]> git.proxmox.com Git - mirror_qemu.git/blame - include/exec/exec-all.h
tcg: fix corruption of code_time profiling counter upon tb_flush
[mirror_qemu.git] / include / exec / exec-all.h
CommitLineData
d4e8164f
FB
1/*
2 * internal execution defines for qemu
5fafdf24 3 *
d4e8164f
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d4e8164f
FB
18 */
19
2a6a4076
MA
20#ifndef EXEC_ALL_H
21#define EXEC_ALL_H
7d99a001
BS
22
23#include "qemu-common.h"
00f6da6a 24#include "exec/tb-context.h"
7d99a001 25
b346ff46 26/* allow to see translation results - the slowdown should be negligible, so we leave it */
de9a95f0 27#define DEBUG_DISAS
b346ff46 28
41c1b1c9
PB
29/* Page tracking code uses ram addresses in system mode, and virtual
30 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
31 type. */
32#if defined(CONFIG_USER_ONLY)
b480d9b7 33typedef abi_ulong tb_page_addr_t;
41c1b1c9
PB
34#else
35typedef ram_addr_t tb_page_addr_t;
36#endif
37
1de7afc9 38#include "qemu/log.h"
b346ff46 39
9c489ea6 40void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
9349b4f9 41void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
bad729e2 42 target_ulong *data);
d2856f1a 43
57fec1fe 44void cpu_gen_init(void);
3f38f309 45bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
a8a826a3 46
6886b980 47void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
90b40a69 48void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
648f034c 49TranslationBlock *tb_gen_code(CPUState *cpu,
89fee74a
EC
50 target_ulong pc, target_ulong cs_base,
51 uint32_t flags,
2e70f6ef 52 int cflags);
1bc7e522 53
5638d180 54void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
1c3c8af1 55void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
fdbc2b57 56void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
1652b974 57
0cac1b66 58#if !defined(CONFIG_USER_ONLY)
32857f4d 59void cpu_reloading_memory_map(void);
56943e8c
PM
60/**
61 * cpu_address_space_init:
62 * @cpu: CPU to add this address space to
63 * @as: address space to add
64 * @asidx: integer index of this address space
65 *
66 * Add the specified address space to the CPU's cpu_ases list.
67 * The address space added with @asidx 0 is the one used for the
68 * convenience pointer cpu->as.
69 * The target-specific code which registers ASes is responsible
70 * for defining what semantics address space 0, 1, 2, etc have.
71 *
12ebc9a7
PM
72 * Before the first call to this function, the caller must set
73 * cpu->num_ases to the total number of address spaces it needs
74 * to support.
75 *
56943e8c
PM
76 * Note that with KVM only one address space is supported.
77 */
78void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
b11ec7f2
YZ
79#endif
80
81#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
0cac1b66 82/* cputlb.c */
d7a74a9d
PM
83/**
84 * tlb_flush_page:
85 * @cpu: CPU whose TLB should be flushed
86 * @addr: virtual address of page to be flushed
87 *
88 * Flush one page from the TLB of the specified CPU, for all
89 * MMU indexes.
90 */
31b030d4 91void tlb_flush_page(CPUState *cpu, target_ulong addr);
c3b9a07a
AB
92/**
93 * tlb_flush_page_all_cpus:
94 * @cpu: src CPU of the flush
95 * @addr: virtual address of page to be flushed
96 *
97 * Flush one page from the TLB of the specified CPU, for all
98 * MMU indexes.
99 */
100void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
101/**
102 * tlb_flush_page_all_cpus_synced:
103 * @cpu: src CPU of the flush
104 * @addr: virtual address of page to be flushed
105 *
106 * Flush one page from the TLB of the specified CPU, for all MMU
107 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
108 * is scheduled as safe work meaning all flushes will be complete once
109 * the source vCPUs safe work is complete. This will depend on when
110 * the guests translation ends the TB.
111 */
112void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
d7a74a9d
PM
113/**
114 * tlb_flush:
115 * @cpu: CPU whose TLB should be flushed
d7a74a9d 116 *
d10eb08f
AB
117 * Flush the entire TLB for the specified CPU. Most CPU architectures
118 * allow the implementation to drop entries from the TLB at any time
119 * so this is generally safe. If more selective flushing is required
120 * use one of the other functions for efficiency.
d7a74a9d 121 */
d10eb08f 122void tlb_flush(CPUState *cpu);
c3b9a07a
AB
123/**
124 * tlb_flush_all_cpus:
125 * @cpu: src CPU of the flush
126 */
127void tlb_flush_all_cpus(CPUState *src_cpu);
128/**
129 * tlb_flush_all_cpus_synced:
130 * @cpu: src CPU of the flush
131 *
132 * Like tlb_flush_all_cpus except this except the source vCPUs work is
133 * scheduled as safe work meaning all flushes will be complete once
134 * the source vCPUs safe work is complete. This will depend on when
135 * the guests translation ends the TB.
136 */
137void tlb_flush_all_cpus_synced(CPUState *src_cpu);
d7a74a9d
PM
138/**
139 * tlb_flush_page_by_mmuidx:
140 * @cpu: CPU whose TLB should be flushed
141 * @addr: virtual address of page to be flushed
0336cbf8 142 * @idxmap: bitmap of MMU indexes to flush
d7a74a9d
PM
143 *
144 * Flush one page from the TLB of the specified CPU, for the specified
145 * MMU indexes.
146 */
0336cbf8
AB
147void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
148 uint16_t idxmap);
c3b9a07a
AB
149/**
150 * tlb_flush_page_by_mmuidx_all_cpus:
151 * @cpu: Originating CPU of the flush
152 * @addr: virtual address of page to be flushed
153 * @idxmap: bitmap of MMU indexes to flush
154 *
155 * Flush one page from the TLB of all CPUs, for the specified
156 * MMU indexes.
157 */
158void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
159 uint16_t idxmap);
160/**
161 * tlb_flush_page_by_mmuidx_all_cpus_synced:
162 * @cpu: Originating CPU of the flush
163 * @addr: virtual address of page to be flushed
164 * @idxmap: bitmap of MMU indexes to flush
165 *
166 * Flush one page from the TLB of all CPUs, for the specified MMU
167 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
168 * vCPUs work is scheduled as safe work meaning all flushes will be
169 * complete once the source vCPUs safe work is complete. This will
170 * depend on when the guests translation ends the TB.
171 */
172void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
173 uint16_t idxmap);
d7a74a9d
PM
174/**
175 * tlb_flush_by_mmuidx:
176 * @cpu: CPU whose TLB should be flushed
c3b9a07a 177 * @wait: If true ensure synchronisation by exiting the cpu_loop
0336cbf8 178 * @idxmap: bitmap of MMU indexes to flush
d7a74a9d
PM
179 *
180 * Flush all entries from the TLB of the specified CPU, for the specified
181 * MMU indexes.
182 */
0336cbf8 183void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
c3b9a07a
AB
184/**
185 * tlb_flush_by_mmuidx_all_cpus:
186 * @cpu: Originating CPU of the flush
187 * @idxmap: bitmap of MMU indexes to flush
188 *
189 * Flush all entries from all TLBs of all CPUs, for the specified
190 * MMU indexes.
191 */
192void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
193/**
194 * tlb_flush_by_mmuidx_all_cpus_synced:
195 * @cpu: Originating CPU of the flush
196 * @idxmap: bitmap of MMU indexes to flush
197 *
198 * Flush all entries from all TLBs of all CPUs, for the specified
199 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
200 * vCPUs work is scheduled as safe work meaning all flushes will be
201 * complete once the source vCPUs safe work is complete. This will
202 * depend on when the guests translation ends the TB.
203 */
204void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
1787cc8e
PM
205/**
206 * tlb_set_page_with_attrs:
207 * @cpu: CPU to add this TLB entry for
208 * @vaddr: virtual address of page to add entry for
209 * @paddr: physical address of the page
210 * @attrs: memory transaction attributes
211 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
212 * @mmu_idx: MMU index to insert TLB entry for
213 * @size: size of the page in bytes
214 *
215 * Add an entry to this CPU's TLB (a mapping from virtual address
216 * @vaddr to physical address @paddr) with the specified memory
217 * transaction attributes. This is generally called by the target CPU
218 * specific code after it has been called through the tlb_fill()
219 * entry point and performed a successful page table walk to find
220 * the physical address and attributes for the virtual address
221 * which provoked the TLB miss.
222 *
223 * At most one entry for a given virtual address is permitted. Only a
224 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
225 * used by tlb_flush_page.
226 */
fadc1cbe
PM
227void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
228 hwaddr paddr, MemTxAttrs attrs,
229 int prot, int mmu_idx, target_ulong size);
1787cc8e
PM
230/* tlb_set_page:
231 *
232 * This function is equivalent to calling tlb_set_page_with_attrs()
233 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
234 * as a convenience for CPUs which don't use memory transaction attributes.
235 */
236void tlb_set_page(CPUState *cpu, target_ulong vaddr,
237 hwaddr paddr, int prot,
238 int mmu_idx, target_ulong size);
29d8ec7b 239void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
3b4afc9e
YK
240void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
241 uintptr_t retaddr);
0cac1b66 242#else
31b030d4 243static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
0cac1b66
BS
244{
245}
c3b9a07a
AB
246static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
247{
248}
249static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
250 target_ulong addr)
251{
252}
d10eb08f 253static inline void tlb_flush(CPUState *cpu)
0cac1b66
BS
254{
255}
c3b9a07a
AB
256static inline void tlb_flush_all_cpus(CPUState *src_cpu)
257{
258}
259static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
260{
261}
d7a74a9d 262static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
0336cbf8 263 target_ulong addr, uint16_t idxmap)
d7a74a9d
PM
264{
265}
266
0336cbf8 267static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
d7a74a9d
PM
268{
269}
c3b9a07a
AB
270static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
271 target_ulong addr,
272 uint16_t idxmap)
273{
274}
275static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
276 target_ulong addr,
277 uint16_t idxmap)
278{
279}
280static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
281{
282}
283static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
284 uint16_t idxmap)
285{
286}
406bc339
PK
287static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
288{
289}
c527ee8f 290#endif
d4e8164f 291
d4e8164f
FB
292#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
293
126d89e8
RH
294/* Estimated block size for TB allocation. */
295/* ??? The following is based on a 2015 survey of x86_64 host output.
296 Better would seem to be some sort of dynamically sized TB array,
297 adapting to the block sizes actually being produced. */
4390df51 298#if defined(CONFIG_SOFTMMU)
126d89e8 299#define CODE_GEN_AVG_BLOCK_SIZE 400
4390df51 300#else
126d89e8 301#define CODE_GEN_AVG_BLOCK_SIZE 150
4390df51
FB
302#endif
303
2e70f6ef 304struct TranslationBlock {
2e12669a
FB
305 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
306 target_ulong cs_base; /* CS base for this block */
89fee74a 307 uint32_t flags; /* flags defining in which context the code was generated */
d4e8164f
FB
308 uint16_t size; /* size of target code for this block (1 <=
309 size <= TARGET_PAGE_SIZE) */
0266359e
PB
310 uint16_t icount;
311 uint32_t cflags; /* compile flags */
2e70f6ef
PB
312#define CF_COUNT_MASK 0x7fff
313#define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
d8a499f1 314#define CF_NOCACHE 0x10000 /* To be freed after execution */
0266359e 315#define CF_USE_ICOUNT 0x20000
56c0269a 316#define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
58fe2f10 317
61a67f71
LV
318 /* Per-vCPU dynamic tracing state used to generate this TB */
319 uint32_t trace_vcpu_dstate;
320
6d21e420
PB
321 uint16_t invalid;
322
1813e175 323 void *tc_ptr; /* pointer to the translated code */
fca8a500 324 uint8_t *tc_search; /* pointer to search data */
02d57ea1
SF
325 /* original tb when cflags has CF_NOCACHE */
326 struct TranslationBlock *orig_tb;
4390df51
FB
327 /* first and second physical page containing code. The lower bit
328 of the pointer tells the index in page_next[] */
5fafdf24 329 struct TranslationBlock *page_next[2];
41c1b1c9 330 tb_page_addr_t page_addr[2];
4390df51 331
f309101c
SF
332 /* The following data are used to directly call another TB from
333 * the code of this one. This can be done either by emitting direct or
334 * indirect native jump instructions. These jumps are reset so that the TB
335 * just continue its execution. The TB can be linked to another one by
336 * setting one of the jump targets (or patching the jump instruction). Only
337 * two of such jumps are supported.
338 */
339 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
340#define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
a8583393
RH
341 uintptr_t jmp_target_arg[2]; /* target address or offset */
342
f309101c
SF
343 /* Each TB has an assosiated circular list of TBs jumping to this one.
344 * jmp_list_first points to the first TB jumping to this one.
345 * jmp_list_next is used to point to the next TB in a list.
346 * Since each TB can have two jumps, it can participate in two lists.
c37e6d7e
SF
347 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
348 * TranslationBlock structure, but the two least significant bits of
349 * them are used to encode which data field of the pointed TB should
350 * be used to traverse the list further from that TB:
f309101c
SF
351 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
352 * In other words, 0/1 tells which jump is used in the pointed TB,
353 * and 2 means that this is a pointer back to the target TB of this list.
354 */
c37e6d7e
SF
355 uintptr_t jmp_list_next[2];
356 uintptr_t jmp_list_first;
2e70f6ef 357};
d4e8164f 358
2e70f6ef 359void tb_free(TranslationBlock *tb);
bbd77c18 360void tb_flush(CPUState *cpu);
41c1b1c9 361void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
cedbcb01
EC
362TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
363 target_ulong cs_base, uint32_t flags);
a8583393 364void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
d4e8164f 365
01ecaf43 366/* GETPC is the true target of the return instruction that we'll execute. */
7316329a 367#if defined(CONFIG_TCG_INTERPRETER)
c3ca0467 368extern uintptr_t tci_tb_ptr;
01ecaf43 369# define GETPC() tci_tb_ptr
0f842f8a 370#else
01ecaf43 371# define GETPC() \
0f842f8a
RH
372 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
373#endif
374
375/* The true return address will often point to a host insn that is part of
376 the next translated guest insn. Adjust the address backward to point to
377 the middle of the call insn. Subtracting one would do the job except for
378 several compressed mode architectures (arm, mips) which set the low bit
379 to indicate the compressed mode; subtracting two works around that. It
380 is also the case that there are no host isas that contain a call insn
381 smaller than 4 bytes, so we don't worry about special-casing this. */
a17d4482 382#define GETPC_ADJ 2
3917149d 383
beeaef55
PB
384void tb_lock(void);
385void tb_unlock(void);
386void tb_lock_reset(void);
387
e95c8d51 388#if !defined(CONFIG_USER_ONLY)
6e59c1db 389
9d82b5a7 390struct MemoryRegion *iotlb_to_region(CPUState *cpu,
a54c87b6 391 hwaddr index, MemTxAttrs attrs);
b3755a91 392
b35399bb
SS
393void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
394 int mmu_idx, uintptr_t retaddr);
6e59c1db 395
6e59c1db 396#endif
4390df51
FB
397
398#if defined(CONFIG_USER_ONLY)
8fd19e6c
PB
399void mmap_lock(void);
400void mmap_unlock(void);
301e40ed 401bool have_mmap_lock(void);
8fd19e6c 402
9349b4f9 403static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
4390df51
FB
404{
405 return addr;
406}
407#else
8fd19e6c
PB
408static inline void mmap_lock(void) {}
409static inline void mmap_unlock(void) {}
410
0cac1b66 411/* cputlb.c */
9349b4f9 412tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
dfccc760
PC
413
414void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
415void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
416
417/* exec.c */
418void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
419
420MemoryRegionSection *
d7898cda
PM
421address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
422 hwaddr *xlat, hwaddr *plen);
dfccc760
PC
423hwaddr memory_region_section_get_iotlb(CPUState *cpu,
424 MemoryRegionSection *section,
425 target_ulong vaddr,
426 hwaddr paddr, hwaddr xlat,
427 int prot,
428 target_ulong *address);
429bool memory_region_is_unassigned(MemoryRegion *mr);
430
4390df51 431#endif
9df217a3 432
1b530a6d
AJ
433/* vl.c */
434extern int singlestep;
435
875cdcf6 436#endif