif
315
c777e2a8
AK
316#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
317static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
318 unsigned long address, pmd_t *pmdp)
319{
320
321}
322#endif
323
1da177e4 324#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
325static inline int pte_same(pte_t pte_a, pte_t pte_b)
326{
327 return pte_val(pte_a) == pte_val(pte_b);
328}
329#endif
330
45961722
KW
331#ifndef __HAVE_ARCH_PTE_UNUSED
332/*
333 * Some architectures provide facilities to virtualization guests
334 * so that they can flag allocated pages as unused. This allows the
335 * host to transparently reclaim unused pages. This function returns
336 * whether the pte's page is unused.
337 */
338static inline int pte_unused(pte_t pte)
339{
340 return 0;
341}
342#endif
343
e2cda322
AA
344#ifndef __HAVE_ARCH_PMD_SAME
345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
346static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
347{
348 return pmd_val(pmd_a) == pmd_val(pmd_b);
349}
a00cc7d9
MW
350
351static inline int pud_same(pud_t pud_a, pud_t pud_b)
352{
353 return pud_val(pud_a) == pud_val(pud_b);
354}
e2cda322
AA
355#else /* CONFIG_TRANSPARENT_HUGEPAGE */
356static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
357{
bd5e88ad 358 BUILD_BUG();
e2cda322
AA
359 return 0;
360}
a00cc7d9
MW
361
362static inline int pud_same(pud_t pud_a, pud_t pud_b)
363{
364 BUILD_BUG();
365 return 0;
366}
e2cda322 367#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
368#endif
369
1da177e4
LT
370#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
371#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
372#endif
373
0b0968a3 374#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 375#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
376#endif
377
2c3cf556 378#ifndef pte_accessible
20841405 379# define pte_accessible(mm, pte) ((void)(pte), 1)
2c3cf556
RR
380#endif
381
61c77326
SL
382#ifndef flush_tlb_fix_spurious_fault
383#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
384#endif
385
0634a632
PM
386#ifndef pgprot_noncached
387#define pgprot_noncached(prot) (prot)
388#endif
389
2520bd31 390#ifndef pgprot_writecombine
391#define pgprot_writecombine pgprot_noncached
392#endif
393
d1b4bfbf
TK
394#ifndef pgprot_writethrough
395#define pgprot_writethrough pgprot_noncached
396#endif
397
8b921acf
LD
398#ifndef pgprot_device
399#define pgprot_device pgprot_noncached
400#endif
401
64e45507
PF
402#ifndef pgprot_modify
403#define pgprot_modify pgprot_modify
404static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
405{
406 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
407 newprot = pgprot_noncached(newprot);
408 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
409 newprot = pgprot_writecombine(newprot);
410 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
411 newprot = pgprot_device(newprot);
412 return newprot;
413}
414#endif
415
1da177e4 416/*
8f6c99c1
HD
417 * When walking page tables, get the address of the next boundary,
418 * or the end address of the range if that comes earlier. Although no
419 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
420 */
421
1da177e4
LT
422#define pgd_addr_end(addr, end) \
423({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
424 (__boundary - 1 < (end) - 1)? __boundary: (end); \
425})
1da177e4 426
c2febafc
KS
427#ifndef p4d_addr_end
428#define p4d_addr_end(addr, end) \
429({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
430 (__boundary - 1 < (end) - 1)? __boundary: (end); \
431})
432#endif
433
1da177e4
LT
434#ifndef pud_addr_end
435#define pud_addr_end(addr, end) \
436({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
437 (__boundary - 1 < (end) - 1)? __boundary: (end); \
438})
439#endif
440
441#ifndef pmd_addr_end
442#define pmd_addr_end(addr, end) \
443({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
444 (__boundary - 1 < (end) - 1)? __boundary: (end); \
445})
446#endif
447
1da177e4
LT
448/*
449 * When walking page tables, we usually want to skip any p?d_none entries;
450 * and any p?d_bad entries - reporting the error before resetting to none.
451 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
452 */
453void pgd_clear_bad(pgd_t *);
c2febafc 454void p4d_clear_bad(p4d_t *);
1da177e4
LT
455void pud_clear_bad(pud_t *);
456void pmd_clear_bad(pmd_t *);
457
458static inline int pgd_none_or_clear_bad(pgd_t *pgd)
459{
460 if (pgd_none(*pgd))
461 return 1;
462 if (unlikely(pgd_bad(*pgd))) {
463 pgd_clear_bad(pgd);
464 return 1;
465 }
466 return 0;
467}
468
c2febafc
KS
469static inline int p4d_none_or_clear_bad(p4d_t *p4d)
470{
471 if (p4d_none(*p4d))
472 return 1;
473 if (unlikely(p4d_bad(*p4d))) {
474 p4d_clear_bad(p4d);
475 return 1;
476 }
477 return 0;
478}
479
1da177e4
LT
480static inline int pud_none_or_clear_bad(pud_t *pud)
481{
482 if (pud_none(*pud))
483 return 1;
484 if (unlikely(pud_bad(*pud))) {
485 pud_clear_bad(pud);
486 return 1;
487 }
488 return 0;
489}
490
491static inline int pmd_none_or_clear_bad(pmd_t *pmd)
492{
493 if (pmd_none(*pmd))
494 return 1;
495 if (unlikely(pmd_bad(*pmd))) {
496 pmd_clear_bad(pmd);
497 return 1;
498 }
499 return 0;
500}
9535239f 501
1ea0704e
JF
502static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
503 unsigned long addr,
504 pte_t *ptep)
505{
506 /*
507 * Get the current pte state, but zero it out to make it
508 * non-present, preventing the hardware from asynchronously
509 * updating it.
510 */
511 return ptep_get_and_clear(mm, addr, ptep);
512}
513
514static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
515 unsigned long addr,
516 pte_t *ptep, pte_t pte)
517{
518 /*
519 * The pte is non-present, so there's no hardware state to
520 * preserve.
521 */
522 set_pte_at(mm, addr, ptep, pte);
523}
524
525#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
526/*
527 * Start a pte protection read-modify-write transaction, which
528 * protects against asynchronous hardware modifications to the pte.
529 * The intention is not to prevent the hardware from making pte
530 * updates, but to prevent any updates it may make from being lost.
531 *
532 * This does not protect against other software modifications of the
533 * pte; the appropriate pte lock must be held over the transation.
534 *
535 * Note that this interface is intended to be batchable, meaning that
536 * ptep_modify_prot_commit may not actually update the pte, but merely
537 * queue the update to be done at some later time. The update must be
538 * actually committed before the pte lock is released, however.
539 */
540static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
541 unsigned long addr,
542 pte_t *ptep)
543{
544 return __ptep_modify_prot_start(mm, addr, ptep);
545}
546
547/*
548 * Commit an update to a pte, leaving any hardware-controlled bits in
549 * the PTE unmodified.
550 */
551static inline void ptep_modify_prot_commit(struct mm_struct *mm,
552 unsigned long addr,
553 pte_t *ptep, pte_t pte)
554{
555 __ptep_modify_prot_commit(mm, addr, ptep, pte);
556}
557#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 558#endif /* CONFIG_MMU */
1ea0704e 559
9535239f
GU
560/*
561 * A facility to provide lazy MMU batching. This allows PTE updates and
562 * page invalidations to be delayed until a call to leave lazy MMU mode
563 * is issued. Some architectures may benefit from doing this, and it is
564 * beneficial for both shadow and direct mode hypervisors, which may batch
565 * the PTE updates which happen during this window. Note that using this
566 * interface requires that read hazards be removed from the code. A read
567 * hazard could result in the direct mode hypervisor case, since the actual
568 * write to the page tables may not yet have taken place, so reads though
569 * a raw PTE pointer after it has been modified are not guaranteed to be
570 * up to date. This mode can only be entered and left under the protection of
571 * the page table locks for all page tables which may be modified. In the UP
572 * case, this is required so that preemption is disabled, and in the SMP case,
573 * it must synchronize the delayed page table writes properly on other CPUs.
574 */
575#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
576#define arch_enter_lazy_mmu_mode() do {} while (0)
577#define arch_leave_lazy_mmu_mode() do {} while (0)
578#define arch_flush_lazy_mmu_mode() do {} while (0)
579#endif
580
581/*
7fd7d83d
JF
582 * A facility to provide batching of the reload of page tables and
583 * other process state with the actual context switch code for
584 * paravirtualized guests. By convention, only one of the batched
585 * update (lazy) modes (CPU, MMU) should be active at any given time,
586 * entry should never be nested, and entry and exits should always be
587 * paired. This is for sanity of maintaining and reasoning about the
588 * kernel code. In this case, the exit (end of the context switch) is
589 * in architecture-specific code, and so doesn't need a generic
590 * definition.
9535239f 591 */
7fd7d83d 592#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 593#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
594#endif
595
0f8975ec
PE
596#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
597static inline int pte_soft_dirty(pte_t pte)
598{
599 return 0;
600}
601
602static inline int pmd_soft_dirty(pmd_t pmd)
603{
604 return 0;
605}
606
607static inline pte_t pte_mksoft_dirty(pte_t pte)
608{
609 return pte;
610}
611
612static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
613{
614 return pmd;
615}
179ef71c 616
a7b76174
MS
617static inline pte_t pte_clear_soft_dirty(pte_t pte)
618{
619 return pte;
620}
621
622static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
623{
624 return pmd;
625}
626
179ef71c
CG
627static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
628{
629 return pte;
630}
631
632static inline int pte_swp_soft_dirty(pte_t pte)
633{
634 return 0;
635}
636
637static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
638{
639 return pte;
640}
0f8975ec
PE
641#endif
642
34801ba9 643#ifndef __HAVE_PFNMAP_TRACKING
644/*
5180da41
SS
645 * Interfaces that can be used by architecture code to keep track of
646 * memory type of pfn mappings specified by the remap_pfn_range,
647 * vm_insert_pfn.
648 */
649
650/*
651 * track_pfn_remap is called when a _new_ pfn mapping is being established
652 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 653 */
5180da41 654static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
655 unsigned long pfn, unsigned long addr,
656 unsigned long size)
34801ba9 657{
658 return 0;
659}
660
661/*
5180da41
SS
662 * track_pfn_insert is called when a _new_ single pfn is established
663 * by vm_insert_pfn().
664 */
308a047c
BP
665static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
666 pfn_t pfn)
5180da41 667{
5180da41
SS
668}
669
670/*
671 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 672 * copied through copy_page_range().
673 */
5180da41 674static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 675{
676 return 0;
677}
678
679/*
d9fe4fab 680 * untrack_pfn is called while unmapping a pfnmap for a region.
34801ba9 681 * untrack can be called for a specific region indicated by pfn and size or
5180da41 682 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 683 */
5180da41
SS
684static inline void untrack_pfn(struct vm_area_struct *vma,
685 unsigned long pfn, unsigned long size)
34801ba9 686{
687}
d9fe4fab
TK
688
689/*
690 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
691 */
692static inline void untrack_pfn_moved(struct vm_area_struct *vma)
693{
694}
34801ba9 695#else
5180da41 696extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
697 unsigned long pfn, unsigned long addr,
698 unsigned long size);
308a047c
BP
699extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
700 pfn_t pfn);
5180da41
SS
701extern int track_pfn_copy(struct vm_area_struct *vma);
702extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
703 unsigned long size);
d9fe4fab 704extern void untrack_pfn_moved(struct vm_area_struct *vma);
34801ba9 705#endif
706
816422ad
KS
707#ifdef __HAVE_COLOR_ZERO_PAGE
708static inline int is_zero_pfn(unsigned long pfn)
709{
710 extern unsigned long zero_pfn;
711 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
712 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
713}
714
2f91ec8c
KS
715#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
716
816422ad
KS
717#else
718static inline int is_zero_pfn(unsigned long pfn)
719{
720 extern unsigned long zero_pfn;
721 return pfn == zero_pfn;
722}
723
724static inline unsigned long my_zero_pfn(unsigned long addr)
725{
726 extern unsigned long zero_pfn;
727 return zero_pfn;
728}
729#endif
730
1a5a9906
AA
731#ifdef CONFIG_MMU
732
5f6e8da7
AA
733#ifndef CONFIG_TRANSPARENT_HUGEPAGE
734static inline int pmd_trans_huge(pmd_t pmd)
735{
736 return 0;
737}
e2cda322
AA
738#ifndef __HAVE_ARCH_PMD_WRITE
739static inline int pmd_write(pmd_t pmd)
740{
741 BUG();
742 return 0;
743}
744#endif /* __HAVE_ARCH_PMD_WRITE */
1a5a9906
AA
745#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
746
a00cc7d9
MW
747#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
748 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
749 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
750static inline int pud_trans_huge(pud_t pud)
751{
752 return 0;
753}
754#endif
755
26c19178
AA
756#ifndef pmd_read_atomic
757static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
758{
759 /*
760 * Depend on compiler for an atomic pmd read. NOTE: this is
761 * only going to work, if the pmdval_t isn't larger than
762 * an unsigned long.
763 */
764 return *pmdp;
765}
766#endif
767
953c66c2
AK
768#ifndef arch_needs_pgtable_deposit
769#define arch_needs_pgtable_deposit() (false)
770#endif
1a5a9906
AA
771/*
772 * This function is meant to be used by sites walking pagetables with
773 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
774 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
775 * into a null pmd and the transhuge page fault can convert a null pmd
776 * into an hugepmd or into a regular pmd (if the hugepage allocation
777 * fails). While holding the mmap_sem in read mode the pmd becomes
778 * stable and stops changing under us only if it's not null and not a
779 * transhuge pmd. When those races occurs and this function makes a
780 * difference vs the standard pmd_none_or_clear_bad, the result is
781 * undefined so behaving like if the pmd was none is safe (because it
782 * can return none anyway). The compiler level barrier() is critically
783 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
784 *
785 * For 32bit kernels with a 64bit large pmd_t this automatically takes
786 * care of reading the pmd atomically to avoid SMP race conditions
787 * against pmd_populate() when the mmap_sem is hold for reading by the
788 * caller (a special atomic read not done by "gcc" as in the generic
789 * version above, is also needed when THP is disabled because the page
790 * fault can populate the pmd from under us).
1a5a9906
AA
791 */
792static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
793{
26c19178 794 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
795 /*
796 * The barrier will stabilize the pmdval in a register or on
797 * the stack so that it will stop changing under the code.
e4eed03f
AA
798 *
799 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
800 * pmd_read_atomic is allowed to return a not atomic pmdval
801 * (for example pointing to an hugepage that has never been
802 * mapped in the pmd). The below checks will only care about
803 * the low part of the pmd with 32bit PAE x86 anyway, with the
804 * exception of pmd_none(). So the important thing is that if
805 * the low part of the pmd is found null, the high part will
806 * be also null or the pmd_none() check below would be
807 * confused.
1a5a9906
AA
808 */
809#ifdef CONFIG_TRANSPARENT_HUGEPAGE
810 barrier();
811#endif
ee53664b 812 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
1a5a9906
AA
813 return 1;
814 if (unlikely(pmd_bad(pmdval))) {
ee53664b 815 pmd_clear_bad(pmd);
1a5a9906
AA
816 return 1;
817 }
818 return 0;
819}
820
821/*
822 * This is a noop if Transparent Hugepage Support is not built into
823 * the kernel. Otherwise it is equivalent to
824 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
825 * places that already verified the pmd is not none and they want to
826 * walk ptes while holding the mmap sem in read mode (write mode don't
827 * need this). If THP is not enabled, the pmd can't go away under the
828 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
829 * run a pmd_trans_unstable before walking the ptes after
830 * split_huge_page_pmd returns (because it may have run when the pmd
831 * become null, but then a page fault can map in a THP and not a
832 * regular page).
833 */
834static inline int pmd_trans_unstable(pmd_t *pmd)
835{
836#ifdef CONFIG_TRANSPARENT_HUGEPAGE
837 return pmd_none_or_trans_huge_or_clear_bad(pmd);
838#else
839 return 0;
5f6e8da7 840#endif
1a5a9906
AA
841}
842
e7bb4b6d
MG
843#ifndef CONFIG_NUMA_BALANCING
844/*
845 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
846 * the only case the kernel cares is for NUMA balancing and is only ever set
847 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
848 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
849 * is the responsibility of the caller to distinguish between PROT_NONE
850 * protections and NUMA hinting fault protections.
851 */
852static inline int pte_protnone(pte_t pte)
853{
854 return 0;
855}
856
857static inline int pmd_protnone(pmd_t pmd)
858{
859 return 0;
860}
861#endif /* CONFIG_NUMA_BALANCING */
862
1a5a9906 863#endif /* CONFIG_MMU */
5f6e8da7 864
e61ce6ad 865#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
c2febafc
KS
866
867#ifndef __PAGETABLE_P4D_FOLDED
868int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
869int p4d_clear_huge(p4d_t *p4d);
870#else
871static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
872{
873 return 0;
874}
875static inline int p4d_clear_huge(p4d_t *p4d)
876{
877 return 0;
878}
879#endif /* !__PAGETABLE_P4D_FOLDED */
880
e61ce6ad
TK
881int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
882int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
b9820d8f
TK
883int pud_clear_huge(pud_t *pud);
884int pmd_clear_huge(pmd_t *pmd);
e61ce6ad 885#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
c2febafc
KS
886static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
887{
888 return 0;
889}
e61ce6ad
TK
890static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
891{
892 return 0;
893}
894static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
895{
896 return 0;
897}
c2febafc
KS
898static inline int p4d_clear_huge(p4d_t *p4d)
899{
900 return 0;
901}
b9820d8f
TK
902static inline int pud_clear_huge(pud_t *pud)
903{
904 return 0;
905}
906static inline int pmd_clear_huge(pmd_t *pmd)
907{
908 return 0;
909}
e61ce6ad
TK
910#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
911
458aa76d
AK
912#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
913#ifdef CONFIG_TRANSPARENT_HUGEPAGE
914/*
915 * ARCHes with special requirements for evicting THP backing TLB entries can
916 * implement this. Otherwise also, it can help optimize normal TLB flush in
917 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
918 * entire TLB TLB if flush span is greater than a threshold, which will
919 * likely be true for a single huge page. Thus a single thp flush will
920 * invalidate the entire TLB which is not desitable.
921 * e.g. see arch/arc: flush_pmd_tlb_range
922 */
923#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
a00cc7d9 924#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
458aa76d
AK
925#else
926#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
a00cc7d9 927#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
458aa76d
AK
928#endif
929#endif
930
08ea8c07
BX
931struct file;
932int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
933 unsigned long size, pgprot_t *vma_prot);
1da177e4
LT
934#endif /* !__ASSEMBLY__ */
935
40d158e6
AV
936#ifndef io_remap_pfn_range
937#define io_remap_pfn_range remap_pfn_range
938#endif
939
fd8cfd30
HD
940#ifndef has_transparent_hugepage
941#ifdef CONFIG_TRANSPARENT_HUGEPAGE
942#define has_transparent_hugepage() 1
943#else
944#define has_transparent_hugepage() 0
945#endif
946#endif
947
1da177e4 948#endif /* _ASM_GENERIC_PGTABLE_H */