]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/asm-x86/bitops_64.h
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-bionic-kernel.git] / include / asm-x86 / bitops_64.h
CommitLineData
1da177e4
LT
1#ifndef _X86_64_BITOPS_H
2#define _X86_64_BITOPS_H
3
4/*
5 * Copyright 1992, Linus Torvalds.
6 */
7
0624517d
JS
8#ifndef _LINUX_BITOPS_H
9#error only <linux/bitops.h> can be included directly
10#endif
11
d167a518 12#include <asm/alternative.h>
1da177e4 13
9f6026b8 14#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24420760
AK
15/* Technically wrong, but this avoids compilation errors on some gcc
16 versions. */
17#define ADDR "=m" (*(volatile long *) addr)
18#else
19#define ADDR "+m" (*(volatile long *) addr)
20#endif
1da177e4
LT
21
22/**
23 * set_bit - Atomically set a bit in memory
24 * @nr: the bit to set
25 * @addr: the address to start counting from
26 *
27 * This function is atomic and may not be reordered. See __set_bit()
28 * if you do not require the atomic guarantees.
29 * Note that @nr may be almost arbitrarily large; this function is not
30 * restricted to acting on a single-word quantity.
31 */
ade8c56c 32static inline void set_bit(int nr, volatile void *addr)
1da177e4
LT
33{
34 __asm__ __volatile__( LOCK_PREFIX
35 "btsl %1,%0"
24420760 36 :ADDR
1da177e4
LT
37 :"dIr" (nr) : "memory");
38}
39
40/**
41 * __set_bit - Set a bit in memory
42 * @nr: the bit to set
43 * @addr: the address to start counting from
44 *
45 * Unlike set_bit(), this function is non-atomic and may be reordered.
46 * If it's called on the same region of memory simultaneously, the effect
47 * may be that only one operation succeeds.
48 */
ade8c56c 49static inline void __set_bit(int nr, volatile void *addr)
1da177e4
LT
50{
51 __asm__ volatile(
52 "btsl %1,%0"
24420760 53 :ADDR
1da177e4
LT
54 :"dIr" (nr) : "memory");
55}
56
57/**
58 * clear_bit - Clears a bit in memory
59 * @nr: Bit to clear
60 * @addr: Address to start counting from
61 *
62 * clear_bit() is atomic and may not be reordered. However, it does
63 * not contain a memory barrier, so if it is used for locking purposes,
64 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
65 * in order to ensure changes are visible on other processors.
66 */
ade8c56c 67static inline void clear_bit(int nr, volatile void *addr)
1da177e4
LT
68{
69 __asm__ __volatile__( LOCK_PREFIX
70 "btrl %1,%0"
24420760 71 :ADDR
1da177e4
LT
72 :"dIr" (nr));
73}
74
418ccbe3
NP
75/*
76 * clear_bit_unlock - Clears a bit in memory
77 * @nr: Bit to clear
78 * @addr: Address to start counting from
79 *
80 * clear_bit() is atomic and implies release semantics before the memory
81 * operation. It can be used for an unlock.
82 */
83static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
84{
85 barrier();
86 clear_bit(nr, addr);
87}
88
ade8c56c 89static inline void __clear_bit(int nr, volatile void *addr)
1da177e4
LT
90{
91 __asm__ __volatile__(
92 "btrl %1,%0"
24420760 93 :ADDR
1da177e4
LT
94 :"dIr" (nr));
95}
96
418ccbe3
NP
97/*
98 * __clear_bit_unlock - Clears a bit in memory
99 * @nr: Bit to clear
100 * @addr: Address to start counting from
101 *
102 * __clear_bit() is non-atomic and implies release semantics before the memory
103 * operation. It can be used for an unlock if no other CPUs can concurrently
104 * modify other bits in the word.
105 *
106 * No memory barrier is required here, because x86 cannot reorder stores past
107 * older loads. Same principle as spin_unlock.
108 */
109static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
110{
111 barrier();
112 __clear_bit(nr, addr);
113}
114
1da177e4
LT
115#define smp_mb__before_clear_bit() barrier()
116#define smp_mb__after_clear_bit() barrier()
117
118/**
119 * __change_bit - Toggle a bit in memory
120 * @nr: the bit to change
121 * @addr: the address to start counting from
122 *
123 * Unlike change_bit(), this function is non-atomic and may be reordered.
124 * If it's called on the same region of memory simultaneously, the effect
125 * may be that only one operation succeeds.
126 */
ade8c56c 127static inline void __change_bit(int nr, volatile void *addr)
1da177e4
LT
128{
129 __asm__ __volatile__(
130 "btcl %1,%0"
24420760 131 :ADDR
1da177e4
LT
132 :"dIr" (nr));
133}
134
135/**
136 * change_bit - Toggle a bit in memory
137 * @nr: Bit to change
138 * @addr: Address to start counting from
139 *
140 * change_bit() is atomic and may not be reordered.
141 * Note that @nr may be almost arbitrarily large; this function is not
142 * restricted to acting on a single-word quantity.
143 */
ade8c56c 144static inline void change_bit(int nr, volatile void *addr)
1da177e4
LT
145{
146 __asm__ __volatile__( LOCK_PREFIX
147 "btcl %1,%0"
24420760 148 :ADDR
1da177e4
LT
149 :"dIr" (nr));
150}
151
152/**
153 * test_and_set_bit - Set a bit and return its old value
154 * @nr: Bit to set
155 * @addr: Address to count from
156 *
157 * This operation is atomic and cannot be reordered.
158 * It also implies a memory barrier.
159 */
ade8c56c 160static inline int test_and_set_bit(int nr, volatile void *addr)
1da177e4
LT
161{
162 int oldbit;
163
164 __asm__ __volatile__( LOCK_PREFIX
165 "btsl %2,%1\n\tsbbl %0,%0"
24420760 166 :"=r" (oldbit),ADDR
1da177e4
LT
167 :"dIr" (nr) : "memory");
168 return oldbit;
169}
170
418ccbe3
NP
171/**
172 * test_and_set_bit_lock - Set a bit and return its old value for lock
173 * @nr: Bit to set
174 * @addr: Address to count from
175 *
fb9431eb 176 * This is the same as test_and_set_bit on x86.
418ccbe3 177 */
ade8c56c 178static inline int test_and_set_bit_lock(int nr, volatile void *addr)
fb9431eb
RD
179{
180 return test_and_set_bit(nr, addr);
181}
418ccbe3 182
1da177e4
LT
183/**
184 * __test_and_set_bit - Set a bit and return its old value
185 * @nr: Bit to set
186 * @addr: Address to count from
187 *
188 * This operation is non-atomic and can be reordered.
189 * If two examples of this operation race, one can appear to succeed
190 * but actually fail. You must protect multiple accesses with a lock.
191 */
ade8c56c 192static inline int __test_and_set_bit(int nr, volatile void *addr)
1da177e4
LT
193{
194 int oldbit;
195
196 __asm__(
197 "btsl %2,%1\n\tsbbl %0,%0"
24420760 198 :"=r" (oldbit),ADDR
1da177e4
LT
199 :"dIr" (nr));
200 return oldbit;
201}
202
203/**
204 * test_and_clear_bit - Clear a bit and return its old value
205 * @nr: Bit to clear
206 * @addr: Address to count from
207 *
208 * This operation is atomic and cannot be reordered.
209 * It also implies a memory barrier.
210 */
ade8c56c 211static inline int test_and_clear_bit(int nr, volatile void *addr)
1da177e4
LT
212{
213 int oldbit;
214
215 __asm__ __volatile__( LOCK_PREFIX
216 "btrl %2,%1\n\tsbbl %0,%0"
24420760 217 :"=r" (oldbit),ADDR
1da177e4
LT
218 :"dIr" (nr) : "memory");
219 return oldbit;
220}
221
222/**
223 * __test_and_clear_bit - Clear a bit and return its old value
224 * @nr: Bit to clear
225 * @addr: Address to count from
226 *
227 * This operation is non-atomic and can be reordered.
228 * If two examples of this operation race, one can appear to succeed
229 * but actually fail. You must protect multiple accesses with a lock.
230 */
ade8c56c 231static inline int __test_and_clear_bit(int nr, volatile void *addr)
1da177e4
LT
232{
233 int oldbit;
234
235 __asm__(
236 "btrl %2,%1\n\tsbbl %0,%0"
24420760 237 :"=r" (oldbit),ADDR
1da177e4
LT
238 :"dIr" (nr));
239 return oldbit;
240}
241
242/* WARNING: non atomic and it can be reordered! */
ade8c56c 243static inline int __test_and_change_bit(int nr, volatile void *addr)
1da177e4
LT
244{
245 int oldbit;
246
247 __asm__ __volatile__(
248 "btcl %2,%1\n\tsbbl %0,%0"
24420760 249 :"=r" (oldbit),ADDR
1da177e4
LT
250 :"dIr" (nr) : "memory");
251 return oldbit;
252}
253
254/**
255 * test_and_change_bit - Change a bit and return its old value
256 * @nr: Bit to change
257 * @addr: Address to count from
258 *
259 * This operation is atomic and cannot be reordered.
260 * It also implies a memory barrier.
261 */
ade8c56c 262static inline int test_and_change_bit(int nr, volatile void *addr)
1da177e4
LT
263{
264 int oldbit;
265
266 __asm__ __volatile__( LOCK_PREFIX
267 "btcl %2,%1\n\tsbbl %0,%0"
24420760 268 :"=r" (oldbit),ADDR
1da177e4
LT
269 :"dIr" (nr) : "memory");
270 return oldbit;
271}
272
273#if 0 /* Fool kernel-doc since it doesn't do macros yet */
274/**
275 * test_bit - Determine whether a bit is set
276 * @nr: bit number to test
277 * @addr: Address to start counting from
278 */
ade8c56c 279static int test_bit(int nr, const volatile void *addr);
1da177e4
LT
280#endif
281
ade8c56c 282static inline int constant_test_bit(int nr, const volatile void *addr)
1da177e4
LT
283{
284 return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
285}
286
ade8c56c 287static inline int variable_test_bit(int nr, volatile const void *addr)
1da177e4
LT
288{
289 int oldbit;
290
291 __asm__ __volatile__(
292 "btl %2,%1\n\tsbbl %0,%0"
293 :"=r" (oldbit)
24420760 294 :"m" (*(volatile long *)addr),"dIr" (nr));
1da177e4
LT
295 return oldbit;
296}
297
298#define test_bit(nr,addr) \
299(__builtin_constant_p(nr) ? \
300 constant_test_bit((nr),(addr)) : \
301 variable_test_bit((nr),(addr)))
302
303#undef ADDR
304
ade8c56c
RD
305extern long find_first_zero_bit(const unsigned long *addr, unsigned long size);
306extern long find_next_zero_bit(const unsigned long *addr, long size, long offset);
307extern long find_first_bit(const unsigned long *addr, unsigned long size);
308extern long find_next_bit(const unsigned long *addr, long size, long offset);
1da177e4
LT
309
310/* return index of first bet set in val or max when no bit is set */
d2ccc3fd 311static inline long __scanbit(unsigned long val, unsigned long max)
1da177e4
LT
312{
313 asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
314 return val;
315}
316
317#define find_first_bit(addr,size) \
318((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
319 (__scanbit(*(unsigned long *)addr,(size))) : \
320 find_first_bit(addr,size)))
321
322#define find_next_bit(addr,size,off) \
323((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
324 ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
325 find_next_bit(addr,size,off)))
326
327#define find_first_zero_bit(addr,size) \
328((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
329 (__scanbit(~*(unsigned long *)addr,(size))) : \
330 find_first_zero_bit(addr,size)))
331
332#define find_next_zero_bit(addr,size,off) \
333((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
334 ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
335 find_next_zero_bit(addr,size,off)))
336
337/*
338 * Find string of zero bits in a bitmap. -1 when not found.
339 */
340extern unsigned long
341find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
342
343static inline void set_bit_string(unsigned long *bitmap, unsigned long i,
344 int len)
345{
346 unsigned long end = i + len;
347 while (i < end) {
348 __set_bit(i, bitmap);
349 i++;
350 }
351}
352
353static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
354 int len)
355{
356 unsigned long end = i + len;
357 while (i < end) {
358 __clear_bit(i, bitmap);
359 i++;
360 }
361}
362
363/**
364 * ffz - find first zero in word.
365 * @word: The word to search
366 *
367 * Undefined if no zero exists, so code should check against ~0UL first.
368 */
ade8c56c 369static inline unsigned long ffz(unsigned long word)
1da177e4
LT
370{
371 __asm__("bsfq %1,%0"
372 :"=r" (word)
373 :"r" (~word));
374 return word;
375}
376
377/**
378 * __ffs - find first bit in word.
379 * @word: The word to search
380 *
381 * Undefined if no bit exists, so code should check against 0 first.
382 */
ade8c56c 383static inline unsigned long __ffs(unsigned long word)
1da177e4
LT
384{
385 __asm__("bsfq %1,%0"
386 :"=r" (word)
387 :"rm" (word));
388 return word;
389}
390
90933fc8
SH
391/*
392 * __fls: find last bit set.
393 * @word: The word to search
394 *
395 * Undefined if no zero exists, so code should check against ~0UL first.
396 */
ade8c56c 397static inline unsigned long __fls(unsigned long word)
90933fc8
SH
398{
399 __asm__("bsrq %1,%0"
400 :"=r" (word)
401 :"rm" (word));
402 return word;
403}
404
1da177e4
LT
405#ifdef __KERNEL__
406
f33e2fba 407#include <asm-generic/bitops/sched.h>
1da177e4
LT
408
409/**
410 * ffs - find first bit set
411 * @x: the word to search
412 *
413 * This is defined the same way as
414 * the libc and compiler builtin ffs routines, therefore
415 * differs in spirit from the above ffz (man ffs).
416 */
ade8c56c 417static inline int ffs(int x)
1da177e4
LT
418{
419 int r;
420
421 __asm__("bsfl %1,%0\n\t"
422 "cmovzl %2,%0"
423 : "=r" (r) : "rm" (x), "r" (-1));
424 return r+1;
425}
426
90933fc8
SH
427/**
428 * fls64 - find last bit set in 64 bit word
429 * @x: the word to search
430 *
431 * This is defined the same way as fls.
432 */
ade8c56c 433static inline int fls64(__u64 x)
90933fc8
SH
434{
435 if (x == 0)
436 return 0;
437 return __fls(x) + 1;
438}
439
636dd2b7
SH
440/**
441 * fls - find last bit set
442 * @x: the word to search
443 *
444 * This is defined the same way as ffs.
445 */
ade8c56c 446static inline int fls(int x)
636dd2b7
SH
447{
448 int r;
449
450 __asm__("bsrl %1,%0\n\t"
451 "cmovzl %2,%0"
452 : "=&r" (r) : "rm" (x), "rm" (-1));
453 return r+1;
454}
455
0136611c
AK
456#define ARCH_HAS_FAST_MULTIPLIER 1
457
f33e2fba 458#include <asm-generic/bitops/hweight.h>
1da177e4
LT
459
460#endif /* __KERNEL__ */
461
462#ifdef __KERNEL__
463
f33e2fba
AM
464#include <asm-generic/bitops/ext2-non-atomic.h>
465
1da177e4
LT
466#define ext2_set_bit_atomic(lock,nr,addr) \
467 test_and_set_bit((nr),(unsigned long*)addr)
1da177e4
LT
468#define ext2_clear_bit_atomic(lock,nr,addr) \
469 test_and_clear_bit((nr),(unsigned long*)addr)
f33e2fba
AM
470
471#include <asm-generic/bitops/minix.h>
1da177e4 472
1da177e4
LT
473#endif /* __KERNEL__ */
474
475#endif /* _X86_64_BITOPS_H */