]> git.proxmox.com Git - mirror_qemu.git/blame - include/exec/memory.h
intel_iommu: allocate new key when creating new address space
[mirror_qemu.git] / include / exec / memory.h
CommitLineData
093bc2cd
AK
1/*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14#ifndef MEMORY_H
15#define MEMORY_H
16
17#ifndef CONFIG_USER_ONLY
18
1ab4c8ce
JQ
19#define DIRTY_MEMORY_VGA 0
20#define DIRTY_MEMORY_CODE 1
21#define DIRTY_MEMORY_MIGRATION 2
22#define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
23
022c62cb 24#include "exec/cpu-common.h"
ce927ed9 25#ifndef CONFIG_USER_ONLY
022c62cb 26#include "exec/hwaddr.h"
ce927ed9 27#endif
cc05c43a 28#include "exec/memattrs.h"
1de7afc9 29#include "qemu/queue.h"
1de7afc9 30#include "qemu/int128.h"
06866575 31#include "qemu/notify.h"
b4fefef9 32#include "qom/object.h"
374f2981 33#include "qemu/rcu.h"
093bc2cd 34
07bdaa41
PB
35#define RAM_ADDR_INVALID (~(ram_addr_t)0)
36
052e87b0
PB
37#define MAX_PHYS_ADDR_SPACE_BITS 62
38#define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39
b4fefef9
PC
40#define TYPE_MEMORY_REGION "qemu:memory-region"
41#define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43
093bc2cd 44typedef struct MemoryRegionOps MemoryRegionOps;
74901c3b 45typedef struct MemoryRegionMmio MemoryRegionMmio;
093bc2cd 46
74901c3b
AK
47struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
50};
51
30951157
AK
52typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53
54/* See address_space_translate: bit 0 is read, bit 1 is write. */
55typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60} IOMMUAccessFlags;
61
62struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
68};
69
cdb30812
PX
70/*
71 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
72 * register with one or multiple IOMMU Notifier capability bit(s).
73 */
74typedef enum {
75 IOMMU_NOTIFIER_NONE = 0,
76 /* Notify cache invalidations */
77 IOMMU_NOTIFIER_UNMAP = 0x1,
78 /* Notify entry changes (newly created entries) */
79 IOMMU_NOTIFIER_MAP = 0x2,
80} IOMMUNotifierFlag;
81
82#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
83
84struct IOMMUNotifier {
85 void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
86 IOMMUNotifierFlag notifier_flags;
87 QLIST_ENTRY(IOMMUNotifier) node;
88};
89typedef struct IOMMUNotifier IOMMUNotifier;
90
cc05c43a
PM
91/* New-style MMIO accessors can indicate that the transaction failed.
92 * A zero (MEMTX_OK) response means success; anything else is a failure
93 * of some kind. The memory subsystem will bitwise-OR together results
94 * if it is synthesizing an operation from multiple smaller accesses.
95 */
96#define MEMTX_OK 0
97#define MEMTX_ERROR (1U << 0) /* device returned an error */
98#define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
99typedef uint32_t MemTxResult;
100
093bc2cd
AK
101/*
102 * Memory region callbacks
103 */
104struct MemoryRegionOps {
105 /* Read from the memory region. @addr is relative to @mr; @size is
106 * in bytes. */
107 uint64_t (*read)(void *opaque,
a8170e5e 108 hwaddr addr,
093bc2cd
AK
109 unsigned size);
110 /* Write to the memory region. @addr is relative to @mr; @size is
111 * in bytes. */
112 void (*write)(void *opaque,
a8170e5e 113 hwaddr addr,
093bc2cd
AK
114 uint64_t data,
115 unsigned size);
116
cc05c43a
PM
117 MemTxResult (*read_with_attrs)(void *opaque,
118 hwaddr addr,
119 uint64_t *data,
120 unsigned size,
121 MemTxAttrs attrs);
122 MemTxResult (*write_with_attrs)(void *opaque,
123 hwaddr addr,
124 uint64_t data,
125 unsigned size,
126 MemTxAttrs attrs);
127
093bc2cd
AK
128 enum device_endian endianness;
129 /* Guest-visible constraints: */
130 struct {
131 /* If nonzero, specify bounds on access sizes beyond which a machine
132 * check is thrown.
133 */
134 unsigned min_access_size;
135 unsigned max_access_size;
136 /* If true, unaligned accesses are supported. Otherwise unaligned
137 * accesses throw machine checks.
138 */
139 bool unaligned;
897fa7cf
AK
140 /*
141 * If present, and returns #false, the transaction is not accepted
142 * by the device (and results in machine dependent behaviour such
143 * as a machine check exception).
144 */
a8170e5e 145 bool (*accepts)(void *opaque, hwaddr addr,
897fa7cf 146 unsigned size, bool is_write);
093bc2cd
AK
147 } valid;
148 /* Internal implementation constraints: */
149 struct {
150 /* If nonzero, specifies the minimum size implemented. Smaller sizes
151 * will be rounded upwards and a partial result will be returned.
152 */
153 unsigned min_access_size;
154 /* If nonzero, specifies the maximum size implemented. Larger sizes
155 * will be done as a series of accesses with smaller sizes.
156 */
157 unsigned max_access_size;
158 /* If true, unaligned accesses are supported. Otherwise all accesses
159 * are converted to (possibly multiple) naturally aligned accesses.
160 */
edc1ba7a 161 bool unaligned;
093bc2cd 162 } impl;
627a0e90 163
74901c3b
AK
164 /* If .read and .write are not present, old_mmio may be used for
165 * backwards compatibility with old mmio registration
166 */
167 const MemoryRegionMmio old_mmio;
093bc2cd
AK
168};
169
30951157
AK
170typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
171
172struct MemoryRegionIOMMUOps {
173 /* Return a TLB entry that contains a given address. */
8d7b8cb9 174 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
f682e9c2
AK
175 /* Returns minimum supported page size */
176 uint64_t (*get_min_page_size)(MemoryRegion *iommu);
5bf3d319
PX
177 /* Called when IOMMU Notifier flag changed */
178 void (*notify_flag_changed)(MemoryRegion *iommu,
179 IOMMUNotifierFlag old_flags,
180 IOMMUNotifierFlag new_flags);
30951157
AK
181};
182
093bc2cd 183typedef struct CoalescedMemoryRange CoalescedMemoryRange;
3e9d69e7 184typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
093bc2cd
AK
185
186struct MemoryRegion {
b4fefef9 187 Object parent_obj;
a676854f 188
093bc2cd 189 /* All fields are private - violators will be prosecuted */
a676854f
PB
190
191 /* The following fields should fit in a cache line */
192 bool romd_mode;
193 bool ram;
194 bool subpage;
195 bool readonly; /* For RAM regions */
196 bool rom_device;
197 bool flush_coalesced_mmio;
198 bool global_locking;
199 uint8_t dirty_log_mask;
58eaa217 200 RAMBlock *ram_block;
612263cf 201 Object *owner;
30951157 202 const MemoryRegionIOMMUOps *iommu_ops;
a676854f
PB
203
204 const MemoryRegionOps *ops;
093bc2cd 205 void *opaque;
feca4ac1 206 MemoryRegion *container;
08dafab4 207 Int128 size;
a8170e5e 208 hwaddr addr;
545e92e0 209 void (*destructor)(MemoryRegion *mr);
a2b257d6 210 uint64_t align;
14a3c10a 211 bool terminates;
21e00fa5 212 bool ram_device;
6bba19ba 213 bool enabled;
1660e72d 214 bool warning_printed; /* For reservations */
deb809ed 215 uint8_t vga_logging_count;
093bc2cd 216 MemoryRegion *alias;
a8170e5e 217 hwaddr alias_offset;
d33382da 218 int32_t priority;
093bc2cd
AK
219 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
220 QTAILQ_ENTRY(MemoryRegion) subregions_link;
221 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
302fa283 222 const char *name;
3e9d69e7
AK
223 unsigned ioeventfd_nb;
224 MemoryRegionIoeventfd *ioeventfds;
cdb30812 225 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
5bf3d319 226 IOMMUNotifierFlag iommu_notify_flags;
093bc2cd
AK
227};
228
c2fc83e8
PB
229/**
230 * MemoryListener: callbacks structure for updates to the physical memory map
231 *
232 * Allows a component to adjust to changes in the guest-visible memory map.
233 * Use with memory_listener_register() and memory_listener_unregister().
234 */
235struct MemoryListener {
236 void (*begin)(MemoryListener *listener);
237 void (*commit)(MemoryListener *listener);
238 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
239 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
240 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
b2dfd71c
PB
241 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
242 int old, int new);
243 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
244 int old, int new);
c2fc83e8
PB
245 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
246 void (*log_global_start)(MemoryListener *listener);
247 void (*log_global_stop)(MemoryListener *listener);
248 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
249 bool match_data, uint64_t data, EventNotifier *e);
250 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
251 bool match_data, uint64_t data, EventNotifier *e);
252 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
253 hwaddr addr, hwaddr len);
254 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
255 hwaddr addr, hwaddr len);
256 /* Lower = earlier (during add), later (during del) */
257 unsigned priority;
d45fa784 258 AddressSpace *address_space;
c2fc83e8 259 QTAILQ_ENTRY(MemoryListener) link;
9a54635d 260 QTAILQ_ENTRY(MemoryListener) link_as;
c2fc83e8
PB
261};
262
9ad2bbc1
AK
263/**
264 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
265 */
266struct AddressSpace {
267 /* All fields are private. */
374f2981 268 struct rcu_head rcu;
7dca8043 269 char *name;
9ad2bbc1 270 MemoryRegion *root;
f0c02d15
PC
271 int ref_count;
272 bool malloced;
374f2981
PB
273
274 /* Accessed via RCU. */
9ad2bbc1 275 struct FlatView *current_map;
374f2981 276
9ad2bbc1
AK
277 int ioeventfd_nb;
278 struct MemoryRegionIoeventfd *ioeventfds;
ac1970fb 279 struct AddressSpaceDispatch *dispatch;
00752703 280 struct AddressSpaceDispatch *next_dispatch;
89ae337a 281 MemoryListener dispatch_listener;
9a54635d 282 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
0d673e36 283 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
9ad2bbc1
AK
284};
285
e2177955
AK
286/**
287 * MemoryRegionSection: describes a fragment of a #MemoryRegion
288 *
289 * @mr: the region, or %NULL if empty
7664e80c 290 * @address_space: the address space the region is mapped in
e2177955
AK
291 * @offset_within_region: the beginning of the section, relative to @mr's start
292 * @size: the size of the section; will not exceed @mr's boundaries
293 * @offset_within_address_space: the address of the first byte of the section
294 * relative to the region's address space
7a8499e8 295 * @readonly: writes to this section are ignored
e2177955
AK
296 */
297struct MemoryRegionSection {
298 MemoryRegion *mr;
f6790af6 299 AddressSpace *address_space;
a8170e5e 300 hwaddr offset_within_region;
052e87b0 301 Int128 size;
a8170e5e 302 hwaddr offset_within_address_space;
7a8499e8 303 bool readonly;
e2177955
AK
304};
305
093bc2cd
AK
306/**
307 * memory_region_init: Initialize a memory region
308 *
69ddaf66 309 * The region typically acts as a container for other memory regions. Use
093bc2cd
AK
310 * memory_region_add_subregion() to add subregions.
311 *
312 * @mr: the #MemoryRegion to be initialized
2c9b15ca 313 * @owner: the object that tracks the region's reference count
093bc2cd
AK
314 * @name: used for debugging; not visible to the user or ABI
315 * @size: size of the region; any subregions beyond this size will be clipped
316 */
317void memory_region_init(MemoryRegion *mr,
2c9b15ca 318 struct Object *owner,
093bc2cd
AK
319 const char *name,
320 uint64_t size);
46637be2
PB
321
322/**
323 * memory_region_ref: Add 1 to a memory region's reference count
324 *
325 * Whenever memory regions are accessed outside the BQL, they need to be
326 * preserved against hot-unplug. MemoryRegions actually do not have their
327 * own reference count; they piggyback on a QOM object, their "owner".
328 * This function adds a reference to the owner.
329 *
330 * All MemoryRegions must have an owner if they can disappear, even if the
331 * device they belong to operates exclusively under the BQL. This is because
332 * the region could be returned at any time by memory_region_find, and this
333 * is usually under guest control.
334 *
335 * @mr: the #MemoryRegion
336 */
337void memory_region_ref(MemoryRegion *mr);
338
339/**
340 * memory_region_unref: Remove 1 to a memory region's reference count
341 *
342 * Whenever memory regions are accessed outside the BQL, they need to be
343 * preserved against hot-unplug. MemoryRegions actually do not have their
344 * own reference count; they piggyback on a QOM object, their "owner".
345 * This function removes a reference to the owner and possibly destroys it.
346 *
347 * @mr: the #MemoryRegion
348 */
349void memory_region_unref(MemoryRegion *mr);
350
093bc2cd
AK
351/**
352 * memory_region_init_io: Initialize an I/O memory region.
353 *
69ddaf66 354 * Accesses into the region will cause the callbacks in @ops to be called.
093bc2cd
AK
355 * if @size is nonzero, subregions will be clipped to @size.
356 *
357 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 358 * @owner: the object that tracks the region's reference count
093bc2cd
AK
359 * @ops: a structure containing read and write callbacks to be used when
360 * I/O is performed on the region.
b6af0975 361 * @opaque: passed to the read and write callbacks of the @ops structure.
093bc2cd
AK
362 * @name: used for debugging; not visible to the user or ABI
363 * @size: size of the region.
364 */
365void memory_region_init_io(MemoryRegion *mr,
2c9b15ca 366 struct Object *owner,
093bc2cd
AK
367 const MemoryRegionOps *ops,
368 void *opaque,
369 const char *name,
370 uint64_t size);
371
372/**
373 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
69ddaf66 374 * region will modify memory directly.
093bc2cd
AK
375 *
376 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 377 * @owner: the object that tracks the region's reference count
c5705a77 378 * @name: the name of the region.
093bc2cd 379 * @size: size of the region.
49946538 380 * @errp: pointer to Error*, to store an error if it happens.
093bc2cd
AK
381 */
382void memory_region_init_ram(MemoryRegion *mr,
2c9b15ca 383 struct Object *owner,
093bc2cd 384 const char *name,
49946538
HT
385 uint64_t size,
386 Error **errp);
093bc2cd 387
60786ef3
MT
388/**
389 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
390 * RAM. Accesses into the region will
391 * modify memory directly. Only an initial
392 * portion of this RAM is actually used.
393 * The used size can change across reboots.
394 *
395 * @mr: the #MemoryRegion to be initialized.
396 * @owner: the object that tracks the region's reference count
397 * @name: the name of the region.
398 * @size: used size of the region.
399 * @max_size: max size of the region.
400 * @resized: callback to notify owner about used size change.
401 * @errp: pointer to Error*, to store an error if it happens.
402 */
403void memory_region_init_resizeable_ram(MemoryRegion *mr,
404 struct Object *owner,
405 const char *name,
406 uint64_t size,
407 uint64_t max_size,
408 void (*resized)(const char*,
409 uint64_t length,
410 void *host),
411 Error **errp);
0b183fc8
PB
412#ifdef __linux__
413/**
414 * memory_region_init_ram_from_file: Initialize RAM memory region with a
415 * mmap-ed backend.
416 *
417 * @mr: the #MemoryRegion to be initialized.
418 * @owner: the object that tracks the region's reference count
419 * @name: the name of the region.
420 * @size: size of the region.
dbcb8981 421 * @share: %true if memory must be mmaped with the MAP_SHARED flag
0b183fc8 422 * @path: the path in which to allocate the RAM.
7f56e740 423 * @errp: pointer to Error*, to store an error if it happens.
0b183fc8
PB
424 */
425void memory_region_init_ram_from_file(MemoryRegion *mr,
426 struct Object *owner,
427 const char *name,
428 uint64_t size,
dbcb8981 429 bool share,
7f56e740
PB
430 const char *path,
431 Error **errp);
0b183fc8
PB
432#endif
433
093bc2cd 434/**
1a7e8cae
BZ
435 * memory_region_init_ram_ptr: Initialize RAM memory region from a
436 * user-provided pointer. Accesses into the
437 * region will modify memory directly.
093bc2cd
AK
438 *
439 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 440 * @owner: the object that tracks the region's reference count
c5705a77 441 * @name: the name of the region.
093bc2cd
AK
442 * @size: size of the region.
443 * @ptr: memory to be mapped; must contain at least @size bytes.
444 */
445void memory_region_init_ram_ptr(MemoryRegion *mr,
2c9b15ca 446 struct Object *owner,
093bc2cd
AK
447 const char *name,
448 uint64_t size,
449 void *ptr);
450
21e00fa5
AW
451/**
452 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
453 * a user-provided pointer.
454 *
455 * A RAM device represents a mapping to a physical device, such as to a PCI
456 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
457 * into the VM address space and access to the region will modify memory
458 * directly. However, the memory region should not be included in a memory
459 * dump (device may not be enabled/mapped at the time of the dump), and
460 * operations incompatible with manipulating MMIO should be avoided. Replaces
461 * skip_dump flag.
462 *
463 * @mr: the #MemoryRegion to be initialized.
464 * @owner: the object that tracks the region's reference count
465 * @name: the name of the region.
466 * @size: size of the region.
467 * @ptr: memory to be mapped; must contain at least @size bytes.
468 */
469void memory_region_init_ram_device_ptr(MemoryRegion *mr,
470 struct Object *owner,
471 const char *name,
472 uint64_t size,
473 void *ptr);
474
093bc2cd
AK
475/**
476 * memory_region_init_alias: Initialize a memory region that aliases all or a
477 * part of another memory region.
478 *
479 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 480 * @owner: the object that tracks the region's reference count
093bc2cd
AK
481 * @name: used for debugging; not visible to the user or ABI
482 * @orig: the region to be referenced; @mr will be equivalent to
483 * @orig between @offset and @offset + @size - 1.
484 * @offset: start of the section in @orig to be referenced.
485 * @size: size of the region.
486 */
487void memory_region_init_alias(MemoryRegion *mr,
2c9b15ca 488 struct Object *owner,
093bc2cd
AK
489 const char *name,
490 MemoryRegion *orig,
a8170e5e 491 hwaddr offset,
093bc2cd 492 uint64_t size);
d0a9b5bc 493
a1777f7f
PM
494/**
495 * memory_region_init_rom: Initialize a ROM memory region.
496 *
497 * This has the same effect as calling memory_region_init_ram()
498 * and then marking the resulting region read-only with
499 * memory_region_set_readonly().
500 *
501 * @mr: the #MemoryRegion to be initialized.
502 * @owner: the object that tracks the region's reference count
503 * @name: the name of the region.
504 * @size: size of the region.
505 * @errp: pointer to Error*, to store an error if it happens.
506 */
507void memory_region_init_rom(MemoryRegion *mr,
508 struct Object *owner,
509 const char *name,
510 uint64_t size,
511 Error **errp);
512
d0a9b5bc
AK
513/**
514 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
515 * handled via callbacks.
516 *
517 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 518 * @owner: the object that tracks the region's reference count
39e0b03d 519 * @ops: callbacks for write access handling (must not be NULL).
c5705a77 520 * @name: the name of the region.
d0a9b5bc 521 * @size: size of the region.
33e0eb52 522 * @errp: pointer to Error*, to store an error if it happens.
d0a9b5bc
AK
523 */
524void memory_region_init_rom_device(MemoryRegion *mr,
2c9b15ca 525 struct Object *owner,
d0a9b5bc 526 const MemoryRegionOps *ops,
75f5941c 527 void *opaque,
d0a9b5bc 528 const char *name,
33e0eb52
HT
529 uint64_t size,
530 Error **errp);
d0a9b5bc 531
1660e72d
JK
532/**
533 * memory_region_init_reservation: Initialize a memory region that reserves
534 * I/O space.
535 *
536 * A reservation region primariy serves debugging purposes. It claims I/O
537 * space that is not supposed to be handled by QEMU itself. Any access via
538 * the memory API will cause an abort().
6d6d2abf
PF
539 * This function is deprecated. Use memory_region_init_io() with NULL
540 * callbacks instead.
1660e72d
JK
541 *
542 * @mr: the #MemoryRegion to be initialized
2c9b15ca 543 * @owner: the object that tracks the region's reference count
1660e72d
JK
544 * @name: used for debugging; not visible to the user or ABI
545 * @size: size of the region.
546 */
6d6d2abf
PF
547static inline void memory_region_init_reservation(MemoryRegion *mr,
548 Object *owner,
1660e72d 549 const char *name,
6d6d2abf
PF
550 uint64_t size)
551{
552 memory_region_init_io(mr, owner, NULL, mr, name, size);
553}
30951157
AK
554
555/**
556 * memory_region_init_iommu: Initialize a memory region that translates
557 * addresses
558 *
559 * An IOMMU region translates addresses and forwards accesses to a target
560 * memory region.
561 *
562 * @mr: the #MemoryRegion to be initialized
2c9b15ca 563 * @owner: the object that tracks the region's reference count
30951157
AK
564 * @ops: a function that translates addresses into the @target region
565 * @name: used for debugging; not visible to the user or ABI
566 * @size: size of the region.
567 */
568void memory_region_init_iommu(MemoryRegion *mr,
2c9b15ca 569 struct Object *owner,
30951157
AK
570 const MemoryRegionIOMMUOps *ops,
571 const char *name,
572 uint64_t size);
573
803c0816
PB
574/**
575 * memory_region_owner: get a memory region's owner.
576 *
577 * @mr: the memory region being queried.
578 */
579struct Object *memory_region_owner(MemoryRegion *mr);
580
093bc2cd
AK
581/**
582 * memory_region_size: get a memory region's size.
583 *
584 * @mr: the memory region being queried.
585 */
586uint64_t memory_region_size(MemoryRegion *mr);
587
8ea9252a
AK
588/**
589 * memory_region_is_ram: check whether a memory region is random access
590 *
591 * Returns %true is a memory region is random access.
592 *
593 * @mr: the memory region being queried
594 */
1619d1fe
PB
595static inline bool memory_region_is_ram(MemoryRegion *mr)
596{
597 return mr->ram;
598}
8ea9252a 599
e4dc3f59 600/**
21e00fa5 601 * memory_region_is_ram_device: check whether a memory region is a ram device
e4dc3f59 602 *
21e00fa5 603 * Returns %true is a memory region is a device backed ram region
e4dc3f59
ND
604 *
605 * @mr: the memory region being queried
606 */
21e00fa5 607bool memory_region_is_ram_device(MemoryRegion *mr);
e4dc3f59 608
fd062573 609/**
5f9a5ea1 610 * memory_region_is_romd: check whether a memory region is in ROMD mode
fd062573 611 *
5f9a5ea1 612 * Returns %true if a memory region is a ROM device and currently set to allow
fd062573
BS
613 * direct reads.
614 *
615 * @mr: the memory region being queried
616 */
617static inline bool memory_region_is_romd(MemoryRegion *mr)
618{
5f9a5ea1 619 return mr->rom_device && mr->romd_mode;
fd062573
BS
620}
621
30951157
AK
622/**
623 * memory_region_is_iommu: check whether a memory region is an iommu
624 *
625 * Returns %true is a memory region is an iommu.
626 *
627 * @mr: the memory region being queried
628 */
1619d1fe
PB
629static inline bool memory_region_is_iommu(MemoryRegion *mr)
630{
631 return mr->iommu_ops;
632}
633
30951157 634
f682e9c2
AK
635/**
636 * memory_region_iommu_get_min_page_size: get minimum supported page size
637 * for an iommu
638 *
639 * Returns minimum supported page size for an iommu.
640 *
641 * @mr: the memory region being queried
642 */
643uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
644
06866575
DG
645/**
646 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
647 *
cdb30812
PX
648 * The notification type will be decided by entry.perm bits:
649 *
650 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
651 * - For MAP (newly added entry) notifies: set entry.perm to the
652 * permission of the page (which is definitely !IOMMU_NONE).
653 *
654 * Note: for any IOMMU implementation, an in-place mapping change
655 * should be notified with an UNMAP followed by a MAP.
656 *
06866575
DG
657 * @mr: the memory region that was changed
658 * @entry: the new entry in the IOMMU translation table. The entry
659 * replaces all old entries for the same virtual I/O address range.
660 * Deleted entries have .@perm == 0.
661 */
662void memory_region_notify_iommu(MemoryRegion *mr,
663 IOMMUTLBEntry entry);
664
665/**
666 * memory_region_register_iommu_notifier: register a notifier for changes to
667 * IOMMU translation entries.
668 *
669 * @mr: the memory region to observe
cdb30812
PX
670 * @n: the IOMMUNotifier to be added; the notify callback receives a
671 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
672 * ceases to be valid on exit from the notifier.
06866575 673 */
cdb30812
PX
674void memory_region_register_iommu_notifier(MemoryRegion *mr,
675 IOMMUNotifier *n);
06866575 676
a788f227
DG
677/**
678 * memory_region_iommu_replay: replay existing IOMMU translations to
f682e9c2
AK
679 * a notifier with the minimum page granularity returned by
680 * mr->iommu_ops->get_page_size().
a788f227
DG
681 *
682 * @mr: the memory region to observe
683 * @n: the notifier to which to replay iommu mappings
a788f227
DG
684 * @is_write: Whether to treat the replay as a translate "write"
685 * through the iommu
686 */
cdb30812
PX
687void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
688 bool is_write);
a788f227 689
06866575
DG
690/**
691 * memory_region_unregister_iommu_notifier: unregister a notifier for
692 * changes to IOMMU translation entries.
693 *
d22d8956
AK
694 * @mr: the memory region which was observed and for which notity_stopped()
695 * needs to be called
06866575
DG
696 * @n: the notifier to be removed.
697 */
cdb30812
PX
698void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
699 IOMMUNotifier *n);
06866575 700
8991c79b
AK
701/**
702 * memory_region_name: get a memory region's name
703 *
704 * Returns the string that was used to initialize the memory region.
705 *
706 * @mr: the memory region being queried
707 */
5d546d4b 708const char *memory_region_name(const MemoryRegion *mr);
8991c79b 709
55043ba3
AK
710/**
711 * memory_region_is_logging: return whether a memory region is logging writes
712 *
2d1a35be 713 * Returns %true if the memory region is logging writes for the given client
55043ba3
AK
714 *
715 * @mr: the memory region being queried
2d1a35be 716 * @client: the client being queried
55043ba3 717 */
2d1a35be
PB
718bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
719
720/**
721 * memory_region_get_dirty_log_mask: return the clients for which a
722 * memory region is logging writes.
723 *
677e7805
PB
724 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
725 * are the bit indices.
2d1a35be
PB
726 *
727 * @mr: the memory region being queried
728 */
729uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
55043ba3 730
ce7923da
AK
731/**
732 * memory_region_is_rom: check whether a memory region is ROM
733 *
734 * Returns %true is a memory region is read-only memory.
735 *
736 * @mr: the memory region being queried
737 */
1619d1fe
PB
738static inline bool memory_region_is_rom(MemoryRegion *mr)
739{
740 return mr->ram && mr->readonly;
741}
742
ce7923da 743
a35ba7be
PB
744/**
745 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
746 *
747 * Returns a file descriptor backing a file-based RAM memory region,
748 * or -1 if the region is not a file-based RAM memory region.
749 *
750 * @mr: the RAM or alias memory region being queried.
751 */
752int memory_region_get_fd(MemoryRegion *mr);
753
4ff87573
PB
754/**
755 * memory_region_set_fd: Mark a RAM memory region as backed by a
756 * file descriptor.
757 *
758 * This function is typically used after memory_region_init_ram_ptr().
759 *
760 * @mr: the memory region being queried.
761 * @fd: the file descriptor that backs @mr.
762 */
763void memory_region_set_fd(MemoryRegion *mr, int fd);
764
07bdaa41
PB
765/**
766 * memory_region_from_host: Convert a pointer into a RAM memory region
767 * and an offset within it.
768 *
769 * Given a host pointer inside a RAM memory region (created with
770 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
771 * the MemoryRegion and the offset within it.
772 *
773 * Use with care; by the time this function returns, the returned pointer is
774 * not protected by RCU anymore. If the caller is not within an RCU critical
775 * section and does not hold the iothread lock, it must have other means of
776 * protecting the pointer, such as a reference to the region that includes
777 * the incoming ram_addr_t.
778 *
779 * @mr: the memory region being queried.
780 */
781MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
782
093bc2cd
AK
783/**
784 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
785 *
786 * Returns a host pointer to a RAM memory region (created with
49b24afc
PB
787 * memory_region_init_ram() or memory_region_init_ram_ptr()).
788 *
789 * Use with care; by the time this function returns, the returned pointer is
790 * not protected by RCU anymore. If the caller is not within an RCU critical
791 * section and does not hold the iothread lock, it must have other means of
792 * protecting the pointer, such as a reference to the region that includes
793 * the incoming ram_addr_t.
093bc2cd
AK
794 *
795 * @mr: the memory region being queried.
796 */
797void *memory_region_get_ram_ptr(MemoryRegion *mr);
798
37d7c084
PB
799/* memory_region_ram_resize: Resize a RAM region.
800 *
801 * Only legal before guest might have detected the memory size: e.g. on
802 * incoming migration, or right after reset.
803 *
804 * @mr: a memory region created with @memory_region_init_resizeable_ram.
805 * @newsize: the new size the region
806 * @errp: pointer to Error*, to store an error if it happens.
807 */
808void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
809 Error **errp);
810
093bc2cd
AK
811/**
812 * memory_region_set_log: Turn dirty logging on or off for a region.
813 *
814 * Turns dirty logging on or off for a specified client (display, migration).
815 * Only meaningful for RAM regions.
816 *
817 * @mr: the memory region being updated.
818 * @log: whether dirty logging is to be enabled or disabled.
dbddac6d 819 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
093bc2cd
AK
820 */
821void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
822
823/**
cd7a45c9
BS
824 * memory_region_get_dirty: Check whether a range of bytes is dirty
825 * for a specified client.
093bc2cd 826 *
cd7a45c9 827 * Checks whether a range of bytes has been written to since the last
093bc2cd
AK
828 * call to memory_region_reset_dirty() with the same @client. Dirty logging
829 * must be enabled.
830 *
831 * @mr: the memory region being queried.
832 * @addr: the address (relative to the start of the region) being queried.
cd7a45c9 833 * @size: the size of the range being queried.
093bc2cd
AK
834 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
835 * %DIRTY_MEMORY_VGA.
836 */
a8170e5e
AK
837bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
838 hwaddr size, unsigned client);
093bc2cd
AK
839
840/**
fd4aa979 841 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
093bc2cd 842 *
fd4aa979
BS
843 * Marks a range of bytes as dirty, after it has been dirtied outside
844 * guest code.
093bc2cd 845 *
fd4aa979 846 * @mr: the memory region being dirtied.
093bc2cd 847 * @addr: the address (relative to the start of the region) being dirtied.
fd4aa979 848 * @size: size of the range being dirtied.
093bc2cd 849 */
a8170e5e
AK
850void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
851 hwaddr size);
093bc2cd 852
6c279db8
JQ
853/**
854 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
855 * for a specified client. It clears them.
856 *
857 * Checks whether a range of bytes has been written to since the last
858 * call to memory_region_reset_dirty() with the same @client. Dirty logging
859 * must be enabled.
860 *
861 * @mr: the memory region being queried.
862 * @addr: the address (relative to the start of the region) being queried.
863 * @size: the size of the range being queried.
864 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
865 * %DIRTY_MEMORY_VGA.
866 */
867bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
868 hwaddr size, unsigned client);
093bc2cd
AK
869/**
870 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
871 * any external TLBs (e.g. kvm)
872 *
873 * Flushes dirty information from accelerators such as kvm and vhost-net
874 * and makes it available to users of the memory API.
875 *
876 * @mr: the region being flushed.
877 */
878void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
879
880/**
881 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
882 * client.
883 *
884 * Marks a range of pages as no longer dirty.
885 *
886 * @mr: the region being updated.
887 * @addr: the start of the subrange being cleaned.
888 * @size: the size of the subrange being cleaned.
889 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
890 * %DIRTY_MEMORY_VGA.
891 */
a8170e5e
AK
892void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
893 hwaddr size, unsigned client);
093bc2cd
AK
894
895/**
896 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
897 *
898 * Allows a memory region to be marked as read-only (turning it into a ROM).
899 * only useful on RAM regions.
900 *
901 * @mr: the region being updated.
902 * @readonly: whether rhe region is to be ROM or RAM.
903 */
904void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
905
d0a9b5bc 906/**
5f9a5ea1 907 * memory_region_rom_device_set_romd: enable/disable ROMD mode
d0a9b5bc
AK
908 *
909 * Allows a ROM device (initialized with memory_region_init_rom_device() to
5f9a5ea1
JK
910 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
911 * device is mapped to guest memory and satisfies read access directly.
912 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
913 * Writes are always handled by the #MemoryRegion.write function.
d0a9b5bc
AK
914 *
915 * @mr: the memory region to be updated
5f9a5ea1 916 * @romd_mode: %true to put the region into ROMD mode
d0a9b5bc 917 */
5f9a5ea1 918void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
d0a9b5bc 919
093bc2cd
AK
920/**
921 * memory_region_set_coalescing: Enable memory coalescing for the region.
922 *
923 * Enabled writes to a region to be queued for later processing. MMIO ->write
924 * callbacks may be delayed until a non-coalesced MMIO is issued.
925 * Only useful for IO regions. Roughly similar to write-combining hardware.
926 *
927 * @mr: the memory region to be write coalesced
928 */
929void memory_region_set_coalescing(MemoryRegion *mr);
930
931/**
932 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
933 * a region.
934 *
935 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
936 * Multiple calls can be issued coalesced disjoint ranges.
937 *
938 * @mr: the memory region to be updated.
939 * @offset: the start of the range within the region to be coalesced.
940 * @size: the size of the subrange to be coalesced.
941 */
942void memory_region_add_coalescing(MemoryRegion *mr,
a8170e5e 943 hwaddr offset,
093bc2cd
AK
944 uint64_t size);
945
946/**
947 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
948 *
949 * Disables any coalescing caused by memory_region_set_coalescing() or
950 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
951 * hardware.
952 *
953 * @mr: the memory region to be updated.
954 */
955void memory_region_clear_coalescing(MemoryRegion *mr);
956
d410515e
JK
957/**
958 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
959 * accesses.
960 *
961 * Ensure that pending coalesced MMIO request are flushed before the memory
962 * region is accessed. This property is automatically enabled for all regions
963 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
964 *
965 * @mr: the memory region to be updated.
966 */
967void memory_region_set_flush_coalesced(MemoryRegion *mr);
968
969/**
970 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
971 * accesses.
972 *
973 * Clear the automatic coalesced MMIO flushing enabled via
974 * memory_region_set_flush_coalesced. Note that this service has no effect on
975 * memory regions that have MMIO coalescing enabled for themselves. For them,
976 * automatic flushing will stop once coalescing is disabled.
977 *
978 * @mr: the memory region to be updated.
979 */
980void memory_region_clear_flush_coalesced(MemoryRegion *mr);
981
196ea131
JK
982/**
983 * memory_region_set_global_locking: Declares the access processing requires
984 * QEMU's global lock.
985 *
986 * When this is invoked, accesses to the memory region will be processed while
987 * holding the global lock of QEMU. This is the default behavior of memory
988 * regions.
989 *
990 * @mr: the memory region to be updated.
991 */
992void memory_region_set_global_locking(MemoryRegion *mr);
993
994/**
995 * memory_region_clear_global_locking: Declares that access processing does
996 * not depend on the QEMU global lock.
997 *
998 * By clearing this property, accesses to the memory region will be processed
999 * outside of QEMU's global lock (unless the lock is held on when issuing the
1000 * access request). In this case, the device model implementing the access
1001 * handlers is responsible for synchronization of concurrency.
1002 *
1003 * @mr: the memory region to be updated.
1004 */
1005void memory_region_clear_global_locking(MemoryRegion *mr);
1006
3e9d69e7
AK
1007/**
1008 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1009 * is written to a location.
1010 *
1011 * Marks a word in an IO region (initialized with memory_region_init_io())
1012 * as a trigger for an eventfd event. The I/O callback will not be called.
69ddaf66 1013 * The caller must be prepared to handle failure (that is, take the required
3e9d69e7
AK
1014 * action if the callback _is_ called).
1015 *
1016 * @mr: the memory region being updated.
1017 * @addr: the address within @mr that is to be monitored
1018 * @size: the size of the access to trigger the eventfd
1019 * @match_data: whether to match against @data, instead of just @addr
1020 * @data: the data to match against the guest write
1021 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1022 **/
1023void memory_region_add_eventfd(MemoryRegion *mr,
a8170e5e 1024 hwaddr addr,
3e9d69e7
AK
1025 unsigned size,
1026 bool match_data,
1027 uint64_t data,
753d5e14 1028 EventNotifier *e);
3e9d69e7
AK
1029
1030/**
69ddaf66 1031 * memory_region_del_eventfd: Cancel an eventfd.
3e9d69e7 1032 *
69ddaf66
ASRJ
1033 * Cancels an eventfd trigger requested by a previous
1034 * memory_region_add_eventfd() call.
3e9d69e7
AK
1035 *
1036 * @mr: the memory region being updated.
1037 * @addr: the address within @mr that is to be monitored
1038 * @size: the size of the access to trigger the eventfd
1039 * @match_data: whether to match against @data, instead of just @addr
1040 * @data: the data to match against the guest write
1041 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1042 */
1043void memory_region_del_eventfd(MemoryRegion *mr,
a8170e5e 1044 hwaddr addr,
3e9d69e7
AK
1045 unsigned size,
1046 bool match_data,
1047 uint64_t data,
753d5e14
PB
1048 EventNotifier *e);
1049
093bc2cd 1050/**
69ddaf66 1051 * memory_region_add_subregion: Add a subregion to a container.
093bc2cd 1052 *
69ddaf66 1053 * Adds a subregion at @offset. The subregion may not overlap with other
093bc2cd
AK
1054 * subregions (except for those explicitly marked as overlapping). A region
1055 * may only be added once as a subregion (unless removed with
1056 * memory_region_del_subregion()); use memory_region_init_alias() if you
1057 * want a region to be a subregion in multiple locations.
1058 *
1059 * @mr: the region to contain the new subregion; must be a container
1060 * initialized with memory_region_init().
1061 * @offset: the offset relative to @mr where @subregion is added.
1062 * @subregion: the subregion to be added.
1063 */
1064void memory_region_add_subregion(MemoryRegion *mr,
a8170e5e 1065 hwaddr offset,
093bc2cd
AK
1066 MemoryRegion *subregion);
1067/**
1a7e8cae
BZ
1068 * memory_region_add_subregion_overlap: Add a subregion to a container
1069 * with overlap.
093bc2cd 1070 *
69ddaf66 1071 * Adds a subregion at @offset. The subregion may overlap with other
093bc2cd
AK
1072 * subregions. Conflicts are resolved by having a higher @priority hide a
1073 * lower @priority. Subregions without priority are taken as @priority 0.
1074 * A region may only be added once as a subregion (unless removed with
1075 * memory_region_del_subregion()); use memory_region_init_alias() if you
1076 * want a region to be a subregion in multiple locations.
1077 *
1078 * @mr: the region to contain the new subregion; must be a container
1079 * initialized with memory_region_init().
1080 * @offset: the offset relative to @mr where @subregion is added.
1081 * @subregion: the subregion to be added.
1082 * @priority: used for resolving overlaps; highest priority wins.
1083 */
1084void memory_region_add_subregion_overlap(MemoryRegion *mr,
a8170e5e 1085 hwaddr offset,
093bc2cd 1086 MemoryRegion *subregion,
a1ff8ae0 1087 int priority);
e34911c4
AK
1088
1089/**
1090 * memory_region_get_ram_addr: Get the ram address associated with a memory
1091 * region
e34911c4 1092 */
7ebb2745 1093ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
e34911c4 1094
a2b257d6 1095uint64_t memory_region_get_alignment(const MemoryRegion *mr);
093bc2cd
AK
1096/**
1097 * memory_region_del_subregion: Remove a subregion.
1098 *
1099 * Removes a subregion from its container.
1100 *
1101 * @mr: the container to be updated.
1102 * @subregion: the region being removed; must be a current subregion of @mr.
1103 */
1104void memory_region_del_subregion(MemoryRegion *mr,
1105 MemoryRegion *subregion);
1106
6bba19ba
AK
1107/*
1108 * memory_region_set_enabled: dynamically enable or disable a region
1109 *
1110 * Enables or disables a memory region. A disabled memory region
1111 * ignores all accesses to itself and its subregions. It does not
1112 * obscure sibling subregions with lower priority - it simply behaves as
1113 * if it was removed from the hierarchy.
1114 *
1115 * Regions default to being enabled.
1116 *
1117 * @mr: the region to be updated
1118 * @enabled: whether to enable or disable the region
1119 */
1120void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1121
2282e1af
AK
1122/*
1123 * memory_region_set_address: dynamically update the address of a region
1124 *
feca4ac1 1125 * Dynamically updates the address of a region, relative to its container.
2282e1af
AK
1126 * May be used on regions are currently part of a memory hierarchy.
1127 *
1128 * @mr: the region to be updated
feca4ac1 1129 * @addr: new address, relative to container region
2282e1af 1130 */
a8170e5e 1131void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2282e1af 1132
e7af4c67
MT
1133/*
1134 * memory_region_set_size: dynamically update the size of a region.
1135 *
1136 * Dynamically updates the size of a region.
1137 *
1138 * @mr: the region to be updated
1139 * @size: used size of the region.
1140 */
1141void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1142
4703359e
AK
1143/*
1144 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1145 *
1146 * Dynamically updates the offset into the target region that an alias points
1147 * to, as if the fourth argument to memory_region_init_alias() has changed.
1148 *
1149 * @mr: the #MemoryRegion to be updated; should be an alias.
1150 * @offset: the new offset into the target memory region
1151 */
1152void memory_region_set_alias_offset(MemoryRegion *mr,
a8170e5e 1153 hwaddr offset);
4703359e 1154
3ce10901 1155/**
feca4ac1
PB
1156 * memory_region_present: checks if an address relative to a @container
1157 * translates into #MemoryRegion within @container
3ce10901 1158 *
feca4ac1 1159 * Answer whether a #MemoryRegion within @container covers the address
3ce10901
PB
1160 * @addr.
1161 *
feca4ac1
PB
1162 * @container: a #MemoryRegion within which @addr is a relative address
1163 * @addr: the area within @container to be searched
3ce10901 1164 */
feca4ac1 1165bool memory_region_present(MemoryRegion *container, hwaddr addr);
3ce10901 1166
eed2bacf
IM
1167/**
1168 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1169 * into any address space.
1170 *
1171 * @mr: a #MemoryRegion which should be checked if it's mapped
1172 */
1173bool memory_region_is_mapped(MemoryRegion *mr);
1174
e2177955 1175/**
73034e9e
PB
1176 * memory_region_find: translate an address/size relative to a
1177 * MemoryRegion into a #MemoryRegionSection.
e2177955 1178 *
73034e9e
PB
1179 * Locates the first #MemoryRegion within @mr that overlaps the range
1180 * given by @addr and @size.
e2177955
AK
1181 *
1182 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1183 * It will have the following characteristics:
e2177955
AK
1184 * .@size = 0 iff no overlap was found
1185 * .@mr is non-%NULL iff an overlap was found
1186 *
73034e9e
PB
1187 * Remember that in the return value the @offset_within_region is
1188 * relative to the returned region (in the .@mr field), not to the
1189 * @mr argument.
1190 *
1191 * Similarly, the .@offset_within_address_space is relative to the
1192 * address space that contains both regions, the passed and the
1193 * returned one. However, in the special case where the @mr argument
feca4ac1 1194 * has no container (and thus is the root of the address space), the
73034e9e
PB
1195 * following will hold:
1196 * .@offset_within_address_space >= @addr
1197 * .@offset_within_address_space + .@size <= @addr + @size
1198 *
1199 * @mr: a MemoryRegion within which @addr is a relative address
1200 * @addr: start of the area within @as to be searched
e2177955
AK
1201 * @size: size of the area to be searched
1202 */
73034e9e 1203MemoryRegionSection memory_region_find(MemoryRegion *mr,
a8170e5e 1204 hwaddr addr, uint64_t size);
e2177955 1205
86e775c6 1206/**
9c1f8f44 1207 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
86e775c6 1208 *
9c1f8f44 1209 * Synchronizes the dirty page log for all address spaces.
86e775c6 1210 */
9c1f8f44 1211void memory_global_dirty_log_sync(void);
86e775c6 1212
69ddaf66
ASRJ
1213/**
1214 * memory_region_transaction_begin: Start a transaction.
1215 *
1216 * During a transaction, changes will be accumulated and made visible
dabdf394 1217 * only when the transaction ends (is committed).
4ef4db86
AK
1218 */
1219void memory_region_transaction_begin(void);
69ddaf66
ASRJ
1220
1221/**
1222 * memory_region_transaction_commit: Commit a transaction and make changes
1223 * visible to the guest.
4ef4db86
AK
1224 */
1225void memory_region_transaction_commit(void);
1226
7664e80c
AK
1227/**
1228 * memory_listener_register: register callbacks to be called when memory
1229 * sections are mapped or unmapped into an address
1230 * space
1231 *
1232 * @listener: an object containing the callbacks to be called
7376e582 1233 * @filter: if non-%NULL, only regions in this address space will be observed
7664e80c 1234 */
f6790af6 1235void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
7664e80c
AK
1236
1237/**
1238 * memory_listener_unregister: undo the effect of memory_listener_register()
1239 *
1240 * @listener: an object containing the callbacks to be removed
1241 */
1242void memory_listener_unregister(MemoryListener *listener);
1243
1244/**
1245 * memory_global_dirty_log_start: begin dirty logging for all regions
1246 */
1247void memory_global_dirty_log_start(void);
1248
1249/**
1a7e8cae 1250 * memory_global_dirty_log_stop: end dirty logging for all regions
7664e80c
AK
1251 */
1252void memory_global_dirty_log_stop(void);
1253
314e2987
BS
1254void mtree_info(fprintf_function mon_printf, void *f);
1255
3b643495
PM
1256/**
1257 * memory_region_dispatch_read: perform a read directly to the specified
1258 * MemoryRegion.
1259 *
1260 * @mr: #MemoryRegion to access
1261 * @addr: address within that region
1262 * @pval: pointer to uint64_t which the data is written to
1263 * @size: size of the access in bytes
1264 * @attrs: memory transaction attributes to use for the access
1265 */
1266MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1267 hwaddr addr,
1268 uint64_t *pval,
1269 unsigned size,
1270 MemTxAttrs attrs);
1271/**
1272 * memory_region_dispatch_write: perform a write directly to the specified
1273 * MemoryRegion.
1274 *
1275 * @mr: #MemoryRegion to access
1276 * @addr: address within that region
1277 * @data: data to write
1278 * @size: size of the access in bytes
1279 * @attrs: memory transaction attributes to use for the access
1280 */
1281MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1282 hwaddr addr,
1283 uint64_t data,
1284 unsigned size,
1285 MemTxAttrs attrs);
1286
9ad2bbc1
AK
1287/**
1288 * address_space_init: initializes an address space
1289 *
1290 * @as: an uninitialized #AddressSpace
67cc32eb 1291 * @root: a #MemoryRegion that routes addresses for the address space
7dca8043
AK
1292 * @name: an address space name. The name is only used for debugging
1293 * output.
9ad2bbc1 1294 */
7dca8043 1295void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
9ad2bbc1 1296
f0c02d15
PC
1297/**
1298 * address_space_init_shareable: return an address space for a memory region,
1299 * creating it if it does not already exist
1300 *
1301 * @root: a #MemoryRegion that routes addresses for the address space
1302 * @name: an address space name. The name is only used for debugging
1303 * output.
1304 *
1305 * This function will return a pointer to an existing AddressSpace
1306 * which was initialized with the specified MemoryRegion, or it will
1307 * create and initialize one if it does not already exist. The ASes
1308 * are reference-counted, so the memory will be freed automatically
1309 * when the AddressSpace is destroyed via address_space_destroy.
1310 */
1311AddressSpace *address_space_init_shareable(MemoryRegion *root,
1312 const char *name);
83f3c251
AK
1313
1314/**
1315 * address_space_destroy: destroy an address space
1316 *
1317 * Releases all resources associated with an address space. After an address space
1318 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1319 * as well.
1320 *
1321 * @as: address space to be destroyed
1322 */
1323void address_space_destroy(AddressSpace *as);
1324
ac1970fb
AK
1325/**
1326 * address_space_rw: read from or write to an address space.
1327 *
5c9eb028
PM
1328 * Return a MemTxResult indicating whether the operation succeeded
1329 * or failed (eg unassigned memory, device rejected the transaction,
1330 * IOMMU fault).
fd8aaa76 1331 *
ac1970fb
AK
1332 * @as: #AddressSpace to be accessed
1333 * @addr: address within that address space
5c9eb028 1334 * @attrs: memory transaction attributes
ac1970fb
AK
1335 * @buf: buffer with the data transferred
1336 * @is_write: indicates the transfer direction
1337 */
5c9eb028
PM
1338MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1339 MemTxAttrs attrs, uint8_t *buf,
1340 int len, bool is_write);
ac1970fb
AK
1341
1342/**
1343 * address_space_write: write to address space.
1344 *
5c9eb028
PM
1345 * Return a MemTxResult indicating whether the operation succeeded
1346 * or failed (eg unassigned memory, device rejected the transaction,
1347 * IOMMU fault).
fd8aaa76 1348 *
ac1970fb
AK
1349 * @as: #AddressSpace to be accessed
1350 * @addr: address within that address space
5c9eb028 1351 * @attrs: memory transaction attributes
ac1970fb
AK
1352 * @buf: buffer with the data transferred
1353 */
5c9eb028
PM
1354MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1355 MemTxAttrs attrs,
1356 const uint8_t *buf, int len);
ac1970fb 1357
3cc8f884 1358/* address_space_ld*: load from an address space
50013115
PM
1359 * address_space_st*: store to an address space
1360 *
1361 * These functions perform a load or store of the byte, word,
1362 * longword or quad to the specified address within the AddressSpace.
1363 * The _le suffixed functions treat the data as little endian;
1364 * _be indicates big endian; no suffix indicates "same endianness
1365 * as guest CPU".
1366 *
1367 * The "guest CPU endianness" accessors are deprecated for use outside
1368 * target-* code; devices should be CPU-agnostic and use either the LE
1369 * or the BE accessors.
1370 *
1371 * @as #AddressSpace to be accessed
1372 * @addr: address within that address space
1373 * @val: data value, for stores
1374 * @attrs: memory transaction attributes
1375 * @result: location to write the success/failure of the transaction;
1376 * if NULL, this information is discarded
1377 */
1378uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1379 MemTxAttrs attrs, MemTxResult *result);
1380uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1381 MemTxAttrs attrs, MemTxResult *result);
1382uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1383 MemTxAttrs attrs, MemTxResult *result);
1384uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1385 MemTxAttrs attrs, MemTxResult *result);
1386uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1387 MemTxAttrs attrs, MemTxResult *result);
1388uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1389 MemTxAttrs attrs, MemTxResult *result);
1390uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1391 MemTxAttrs attrs, MemTxResult *result);
1392void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1393 MemTxAttrs attrs, MemTxResult *result);
1394void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1395 MemTxAttrs attrs, MemTxResult *result);
1396void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1397 MemTxAttrs attrs, MemTxResult *result);
1398void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1399 MemTxAttrs attrs, MemTxResult *result);
1400void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1401 MemTxAttrs attrs, MemTxResult *result);
1402void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1403 MemTxAttrs attrs, MemTxResult *result);
1404void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1405 MemTxAttrs attrs, MemTxResult *result);
1406
0ce265ff
PB
1407uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1408uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1409uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1410uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1411uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1412uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1413uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1414void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1415void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1416void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1417void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1418void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1419void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1420void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1421
1f4e496e
PB
1422struct MemoryRegionCache {
1423 hwaddr xlat;
1424 void *ptr;
1425 hwaddr len;
1426 MemoryRegion *mr;
1427 bool is_write;
1428};
1429
1430/* address_space_cache_init: prepare for repeated access to a physical
1431 * memory region
1432 *
1433 * @cache: #MemoryRegionCache to be filled
1434 * @as: #AddressSpace to be accessed
1435 * @addr: address within that address space
1436 * @len: length of buffer
1437 * @is_write: indicates the transfer direction
1438 *
1439 * Will only work with RAM, and may map a subset of the requested range by
1440 * returning a value that is less than @len. On failure, return a negative
1441 * errno value.
1442 *
1443 * Because it only works with RAM, this function can be used for
1444 * read-modify-write operations. In this case, is_write should be %true.
1445 *
1446 * Note that addresses passed to the address_space_*_cached functions
1447 * are relative to @addr.
1448 */
1449int64_t address_space_cache_init(MemoryRegionCache *cache,
1450 AddressSpace *as,
1451 hwaddr addr,
1452 hwaddr len,
1453 bool is_write);
1454
1455/**
1456 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1457 *
1458 * @cache: The #MemoryRegionCache to operate on.
1459 * @addr: The first physical address that was written, relative to the
1460 * address that was passed to @address_space_cache_init.
1461 * @access_len: The number of bytes that were written starting at @addr.
1462 */
1463void address_space_cache_invalidate(MemoryRegionCache *cache,
1464 hwaddr addr,
1465 hwaddr access_len);
1466
1467/**
1468 * address_space_cache_destroy: free a #MemoryRegionCache
1469 *
1470 * @cache: The #MemoryRegionCache whose memory should be released.
1471 */
1472void address_space_cache_destroy(MemoryRegionCache *cache);
1473
1474/* address_space_ld*_cached: load from a cached #MemoryRegion
1475 * address_space_st*_cached: store into a cached #MemoryRegion
1476 *
1477 * These functions perform a load or store of the byte, word,
1478 * longword or quad to the specified address. The address is
1479 * a physical address in the AddressSpace, but it must lie within
1480 * a #MemoryRegion that was mapped with address_space_cache_init.
1481 *
1482 * The _le suffixed functions treat the data as little endian;
1483 * _be indicates big endian; no suffix indicates "same endianness
1484 * as guest CPU".
1485 *
1486 * The "guest CPU endianness" accessors are deprecated for use outside
1487 * target-* code; devices should be CPU-agnostic and use either the LE
1488 * or the BE accessors.
1489 *
1490 * @cache: previously initialized #MemoryRegionCache to be accessed
1491 * @addr: address within the address space
1492 * @val: data value, for stores
1493 * @attrs: memory transaction attributes
1494 * @result: location to write the success/failure of the transaction;
1495 * if NULL, this information is discarded
1496 */
1497uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1498 MemTxAttrs attrs, MemTxResult *result);
1499uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1500 MemTxAttrs attrs, MemTxResult *result);
1501uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1502 MemTxAttrs attrs, MemTxResult *result);
1503uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1504 MemTxAttrs attrs, MemTxResult *result);
1505uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1506 MemTxAttrs attrs, MemTxResult *result);
1507uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1508 MemTxAttrs attrs, MemTxResult *result);
1509uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1510 MemTxAttrs attrs, MemTxResult *result);
1511void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1512 MemTxAttrs attrs, MemTxResult *result);
1513void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1514 MemTxAttrs attrs, MemTxResult *result);
1515void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1516 MemTxAttrs attrs, MemTxResult *result);
1517void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1518 MemTxAttrs attrs, MemTxResult *result);
1519void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1520 MemTxAttrs attrs, MemTxResult *result);
1521void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1522 MemTxAttrs attrs, MemTxResult *result);
1523void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1524 MemTxAttrs attrs, MemTxResult *result);
1525
1526uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1527uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1528uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1529uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1530uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1531uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1532uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1533void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1534void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1535void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1536void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1537void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1538void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1539void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1540
149f54b5 1541/* address_space_translate: translate an address range into an address space
41063e1e
PB
1542 * into a MemoryRegion and an address range into that section. Should be
1543 * called from an RCU critical section, to avoid that the last reference
1544 * to the returned region disappears after address_space_translate returns.
149f54b5
PB
1545 *
1546 * @as: #AddressSpace to be accessed
1547 * @addr: address within that address space
1548 * @xlat: pointer to address within the returned memory region section's
1549 * #MemoryRegion.
1550 * @len: pointer to length
1551 * @is_write: indicates the transfer direction
1552 */
5c8a00ce
PB
1553MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1554 hwaddr *xlat, hwaddr *len,
1555 bool is_write);
149f54b5 1556
51644ab7
PB
1557/* address_space_access_valid: check for validity of accessing an address
1558 * space range
1559 *
30951157
AK
1560 * Check whether memory is assigned to the given address space range, and
1561 * access is permitted by any IOMMU regions that are active for the address
1562 * space.
51644ab7
PB
1563 *
1564 * For now, addr and len should be aligned to a page size. This limitation
1565 * will be lifted in the future.
1566 *
1567 * @as: #AddressSpace to be accessed
1568 * @addr: address within that address space
1569 * @len: length of the area to be checked
1570 * @is_write: indicates the transfer direction
1571 */
1572bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1573
ac1970fb
AK
1574/* address_space_map: map a physical memory region into a host virtual address
1575 *
1576 * May map a subset of the requested range, given by and returned in @plen.
1577 * May return %NULL if resources needed to perform the mapping are exhausted.
1578 * Use only for reads OR writes - not for read-modify-write operations.
1579 * Use cpu_register_map_client() to know when retrying the map operation is
1580 * likely to succeed.
1581 *
1582 * @as: #AddressSpace to be accessed
1583 * @addr: address within that address space
1584 * @plen: pointer to length of buffer; updated on return
1585 * @is_write: indicates the transfer direction
1586 */
a8170e5e
AK
1587void *address_space_map(AddressSpace *as, hwaddr addr,
1588 hwaddr *plen, bool is_write);
ac1970fb
AK
1589
1590/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1591 *
1592 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1593 * the amount of memory that was actually read or written by the caller.
1594 *
1595 * @as: #AddressSpace used
1596 * @addr: address within that address space
1597 * @len: buffer length as returned by address_space_map()
1598 * @access_len: amount of data actually transferred
1599 * @is_write: indicates the transfer direction
1600 */
a8170e5e
AK
1601void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1602 int is_write, hwaddr access_len);
ac1970fb
AK
1603
1604
a203ac70
PB
1605/* Internal functions, part of the implementation of address_space_read. */
1606MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1607 MemTxAttrs attrs, uint8_t *buf,
1608 int len, hwaddr addr1, hwaddr l,
1609 MemoryRegion *mr);
3cc8f884
PB
1610MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1611 MemTxAttrs attrs, uint8_t *buf, int len);
0878d0e1 1612void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
3cc8f884
PB
1613
1614static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1615{
1616 if (is_write) {
4a2e242b
AW
1617 return memory_region_is_ram(mr) &&
1618 !mr->readonly && !memory_region_is_ram_device(mr);
3cc8f884 1619 } else {
4a2e242b
AW
1620 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1621 memory_region_is_romd(mr);
3cc8f884 1622 }
3cc8f884
PB
1623}
1624
1625/**
1626 * address_space_read: read from an address space.
1627 *
1628 * Return a MemTxResult indicating whether the operation succeeded
1629 * or failed (eg unassigned memory, device rejected the transaction,
1630 * IOMMU fault).
1631 *
1632 * @as: #AddressSpace to be accessed
1633 * @addr: address within that address space
1634 * @attrs: memory transaction attributes
1635 * @buf: buffer with the data transferred
1636 */
1637static inline __attribute__((__always_inline__))
1638MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1639 uint8_t *buf, int len)
1640{
1641 MemTxResult result = MEMTX_OK;
1642 hwaddr l, addr1;
1643 void *ptr;
1644 MemoryRegion *mr;
1645
1646 if (__builtin_constant_p(len)) {
1647 if (len) {
1648 rcu_read_lock();
1649 l = len;
1650 mr = address_space_translate(as, addr, &addr1, &l, false);
1651 if (len == l && memory_access_is_direct(mr, false)) {
0878d0e1 1652 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3cc8f884
PB
1653 memcpy(buf, ptr, len);
1654 } else {
1655 result = address_space_read_continue(as, addr, attrs, buf, len,
1656 addr1, l, mr);
1657 }
1658 rcu_read_unlock();
1659 }
1660 } else {
1661 result = address_space_read_full(as, addr, attrs, buf, len);
1662 }
1663 return result;
1664}
a203ac70 1665
1f4e496e
PB
1666/**
1667 * address_space_read_cached: read from a cached RAM region
1668 *
1669 * @cache: Cached region to be addressed
1670 * @addr: address relative to the base of the RAM region
1671 * @buf: buffer with the data transferred
1672 * @len: length of the data transferred
1673 */
1674static inline void
1675address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1676 void *buf, int len)
1677{
1678 assert(addr < cache->len && len <= cache->len - addr);
1679 memcpy(buf, cache->ptr + addr, len);
1680}
1681
1682/**
1683 * address_space_write_cached: write to a cached RAM region
1684 *
1685 * @cache: Cached region to be addressed
1686 * @addr: address relative to the base of the RAM region
1687 * @buf: buffer with the data transferred
1688 * @len: length of the data transferred
1689 */
1690static inline void
1691address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1692 void *buf, int len)
1693{
1694 assert(addr < cache->len && len <= cache->len - addr);
1695 memcpy(cache->ptr + addr, buf, len);
1696}
1697
093bc2cd
AK
1698#endif
1699
1700#endif