]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/crypto/aead.h
crypto: scatterwalk - Add scatterwalk_ffwd helper
[mirror_ubuntu-bionic-kernel.git] / include / crypto / aead.h
CommitLineData
743edf57
HX
1/*
2 * AEAD: Authenticated Encryption with Associated Data
3 *
4 * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_AEAD_H
14#define _CRYPTO_AEAD_H
15
16#include <linux/crypto.h>
17#include <linux/kernel.h>
3a282bd2 18#include <linux/slab.h>
743edf57 19
5d1d65f8
HX
20/**
21 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
22 *
23 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
24 * (listed as type "aead" in /proc/crypto)
25 *
26 * The most prominent examples for this type of encryption is GCM and CCM.
27 * However, the kernel supports other types of AEAD ciphers which are defined
28 * with the following cipher string:
29 *
30 * authenc(keyed message digest, block cipher)
31 *
32 * For example: authenc(hmac(sha256), cbc(aes))
33 *
34 * The example code provided for the asynchronous block cipher operation
35 * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
36 * the *aead* pendants discussed in the following. In addtion, for the AEAD
37 * operation, the aead_request_set_assoc function must be used to set the
38 * pointer to the associated data memory location before performing the
39 * encryption or decryption operation. In case of an encryption, the associated
40 * data memory is filled during the encryption operation. For decryption, the
41 * associated data memory must contain data that is used to verify the integrity
42 * of the decrypted data. Another deviation from the asynchronous block cipher
43 * operation is that the caller should explicitly check for -EBADMSG of the
44 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
45 * a breach in the integrity of the message. In essence, that -EBADMSG error
46 * code is the key bonus an AEAD cipher has over "standard" block chaining
47 * modes.
48 */
49
50/**
51 * struct aead_request - AEAD request
52 * @base: Common attributes for async crypto requests
53 * @assoclen: Length in bytes of associated data for authentication
54 * @cryptlen: Length of data to be encrypted or decrypted
55 * @iv: Initialisation vector
56 * @assoc: Associated data
57 * @src: Source data
58 * @dst: Destination data
59 * @__ctx: Start of private context data
60 */
61struct aead_request {
62 struct crypto_async_request base;
63
64 unsigned int assoclen;
65 unsigned int cryptlen;
66
67 u8 *iv;
68
69 struct scatterlist *assoc;
70 struct scatterlist *src;
71 struct scatterlist *dst;
72
73 void *__ctx[] CRYPTO_MINALIGN_ATTR;
74};
75
743edf57
HX
76/**
77 * struct aead_givcrypt_request - AEAD request with IV generation
78 * @seq: Sequence number for IV generation
79 * @giv: Space for generated IV
80 * @areq: The AEAD request itself
81 */
82struct aead_givcrypt_request {
83 u64 seq;
84 u8 *giv;
85
86 struct aead_request areq;
87};
88
5d1d65f8
HX
89struct crypto_aead {
90 int (*encrypt)(struct aead_request *req);
91 int (*decrypt)(struct aead_request *req);
92 int (*givencrypt)(struct aead_givcrypt_request *req);
93 int (*givdecrypt)(struct aead_givcrypt_request *req);
94
95 struct crypto_aead *child;
96
97 unsigned int ivsize;
98 unsigned int authsize;
99 unsigned int reqsize;
100
101 struct crypto_tfm base;
102};
103
104static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
105{
106 return container_of(tfm, struct crypto_aead, base);
107}
108
109/**
110 * crypto_alloc_aead() - allocate AEAD cipher handle
111 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
112 * AEAD cipher
113 * @type: specifies the type of the cipher
114 * @mask: specifies the mask for the cipher
115 *
116 * Allocate a cipher handle for an AEAD. The returned struct
117 * crypto_aead is the cipher handle that is required for any subsequent
118 * API invocation for that AEAD.
119 *
120 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
121 * of an error, PTR_ERR() returns the error code.
122 */
123struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
124
125static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
126{
127 return &tfm->base;
128}
129
130/**
131 * crypto_free_aead() - zeroize and free aead handle
132 * @tfm: cipher handle to be freed
133 */
134static inline void crypto_free_aead(struct crypto_aead *tfm)
135{
136 crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
137}
138
139static inline struct crypto_aead *crypto_aead_crt(struct crypto_aead *tfm)
140{
141 return tfm;
142}
143
144/**
145 * crypto_aead_ivsize() - obtain IV size
146 * @tfm: cipher handle
147 *
148 * The size of the IV for the aead referenced by the cipher handle is
149 * returned. This IV size may be zero if the cipher does not need an IV.
150 *
151 * Return: IV size in bytes
152 */
153static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
154{
155 return tfm->ivsize;
156}
157
158/**
159 * crypto_aead_authsize() - obtain maximum authentication data size
160 * @tfm: cipher handle
161 *
162 * The maximum size of the authentication data for the AEAD cipher referenced
163 * by the AEAD cipher handle is returned. The authentication data size may be
164 * zero if the cipher implements a hard-coded maximum.
165 *
166 * The authentication data may also be known as "tag value".
167 *
168 * Return: authentication data size / tag size in bytes
169 */
170static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
171{
172 return tfm->authsize;
173}
174
175/**
176 * crypto_aead_blocksize() - obtain block size of cipher
177 * @tfm: cipher handle
178 *
179 * The block size for the AEAD referenced with the cipher handle is returned.
180 * The caller may use that information to allocate appropriate memory for the
181 * data returned by the encryption or decryption operation
182 *
183 * Return: block size of cipher
184 */
185static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
186{
187 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
188}
189
190static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
191{
192 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
193}
194
195static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
196{
197 return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
198}
199
200static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
201{
202 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
203}
204
205static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
206{
207 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
208}
209
210/**
211 * crypto_aead_setkey() - set key for cipher
212 * @tfm: cipher handle
213 * @key: buffer holding the key
214 * @keylen: length of the key in bytes
215 *
216 * The caller provided key is set for the AEAD referenced by the cipher
217 * handle.
218 *
219 * Note, the key length determines the cipher type. Many block ciphers implement
220 * different cipher modes depending on the key size, such as AES-128 vs AES-192
221 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
222 * is performed.
223 *
224 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
225 */
226int crypto_aead_setkey(struct crypto_aead *tfm,
227 const u8 *key, unsigned int keylen);
228
229/**
230 * crypto_aead_setauthsize() - set authentication data size
231 * @tfm: cipher handle
232 * @authsize: size of the authentication data / tag in bytes
233 *
234 * Set the authentication data size / tag size. AEAD requires an authentication
235 * tag (or MAC) in addition to the associated data.
236 *
237 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
238 */
239int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
240
241static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
242{
243 return __crypto_aead_cast(req->base.tfm);
244}
245
246/**
247 * crypto_aead_encrypt() - encrypt plaintext
248 * @req: reference to the aead_request handle that holds all information
249 * needed to perform the cipher operation
250 *
251 * Encrypt plaintext data using the aead_request handle. That data structure
252 * and how it is filled with data is discussed with the aead_request_*
253 * functions.
254 *
255 * IMPORTANT NOTE The encryption operation creates the authentication data /
256 * tag. That data is concatenated with the created ciphertext.
257 * The ciphertext memory size is therefore the given number of
258 * block cipher blocks + the size defined by the
259 * crypto_aead_setauthsize invocation. The caller must ensure
260 * that sufficient memory is available for the ciphertext and
261 * the authentication tag.
262 *
263 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
264 */
265static inline int crypto_aead_encrypt(struct aead_request *req)
266{
267 return crypto_aead_reqtfm(req)->encrypt(req);
268}
269
270/**
271 * crypto_aead_decrypt() - decrypt ciphertext
272 * @req: reference to the ablkcipher_request handle that holds all information
273 * needed to perform the cipher operation
274 *
275 * Decrypt ciphertext data using the aead_request handle. That data structure
276 * and how it is filled with data is discussed with the aead_request_*
277 * functions.
278 *
279 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
280 * authentication data / tag. That authentication data / tag
281 * must have the size defined by the crypto_aead_setauthsize
282 * invocation.
283 *
284 *
285 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
286 * cipher operation performs the authentication of the data during the
287 * decryption operation. Therefore, the function returns this error if
288 * the authentication of the ciphertext was unsuccessful (i.e. the
289 * integrity of the ciphertext or the associated data was violated);
290 * < 0 if an error occurred.
291 */
292static inline int crypto_aead_decrypt(struct aead_request *req)
293{
294 if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req)))
295 return -EINVAL;
296
297 return crypto_aead_reqtfm(req)->decrypt(req);
298}
299
300/**
301 * DOC: Asynchronous AEAD Request Handle
302 *
303 * The aead_request data structure contains all pointers to data required for
304 * the AEAD cipher operation. This includes the cipher handle (which can be
305 * used by multiple aead_request instances), pointer to plaintext and
306 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
307 * aead_request_* API calls in a similar way as AEAD handle to the
308 * crypto_aead_* API calls.
309 */
310
311/**
312 * crypto_aead_reqsize() - obtain size of the request data structure
313 * @tfm: cipher handle
314 *
315 * Return: number of bytes
316 */
317static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
318{
319 return tfm->reqsize;
320}
321
322/**
323 * aead_request_set_tfm() - update cipher handle reference in request
324 * @req: request handle to be modified
325 * @tfm: cipher handle that shall be added to the request handle
326 *
327 * Allow the caller to replace the existing aead handle in the request
328 * data structure with a different one.
329 */
330static inline void aead_request_set_tfm(struct aead_request *req,
331 struct crypto_aead *tfm)
332{
333 req->base.tfm = crypto_aead_tfm(tfm->child);
334}
335
336/**
337 * aead_request_alloc() - allocate request data structure
338 * @tfm: cipher handle to be registered with the request
339 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
340 *
341 * Allocate the request data structure that must be used with the AEAD
342 * encrypt and decrypt API calls. During the allocation, the provided aead
343 * handle is registered in the request data structure.
344 *
345 * Return: allocated request handle in case of success; IS_ERR() is true in case
346 * of an error, PTR_ERR() returns the error code.
347 */
348static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
349 gfp_t gfp)
350{
351 struct aead_request *req;
352
353 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
354
355 if (likely(req))
356 aead_request_set_tfm(req, tfm);
357
358 return req;
359}
360
361/**
362 * aead_request_free() - zeroize and free request data structure
363 * @req: request data structure cipher handle to be freed
364 */
365static inline void aead_request_free(struct aead_request *req)
366{
367 kzfree(req);
368}
369
370/**
371 * aead_request_set_callback() - set asynchronous callback function
372 * @req: request handle
373 * @flags: specify zero or an ORing of the flags
374 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
375 * increase the wait queue beyond the initial maximum size;
376 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
377 * @compl: callback function pointer to be registered with the request handle
378 * @data: The data pointer refers to memory that is not used by the kernel
379 * crypto API, but provided to the callback function for it to use. Here,
380 * the caller can provide a reference to memory the callback function can
381 * operate on. As the callback function is invoked asynchronously to the
382 * related functionality, it may need to access data structures of the
383 * related functionality which can be referenced using this pointer. The
384 * callback function can access the memory via the "data" field in the
385 * crypto_async_request data structure provided to the callback function.
386 *
387 * Setting the callback function that is triggered once the cipher operation
388 * completes
389 *
390 * The callback function is registered with the aead_request handle and
391 * must comply with the following template
392 *
393 * void callback_function(struct crypto_async_request *req, int error)
394 */
395static inline void aead_request_set_callback(struct aead_request *req,
396 u32 flags,
397 crypto_completion_t compl,
398 void *data)
399{
400 req->base.complete = compl;
401 req->base.data = data;
402 req->base.flags = flags;
403}
404
405/**
406 * aead_request_set_crypt - set data buffers
407 * @req: request handle
408 * @src: source scatter / gather list
409 * @dst: destination scatter / gather list
410 * @cryptlen: number of bytes to process from @src
411 * @iv: IV for the cipher operation which must comply with the IV size defined
412 * by crypto_aead_ivsize()
413 *
414 * Setting the source data and destination data scatter / gather lists.
415 *
416 * For encryption, the source is treated as the plaintext and the
417 * destination is the ciphertext. For a decryption operation, the use is
418 * reversed - the source is the ciphertext and the destination is the plaintext.
419 *
420 * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
421 * the caller must concatenate the ciphertext followed by the
422 * authentication tag and provide the entire data stream to the
423 * decryption operation (i.e. the data length used for the
424 * initialization of the scatterlist and the data length for the
425 * decryption operation is identical). For encryption, however,
426 * the authentication tag is created while encrypting the data.
427 * The destination buffer must hold sufficient space for the
428 * ciphertext and the authentication tag while the encryption
429 * invocation must only point to the plaintext data size. The
430 * following code snippet illustrates the memory usage
431 * buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
432 * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
433 * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
434 */
435static inline void aead_request_set_crypt(struct aead_request *req,
436 struct scatterlist *src,
437 struct scatterlist *dst,
438 unsigned int cryptlen, u8 *iv)
439{
440 req->src = src;
441 req->dst = dst;
442 req->cryptlen = cryptlen;
443 req->iv = iv;
444}
445
446/**
447 * aead_request_set_assoc() - set the associated data scatter / gather list
448 * @req: request handle
449 * @assoc: associated data scatter / gather list
450 * @assoclen: number of bytes to process from @assoc
451 *
452 * For encryption, the memory is filled with the associated data. For
453 * decryption, the memory must point to the associated data.
454 */
455static inline void aead_request_set_assoc(struct aead_request *req,
456 struct scatterlist *assoc,
457 unsigned int assoclen)
458{
459 req->assoc = assoc;
460 req->assoclen = assoclen;
461}
462
743edf57
HX
463static inline struct crypto_aead *aead_givcrypt_reqtfm(
464 struct aead_givcrypt_request *req)
465{
466 return crypto_aead_reqtfm(&req->areq);
467}
468
3a282bd2
HX
469static inline int crypto_aead_givencrypt(struct aead_givcrypt_request *req)
470{
5d1d65f8 471 return aead_givcrypt_reqtfm(req)->givencrypt(req);
3a282bd2
HX
472};
473
474static inline int crypto_aead_givdecrypt(struct aead_givcrypt_request *req)
475{
5d1d65f8 476 return aead_givcrypt_reqtfm(req)->givdecrypt(req);
3a282bd2
HX
477};
478
479static inline void aead_givcrypt_set_tfm(struct aead_givcrypt_request *req,
480 struct crypto_aead *tfm)
481{
482 req->areq.base.tfm = crypto_aead_tfm(tfm);
483}
484
485static inline struct aead_givcrypt_request *aead_givcrypt_alloc(
486 struct crypto_aead *tfm, gfp_t gfp)
487{
488 struct aead_givcrypt_request *req;
489
490 req = kmalloc(sizeof(struct aead_givcrypt_request) +
491 crypto_aead_reqsize(tfm), gfp);
492
493 if (likely(req))
494 aead_givcrypt_set_tfm(req, tfm);
495
496 return req;
497}
498
499static inline void aead_givcrypt_free(struct aead_givcrypt_request *req)
500{
501 kfree(req);
502}
503
504static inline void aead_givcrypt_set_callback(
505 struct aead_givcrypt_request *req, u32 flags,
3e3dc25f 506 crypto_completion_t compl, void *data)
3a282bd2 507{
3e3dc25f 508 aead_request_set_callback(&req->areq, flags, compl, data);
3a282bd2
HX
509}
510
511static inline void aead_givcrypt_set_crypt(struct aead_givcrypt_request *req,
512 struct scatterlist *src,
513 struct scatterlist *dst,
514 unsigned int nbytes, void *iv)
515{
516 aead_request_set_crypt(&req->areq, src, dst, nbytes, iv);
517}
518
519static inline void aead_givcrypt_set_assoc(struct aead_givcrypt_request *req,
520 struct scatterlist *assoc,
521 unsigned int assoclen)
522{
523 aead_request_set_assoc(&req->areq, assoc, assoclen);
524}
525
526static inline void aead_givcrypt_set_giv(struct aead_givcrypt_request *req,
527 u8 *giv, u64 seq)
528{
529 req->giv = giv;
530 req->seq = seq;
531}
532
743edf57 533#endif /* _CRYPTO_AEAD_H */