]> git.proxmox.com Git - mirror_qemu.git/blame - include/exec/memory.h
libqtest: fix memory leak in the qtest_qmp_event_ref
[mirror_qemu.git] / include / exec / memory.h
CommitLineData
093bc2cd
AK
1/*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14#ifndef MEMORY_H
15#define MEMORY_H
16
17#ifndef CONFIG_USER_ONLY
18
022c62cb
PB
19#include "exec/cpu-common.h"
20#include "exec/hwaddr.h"
cc05c43a 21#include "exec/memattrs.h"
e67c9046 22#include "exec/memop.h"
0987d735 23#include "exec/ramlist.h"
1b53ecd9 24#include "qemu/bswap.h"
1de7afc9 25#include "qemu/queue.h"
1de7afc9 26#include "qemu/int128.h"
06866575 27#include "qemu/notify.h"
b4fefef9 28#include "qom/object.h"
374f2981 29#include "qemu/rcu.h"
093bc2cd 30
07bdaa41
PB
31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
052e87b0
PB
33#define MAX_PHYS_ADDR_SPACE_BITS 62
34#define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
b4fefef9 36#define TYPE_MEMORY_REGION "qemu:memory-region"
8110fa1d
EH
37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
b4fefef9 39
3df9d748 40#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
db1015e9 41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
8110fa1d
EH
42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
3df9d748 44
ae7a2bca
PX
45extern bool global_dirty_log;
46
093bc2cd 47typedef struct MemoryRegionOps MemoryRegionOps;
74901c3b 48
f7806925
EA
49struct ReservedRegion {
50 hwaddr low;
51 hwaddr high;
52 unsigned type;
53};
54
30951157
AK
55typedef struct IOMMUTLBEntry IOMMUTLBEntry;
56
57/* See address_space_translate: bit 0 is read, bit 1 is write. */
58typedef enum {
59 IOMMU_NONE = 0,
60 IOMMU_RO = 1,
61 IOMMU_WO = 2,
62 IOMMU_RW = 3,
63} IOMMUAccessFlags;
64
f06a696d
PX
65#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
66
30951157
AK
67struct IOMMUTLBEntry {
68 AddressSpace *target_as;
69 hwaddr iova;
70 hwaddr translated_addr;
71 hwaddr addr_mask; /* 0xfff = 4k translation */
72 IOMMUAccessFlags perm;
73};
74
cdb30812
PX
75/*
76 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
77 * register with one or multiple IOMMU Notifier capability bit(s).
78 */
79typedef enum {
80 IOMMU_NOTIFIER_NONE = 0,
81 /* Notify cache invalidations */
82 IOMMU_NOTIFIER_UNMAP = 0x1,
83 /* Notify entry changes (newly created entries) */
84 IOMMU_NOTIFIER_MAP = 0x2,
85} IOMMUNotifierFlag;
86
87#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
88
698feb5e
PX
89struct IOMMUNotifier;
90typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
91 IOMMUTLBEntry *data);
92
cdb30812 93struct IOMMUNotifier {
698feb5e 94 IOMMUNotify notify;
cdb30812 95 IOMMUNotifierFlag notifier_flags;
698feb5e
PX
96 /* Notify for address space range start <= addr <= end */
97 hwaddr start;
98 hwaddr end;
cb1efcf4 99 int iommu_idx;
cdb30812
PX
100 QLIST_ENTRY(IOMMUNotifier) node;
101};
102typedef struct IOMMUNotifier IOMMUNotifier;
103
b0e5de93
JH
104/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
105#define RAM_PREALLOC (1 << 0)
106
107/* RAM is mmap-ed with MAP_SHARED */
108#define RAM_SHARED (1 << 1)
109
110/* Only a portion of RAM (used_length) is actually used, and migrated.
111 * This used_length size can change across reboots.
112 */
113#define RAM_RESIZEABLE (1 << 2)
114
115/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
116 * zero the page and wake waiting processes.
117 * (Set during postcopy)
118 */
119#define RAM_UF_ZEROPAGE (1 << 3)
120
121/* RAM can be migrated */
122#define RAM_MIGRATABLE (1 << 4)
123
a4de8552
JH
124/* RAM is a persistent kind memory */
125#define RAM_PMEM (1 << 5)
126
698feb5e
PX
127static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
128 IOMMUNotifierFlag flags,
cb1efcf4
PM
129 hwaddr start, hwaddr end,
130 int iommu_idx)
698feb5e
PX
131{
132 n->notify = fn;
133 n->notifier_flags = flags;
134 n->start = start;
135 n->end = end;
cb1efcf4 136 n->iommu_idx = iommu_idx;
698feb5e
PX
137}
138
093bc2cd
AK
139/*
140 * Memory region callbacks
141 */
142struct MemoryRegionOps {
143 /* Read from the memory region. @addr is relative to @mr; @size is
144 * in bytes. */
145 uint64_t (*read)(void *opaque,
a8170e5e 146 hwaddr addr,
093bc2cd
AK
147 unsigned size);
148 /* Write to the memory region. @addr is relative to @mr; @size is
149 * in bytes. */
150 void (*write)(void *opaque,
a8170e5e 151 hwaddr addr,
093bc2cd
AK
152 uint64_t data,
153 unsigned size);
154
cc05c43a
PM
155 MemTxResult (*read_with_attrs)(void *opaque,
156 hwaddr addr,
157 uint64_t *data,
158 unsigned size,
159 MemTxAttrs attrs);
160 MemTxResult (*write_with_attrs)(void *opaque,
161 hwaddr addr,
162 uint64_t data,
163 unsigned size,
164 MemTxAttrs attrs);
165
093bc2cd
AK
166 enum device_endian endianness;
167 /* Guest-visible constraints: */
168 struct {
169 /* If nonzero, specify bounds on access sizes beyond which a machine
170 * check is thrown.
171 */
172 unsigned min_access_size;
173 unsigned max_access_size;
174 /* If true, unaligned accesses are supported. Otherwise unaligned
175 * accesses throw machine checks.
176 */
177 bool unaligned;
897fa7cf
AK
178 /*
179 * If present, and returns #false, the transaction is not accepted
180 * by the device (and results in machine dependent behaviour such
181 * as a machine check exception).
182 */
a8170e5e 183 bool (*accepts)(void *opaque, hwaddr addr,
8372d383
PM
184 unsigned size, bool is_write,
185 MemTxAttrs attrs);
093bc2cd
AK
186 } valid;
187 /* Internal implementation constraints: */
188 struct {
189 /* If nonzero, specifies the minimum size implemented. Smaller sizes
190 * will be rounded upwards and a partial result will be returned.
191 */
192 unsigned min_access_size;
193 /* If nonzero, specifies the maximum size implemented. Larger sizes
194 * will be done as a series of accesses with smaller sizes.
195 */
196 unsigned max_access_size;
197 /* If true, unaligned accesses are supported. Otherwise all accesses
198 * are converted to (possibly multiple) naturally aligned accesses.
199 */
edc1ba7a 200 bool unaligned;
093bc2cd
AK
201 } impl;
202};
203
1b53ecd9
MA
204typedef struct MemoryRegionClass {
205 /* private */
206 ObjectClass parent_class;
207} MemoryRegionClass;
208
209
f1334de6
AK
210enum IOMMUMemoryRegionAttr {
211 IOMMU_ATTR_SPAPR_TCE_FD
212};
213
acbef3cc 214/*
2ce931d0
PM
215 * IOMMUMemoryRegionClass:
216 *
217 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
218 * and provide an implementation of at least the @translate method here
219 * to handle requests to the memory region. Other methods are optional.
220 *
221 * The IOMMU implementation must use the IOMMU notifier infrastructure
222 * to report whenever mappings are changed, by calling
223 * memory_region_notify_iommu() (or, if necessary, by calling
224 * memory_region_notify_one() for each registered notifier).
21f40209
PM
225 *
226 * Conceptually an IOMMU provides a mapping from input address
227 * to an output TLB entry. If the IOMMU is aware of memory transaction
228 * attributes and the output TLB entry depends on the transaction
229 * attributes, we represent this using IOMMU indexes. Each index
230 * selects a particular translation table that the IOMMU has:
ffb716f0 231 *
21f40209 232 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
ffb716f0 233 *
21f40209 234 * @translate takes an input address and an IOMMU index
ffb716f0 235 *
21f40209
PM
236 * and the mapping returned can only depend on the input address and the
237 * IOMMU index.
238 *
239 * Most IOMMUs don't care about the transaction attributes and support
240 * only a single IOMMU index. A more complex IOMMU might have one index
241 * for secure transactions and one for non-secure transactions.
2ce931d0 242 */
db1015e9 243struct IOMMUMemoryRegionClass {
ffb716f0 244 /* private: */
1b53ecd9 245 MemoryRegionClass parent_class;
30951157 246
ffb716f0
EH
247 /* public: */
248 /**
249 * @translate:
250 *
2ce931d0
PM
251 * Return a TLB entry that contains a given address.
252 *
253 * The IOMMUAccessFlags indicated via @flag are optional and may
254 * be specified as IOMMU_NONE to indicate that the caller needs
255 * the full translation information for both reads and writes. If
256 * the access flags are specified then the IOMMU implementation
257 * may use this as an optimization, to stop doing a page table
258 * walk as soon as it knows that the requested permissions are not
259 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
260 * full page table walk and report the permissions in the returned
261 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
262 * return different mappings for reads and writes.)
263 *
264 * The returned information remains valid while the caller is
265 * holding the big QEMU lock or is inside an RCU critical section;
266 * if the caller wishes to cache the mapping beyond that it must
267 * register an IOMMU notifier so it can invalidate its cached
268 * information when the IOMMU mapping changes.
269 *
270 * @iommu: the IOMMUMemoryRegion
ffb716f0 271 *
2ce931d0 272 * @hwaddr: address to be translated within the memory region
ffb716f0
EH
273 *
274 * @flag: requested access permission
275 *
2c91bcf2 276 * @iommu_idx: IOMMU index for the translation
bf55b7af 277 */
3df9d748 278 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
2c91bcf2 279 IOMMUAccessFlags flag, int iommu_idx);
ffb716f0
EH
280 /**
281 * @get_min_page_size:
282 *
283 * Returns minimum supported page size in bytes.
284 *
2ce931d0
PM
285 * If this method is not provided then the minimum is assumed to
286 * be TARGET_PAGE_SIZE.
287 *
288 * @iommu: the IOMMUMemoryRegion
289 */
3df9d748 290 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
ffb716f0
EH
291 /**
292 * @notify_flag_changed:
293 *
294 * Called when IOMMU Notifier flag changes (ie when the set of
2ce931d0
PM
295 * events which IOMMU users are requesting notification for changes).
296 * Optional method -- need not be provided if the IOMMU does not
297 * need to know exactly which events must be notified.
298 *
299 * @iommu: the IOMMUMemoryRegion
ffb716f0 300 *
2ce931d0 301 * @old_flags: events which previously needed to be notified
ffb716f0 302 *
2ce931d0 303 * @new_flags: events which now need to be notified
549d4005
EA
304 *
305 * Returns 0 on success, or a negative errno; in particular
306 * returns -EINVAL if the new flag bitmap is not supported by the
307 * IOMMU memory region. In case of failure, the error object
308 * must be created
2ce931d0 309 */
549d4005
EA
310 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
311 IOMMUNotifierFlag old_flags,
312 IOMMUNotifierFlag new_flags,
313 Error **errp);
ffb716f0
EH
314 /**
315 * @replay:
316 *
317 * Called to handle memory_region_iommu_replay().
2ce931d0
PM
318 *
319 * The default implementation of memory_region_iommu_replay() is to
320 * call the IOMMU translate method for every page in the address space
321 * with flag == IOMMU_NONE and then call the notifier if translate
322 * returns a valid mapping. If this method is implemented then it
323 * overrides the default behaviour, and must provide the full semantics
324 * of memory_region_iommu_replay(), by calling @notifier for every
325 * translation present in the IOMMU.
326 *
327 * Optional method -- an IOMMU only needs to provide this method
328 * if the default is inefficient or produces undesirable side effects.
329 *
330 * Note: this is not related to record-and-replay functionality.
331 */
3df9d748 332 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
f1334de6 333
ffb716f0
EH
334 /**
335 * @get_attr:
336 *
337 * Get IOMMU misc attributes. This is an optional method that
2ce931d0
PM
338 * can be used to allow users of the IOMMU to get implementation-specific
339 * information. The IOMMU implements this method to handle calls
340 * by IOMMU users to memory_region_iommu_get_attr() by filling in
341 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
342 * the IOMMU supports. If the method is unimplemented then
343 * memory_region_iommu_get_attr() will always return -EINVAL.
344 *
345 * @iommu: the IOMMUMemoryRegion
ffb716f0 346 *
2ce931d0 347 * @attr: attribute being queried
ffb716f0 348 *
2ce931d0
PM
349 * @data: memory to fill in with the attribute data
350 *
351 * Returns 0 on success, or a negative errno; in particular
352 * returns -EINVAL for unrecognized or unimplemented attribute types.
353 */
354 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
f1334de6 355 void *data);
21f40209 356
ffb716f0
EH
357 /**
358 * @attrs_to_index:
359 *
360 * Return the IOMMU index to use for a given set of transaction attributes.
21f40209
PM
361 *
362 * Optional method: if an IOMMU only supports a single IOMMU index then
363 * the default implementation of memory_region_iommu_attrs_to_index()
364 * will return 0.
365 *
366 * The indexes supported by an IOMMU must be contiguous, starting at 0.
367 *
368 * @iommu: the IOMMUMemoryRegion
369 * @attrs: memory transaction attributes
370 */
371 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
372
ffb716f0
EH
373 /**
374 * @num_indexes:
375 *
376 * Return the number of IOMMU indexes this IOMMU supports.
21f40209
PM
377 *
378 * Optional method: if this method is not provided, then
379 * memory_region_iommu_num_indexes() will return 1, indicating that
380 * only a single IOMMU index is supported.
381 *
382 * @iommu: the IOMMUMemoryRegion
383 */
384 int (*num_indexes)(IOMMUMemoryRegion *iommu);
db1015e9 385};
30951157 386
093bc2cd 387typedef struct CoalescedMemoryRange CoalescedMemoryRange;
3e9d69e7 388typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
093bc2cd 389
08226b44
PB
390/** MemoryRegion:
391 *
392 * A struct representing a memory region.
393 */
093bc2cd 394struct MemoryRegion {
b4fefef9 395 Object parent_obj;
a676854f 396
08226b44 397 /* private: */
a676854f
PB
398
399 /* The following fields should fit in a cache line */
400 bool romd_mode;
401 bool ram;
402 bool subpage;
403 bool readonly; /* For RAM regions */
c26763f8 404 bool nonvolatile;
a676854f
PB
405 bool rom_device;
406 bool flush_coalesced_mmio;
a676854f 407 uint8_t dirty_log_mask;
3df9d748 408 bool is_iommu;
58eaa217 409 RAMBlock *ram_block;
612263cf 410 Object *owner;
a676854f
PB
411
412 const MemoryRegionOps *ops;
093bc2cd 413 void *opaque;
feca4ac1 414 MemoryRegion *container;
08dafab4 415 Int128 size;
a8170e5e 416 hwaddr addr;
545e92e0 417 void (*destructor)(MemoryRegion *mr);
a2b257d6 418 uint64_t align;
14a3c10a 419 bool terminates;
21e00fa5 420 bool ram_device;
6bba19ba 421 bool enabled;
1660e72d 422 bool warning_printed; /* For reservations */
deb809ed 423 uint8_t vga_logging_count;
093bc2cd 424 MemoryRegion *alias;
a8170e5e 425 hwaddr alias_offset;
d33382da 426 int32_t priority;
b58deb34 427 QTAILQ_HEAD(, MemoryRegion) subregions;
093bc2cd 428 QTAILQ_ENTRY(MemoryRegion) subregions_link;
b58deb34 429 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
302fa283 430 const char *name;
3e9d69e7
AK
431 unsigned ioeventfd_nb;
432 MemoryRegionIoeventfd *ioeventfds;
3df9d748
AK
433};
434
435struct IOMMUMemoryRegion {
436 MemoryRegion parent_obj;
437
cdb30812 438 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
5bf3d319 439 IOMMUNotifierFlag iommu_notify_flags;
093bc2cd
AK
440};
441
512fa408
PX
442#define IOMMU_NOTIFIER_FOREACH(n, mr) \
443 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
444
c2fc83e8 445/**
301302f0 446 * struct MemoryListener: callbacks structure for updates to the physical memory map
c2fc83e8
PB
447 *
448 * Allows a component to adjust to changes in the guest-visible memory map.
449 * Use with memory_listener_register() and memory_listener_unregister().
450 */
451struct MemoryListener {
5d248213
PB
452 /**
453 * @begin:
454 *
455 * Called at the beginning of an address space update transaction.
456 * Followed by calls to #MemoryListener.region_add(),
457 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
458 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
459 * increasing address order.
460 *
461 * @listener: The #MemoryListener.
462 */
c2fc83e8 463 void (*begin)(MemoryListener *listener);
5d248213
PB
464
465 /**
466 * @commit:
467 *
468 * Called at the end of an address space update transaction,
469 * after the last call to #MemoryListener.region_add(),
470 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
471 * #MemoryListener.log_start() and #MemoryListener.log_stop().
472 *
473 * @listener: The #MemoryListener.
474 */
c2fc83e8 475 void (*commit)(MemoryListener *listener);
5d248213
PB
476
477 /**
478 * @region_add:
479 *
480 * Called during an address space update transaction,
481 * for a section of the address space that is new in this address space
482 * space since the last transaction.
483 *
484 * @listener: The #MemoryListener.
485 * @section: The new #MemoryRegionSection.
486 */
c2fc83e8 487 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
5d248213
PB
488
489 /**
490 * @region_del:
491 *
492 * Called during an address space update transaction,
493 * for a section of the address space that has disappeared in the address
494 * space since the last transaction.
495 *
496 * @listener: The #MemoryListener.
497 * @section: The old #MemoryRegionSection.
498 */
c2fc83e8 499 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
5d248213
PB
500
501 /**
502 * @region_nop:
503 *
504 * Called during an address space update transaction,
505 * for a section of the address space that is in the same place in the address
506 * space as in the last transaction.
507 *
508 * @listener: The #MemoryListener.
509 * @section: The #MemoryRegionSection.
510 */
c2fc83e8 511 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
5d248213
PB
512
513 /**
514 * @log_start:
515 *
516 * Called during an address space update transaction, after
517 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
518 * #MemoryListener.region_nop(), if dirty memory logging clients have
519 * become active since the last transaction.
520 *
521 * @listener: The #MemoryListener.
522 * @section: The #MemoryRegionSection.
523 * @old: A bitmap of dirty memory logging clients that were active in
524 * the previous transaction.
525 * @new: A bitmap of dirty memory logging clients that are active in
526 * the current transaction.
527 */
b2dfd71c
PB
528 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
529 int old, int new);
5d248213
PB
530
531 /**
532 * @log_stop:
533 *
534 * Called during an address space update transaction, after
535 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
536 * #MemoryListener.region_nop() and possibly after
537 * #MemoryListener.log_start(), if dirty memory logging clients have
538 * become inactive since the last transaction.
539 *
540 * @listener: The #MemoryListener.
541 * @section: The #MemoryRegionSection.
542 * @old: A bitmap of dirty memory logging clients that were active in
543 * the previous transaction.
544 * @new: A bitmap of dirty memory logging clients that are active in
545 * the current transaction.
546 */
b2dfd71c
PB
547 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
548 int old, int new);
5d248213
PB
549
550 /**
551 * @log_sync:
552 *
553 * Called by memory_region_snapshot_and_clear_dirty() and
554 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
555 * copy of the dirty memory bitmap for a #MemoryRegionSection.
556 *
557 * @listener: The #MemoryListener.
558 * @section: The #MemoryRegionSection.
559 */
c2fc83e8 560 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
5d248213
PB
561
562 /**
563 * @log_clear:
564 *
565 * Called before reading the dirty memory bitmap for a
566 * #MemoryRegionSection.
567 *
568 * @listener: The #MemoryListener.
569 * @section: The #MemoryRegionSection.
570 */
077874e0 571 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
5d248213
PB
572
573 /**
574 * @log_global_start:
575 *
576 * Called by memory_global_dirty_log_start(), which
577 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
578 * the address space. #MemoryListener.log_global_start() is also
579 * called when a #MemoryListener is added, if global dirty logging is
580 * active at that time.
581 *
582 * @listener: The #MemoryListener.
583 */
c2fc83e8 584 void (*log_global_start)(MemoryListener *listener);
5d248213
PB
585
586 /**
587 * @log_global_stop:
588 *
589 * Called by memory_global_dirty_log_stop(), which
590 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
591 * the address space.
592 *
593 * @listener: The #MemoryListener.
594 */
c2fc83e8 595 void (*log_global_stop)(MemoryListener *listener);
5d248213
PB
596
597 /**
598 * @log_global_after_sync:
599 *
600 * Called after reading the dirty memory bitmap
601 * for any #MemoryRegionSection.
602 *
603 * @listener: The #MemoryListener.
604 */
9458a9a1 605 void (*log_global_after_sync)(MemoryListener *listener);
5d248213
PB
606
607 /**
608 * @eventfd_add:
609 *
610 * Called during an address space update transaction,
611 * for a section of the address space that has had a new ioeventfd
612 * registration since the last transaction.
613 *
614 * @listener: The #MemoryListener.
615 * @section: The new #MemoryRegionSection.
616 * @match_data: The @match_data parameter for the new ioeventfd.
617 * @data: The @data parameter for the new ioeventfd.
618 * @e: The #EventNotifier parameter for the new ioeventfd.
619 */
c2fc83e8
PB
620 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
621 bool match_data, uint64_t data, EventNotifier *e);
5d248213
PB
622
623 /**
624 * @eventfd_del:
625 *
626 * Called during an address space update transaction,
627 * for a section of the address space that has dropped an ioeventfd
628 * registration since the last transaction.
629 *
630 * @listener: The #MemoryListener.
631 * @section: The new #MemoryRegionSection.
632 * @match_data: The @match_data parameter for the dropped ioeventfd.
633 * @data: The @data parameter for the dropped ioeventfd.
634 * @e: The #EventNotifier parameter for the dropped ioeventfd.
635 */
c2fc83e8
PB
636 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
637 bool match_data, uint64_t data, EventNotifier *e);
5d248213
PB
638
639 /**
640 * @coalesced_io_add:
641 *
642 * Called during an address space update transaction,
643 * for a section of the address space that has had a new coalesced
644 * MMIO range registration since the last transaction.
645 *
646 * @listener: The #MemoryListener.
647 * @section: The new #MemoryRegionSection.
648 * @addr: The starting address for the coalesced MMIO range.
649 * @len: The length of the coalesced MMIO range.
650 */
e6d34aee 651 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
c2fc83e8 652 hwaddr addr, hwaddr len);
5d248213
PB
653
654 /**
655 * @coalesced_io_del:
656 *
657 * Called during an address space update transaction,
658 * for a section of the address space that has dropped a coalesced
659 * MMIO range since the last transaction.
660 *
661 * @listener: The #MemoryListener.
662 * @section: The new #MemoryRegionSection.
663 * @addr: The starting address for the coalesced MMIO range.
664 * @len: The length of the coalesced MMIO range.
665 */
e6d34aee 666 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
c2fc83e8 667 hwaddr addr, hwaddr len);
5d248213
PB
668 /**
669 * @priority:
670 *
671 * Govern the order in which memory listeners are invoked. Lower priorities
672 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
673 * or "stop" callbacks.
674 */
c2fc83e8 675 unsigned priority;
5d248213
PB
676
677 /* private: */
d45fa784 678 AddressSpace *address_space;
c2fc83e8 679 QTAILQ_ENTRY(MemoryListener) link;
9a54635d 680 QTAILQ_ENTRY(MemoryListener) link_as;
c2fc83e8
PB
681};
682
9ad2bbc1 683/**
301302f0 684 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
9ad2bbc1
AK
685 */
686struct AddressSpace {
08226b44 687 /* private: */
374f2981 688 struct rcu_head rcu;
7dca8043 689 char *name;
9ad2bbc1 690 MemoryRegion *root;
374f2981
PB
691
692 /* Accessed via RCU. */
9ad2bbc1 693 struct FlatView *current_map;
374f2981 694
9ad2bbc1
AK
695 int ioeventfd_nb;
696 struct MemoryRegionIoeventfd *ioeventfds;
eae3eb3e 697 QTAILQ_HEAD(, MemoryListener) listeners;
0d673e36 698 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
9ad2bbc1
AK
699};
700
785a507e
PB
701typedef struct AddressSpaceDispatch AddressSpaceDispatch;
702typedef struct FlatRange FlatRange;
703
704/* Flattened global view of current active memory hierarchy. Kept in sorted
705 * order.
706 */
707struct FlatView {
708 struct rcu_head rcu;
709 unsigned ref;
710 FlatRange *ranges;
711 unsigned nr;
712 unsigned nr_allocated;
713 struct AddressSpaceDispatch *dispatch;
714 MemoryRegion *root;
715};
716
717static inline FlatView *address_space_to_flatview(AddressSpace *as)
718{
d73415a3 719 return qatomic_rcu_read(&as->current_map);
785a507e
PB
720}
721
16620684 722
e2177955 723/**
301302f0 724 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
e2177955
AK
725 *
726 * @mr: the region, or %NULL if empty
57914ecb 727 * @fv: the flat view of the address space the region is mapped in
e2177955
AK
728 * @offset_within_region: the beginning of the section, relative to @mr's start
729 * @size: the size of the section; will not exceed @mr's boundaries
730 * @offset_within_address_space: the address of the first byte of the section
731 * relative to the region's address space
7a8499e8 732 * @readonly: writes to this section are ignored
c26763f8 733 * @nonvolatile: this section is non-volatile
e2177955
AK
734 */
735struct MemoryRegionSection {
44f85d32 736 Int128 size;
e2177955 737 MemoryRegion *mr;
16620684 738 FlatView *fv;
a8170e5e 739 hwaddr offset_within_region;
a8170e5e 740 hwaddr offset_within_address_space;
7a8499e8 741 bool readonly;
c26763f8 742 bool nonvolatile;
e2177955
AK
743};
744
9366cf02
DDAG
745static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
746 MemoryRegionSection *b)
747{
748 return a->mr == b->mr &&
749 a->fv == b->fv &&
750 a->offset_within_region == b->offset_within_region &&
751 a->offset_within_address_space == b->offset_within_address_space &&
752 int128_eq(a->size, b->size) &&
753 a->readonly == b->readonly &&
754 a->nonvolatile == b->nonvolatile;
755}
756
093bc2cd
AK
757/**
758 * memory_region_init: Initialize a memory region
759 *
69ddaf66 760 * The region typically acts as a container for other memory regions. Use
093bc2cd
AK
761 * memory_region_add_subregion() to add subregions.
762 *
763 * @mr: the #MemoryRegion to be initialized
2c9b15ca 764 * @owner: the object that tracks the region's reference count
093bc2cd
AK
765 * @name: used for debugging; not visible to the user or ABI
766 * @size: size of the region; any subregions beyond this size will be clipped
767 */
768void memory_region_init(MemoryRegion *mr,
2c9b15ca 769 struct Object *owner,
093bc2cd
AK
770 const char *name,
771 uint64_t size);
46637be2
PB
772
773/**
774 * memory_region_ref: Add 1 to a memory region's reference count
775 *
776 * Whenever memory regions are accessed outside the BQL, they need to be
777 * preserved against hot-unplug. MemoryRegions actually do not have their
778 * own reference count; they piggyback on a QOM object, their "owner".
779 * This function adds a reference to the owner.
780 *
781 * All MemoryRegions must have an owner if they can disappear, even if the
782 * device they belong to operates exclusively under the BQL. This is because
783 * the region could be returned at any time by memory_region_find, and this
784 * is usually under guest control.
785 *
786 * @mr: the #MemoryRegion
787 */
788void memory_region_ref(MemoryRegion *mr);
789
790/**
791 * memory_region_unref: Remove 1 to a memory region's reference count
792 *
793 * Whenever memory regions are accessed outside the BQL, they need to be
794 * preserved against hot-unplug. MemoryRegions actually do not have their
795 * own reference count; they piggyback on a QOM object, their "owner".
796 * This function removes a reference to the owner and possibly destroys it.
797 *
798 * @mr: the #MemoryRegion
799 */
800void memory_region_unref(MemoryRegion *mr);
801
093bc2cd
AK
802/**
803 * memory_region_init_io: Initialize an I/O memory region.
804 *
69ddaf66 805 * Accesses into the region will cause the callbacks in @ops to be called.
093bc2cd
AK
806 * if @size is nonzero, subregions will be clipped to @size.
807 *
808 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 809 * @owner: the object that tracks the region's reference count
093bc2cd
AK
810 * @ops: a structure containing read and write callbacks to be used when
811 * I/O is performed on the region.
b6af0975 812 * @opaque: passed to the read and write callbacks of the @ops structure.
093bc2cd
AK
813 * @name: used for debugging; not visible to the user or ABI
814 * @size: size of the region.
815 */
816void memory_region_init_io(MemoryRegion *mr,
2c9b15ca 817 struct Object *owner,
093bc2cd
AK
818 const MemoryRegionOps *ops,
819 void *opaque,
820 const char *name,
821 uint64_t size);
822
823/**
1cfe48c1
PM
824 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
825 * into the region will modify memory
826 * directly.
093bc2cd
AK
827 *
828 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 829 * @owner: the object that tracks the region's reference count
e8f5fe2d
DDAG
830 * @name: Region name, becomes part of RAMBlock name used in migration stream
831 * must be unique within any device
093bc2cd 832 * @size: size of the region.
49946538 833 * @errp: pointer to Error*, to store an error if it happens.
a5c0234b
PM
834 *
835 * Note that this function does not do anything to cause the data in the
836 * RAM memory region to be migrated; that is the responsibility of the caller.
093bc2cd 837 */
1cfe48c1
PM
838void memory_region_init_ram_nomigrate(MemoryRegion *mr,
839 struct Object *owner,
840 const char *name,
841 uint64_t size,
842 Error **errp);
093bc2cd 843
06329cce
MA
844/**
845 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
846 * Accesses into the region will
847 * modify memory directly.
848 *
849 * @mr: the #MemoryRegion to be initialized.
850 * @owner: the object that tracks the region's reference count
851 * @name: Region name, becomes part of RAMBlock name used in migration stream
852 * must be unique within any device
853 * @size: size of the region.
854 * @share: allow remapping RAM to different addresses
855 * @errp: pointer to Error*, to store an error if it happens.
856 *
857 * Note that this function is similar to memory_region_init_ram_nomigrate.
858 * The only difference is part of the RAM region can be remapped.
859 */
860void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
861 struct Object *owner,
862 const char *name,
863 uint64_t size,
864 bool share,
865 Error **errp);
866
60786ef3
MT
867/**
868 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
869 * RAM. Accesses into the region will
870 * modify memory directly. Only an initial
871 * portion of this RAM is actually used.
872 * The used size can change across reboots.
873 *
874 * @mr: the #MemoryRegion to be initialized.
875 * @owner: the object that tracks the region's reference count
e8f5fe2d
DDAG
876 * @name: Region name, becomes part of RAMBlock name used in migration stream
877 * must be unique within any device
60786ef3
MT
878 * @size: used size of the region.
879 * @max_size: max size of the region.
880 * @resized: callback to notify owner about used size change.
881 * @errp: pointer to Error*, to store an error if it happens.
a5c0234b
PM
882 *
883 * Note that this function does not do anything to cause the data in the
884 * RAM memory region to be migrated; that is the responsibility of the caller.
60786ef3
MT
885 */
886void memory_region_init_resizeable_ram(MemoryRegion *mr,
887 struct Object *owner,
888 const char *name,
889 uint64_t size,
890 uint64_t max_size,
891 void (*resized)(const char*,
892 uint64_t length,
893 void *host),
894 Error **errp);
d5dbde46 895#ifdef CONFIG_POSIX
cbfc0171 896
0b183fc8
PB
897/**
898 * memory_region_init_ram_from_file: Initialize RAM memory region with a
899 * mmap-ed backend.
900 *
901 * @mr: the #MemoryRegion to be initialized.
902 * @owner: the object that tracks the region's reference count
e8f5fe2d
DDAG
903 * @name: Region name, becomes part of RAMBlock name used in migration stream
904 * must be unique within any device
0b183fc8 905 * @size: size of the region.
98376843
HZ
906 * @align: alignment of the region base address; if 0, the default alignment
907 * (getpagesize()) will be used.
cbfc0171
JH
908 * @ram_flags: Memory region features:
909 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
a4de8552 910 * - RAM_PMEM: the memory is persistent memory
cbfc0171 911 * Other bits are ignored now.
0b183fc8 912 * @path: the path in which to allocate the RAM.
7f56e740 913 * @errp: pointer to Error*, to store an error if it happens.
a5c0234b
PM
914 *
915 * Note that this function does not do anything to cause the data in the
916 * RAM memory region to be migrated; that is the responsibility of the caller.
0b183fc8
PB
917 */
918void memory_region_init_ram_from_file(MemoryRegion *mr,
919 struct Object *owner,
920 const char *name,
921 uint64_t size,
98376843 922 uint64_t align,
cbfc0171 923 uint32_t ram_flags,
7f56e740
PB
924 const char *path,
925 Error **errp);
fea617c5
MAL
926
927/**
928 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
929 * mmap-ed backend.
930 *
931 * @mr: the #MemoryRegion to be initialized.
932 * @owner: the object that tracks the region's reference count
933 * @name: the name of the region.
934 * @size: size of the region.
935 * @share: %true if memory must be mmaped with the MAP_SHARED flag
936 * @fd: the fd to mmap.
937 * @errp: pointer to Error*, to store an error if it happens.
a5c0234b
PM
938 *
939 * Note that this function does not do anything to cause the data in the
940 * RAM memory region to be migrated; that is the responsibility of the caller.
fea617c5
MAL
941 */
942void memory_region_init_ram_from_fd(MemoryRegion *mr,
943 struct Object *owner,
944 const char *name,
945 uint64_t size,
946 bool share,
947 int fd,
948 Error **errp);
0b183fc8
PB
949#endif
950
093bc2cd 951/**
1a7e8cae
BZ
952 * memory_region_init_ram_ptr: Initialize RAM memory region from a
953 * user-provided pointer. Accesses into the
954 * region will modify memory directly.
093bc2cd
AK
955 *
956 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 957 * @owner: the object that tracks the region's reference count
e8f5fe2d
DDAG
958 * @name: Region name, becomes part of RAMBlock name used in migration stream
959 * must be unique within any device
093bc2cd
AK
960 * @size: size of the region.
961 * @ptr: memory to be mapped; must contain at least @size bytes.
a5c0234b
PM
962 *
963 * Note that this function does not do anything to cause the data in the
964 * RAM memory region to be migrated; that is the responsibility of the caller.
093bc2cd
AK
965 */
966void memory_region_init_ram_ptr(MemoryRegion *mr,
2c9b15ca 967 struct Object *owner,
093bc2cd
AK
968 const char *name,
969 uint64_t size,
970 void *ptr);
971
21e00fa5
AW
972/**
973 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
974 * a user-provided pointer.
975 *
976 * A RAM device represents a mapping to a physical device, such as to a PCI
977 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
978 * into the VM address space and access to the region will modify memory
979 * directly. However, the memory region should not be included in a memory
980 * dump (device may not be enabled/mapped at the time of the dump), and
981 * operations incompatible with manipulating MMIO should be avoided. Replaces
982 * skip_dump flag.
983 *
984 * @mr: the #MemoryRegion to be initialized.
985 * @owner: the object that tracks the region's reference count
986 * @name: the name of the region.
987 * @size: size of the region.
988 * @ptr: memory to be mapped; must contain at least @size bytes.
a5c0234b
PM
989 *
990 * Note that this function does not do anything to cause the data in the
991 * RAM memory region to be migrated; that is the responsibility of the caller.
992 * (For RAM device memory regions, migrating the contents rarely makes sense.)
21e00fa5
AW
993 */
994void memory_region_init_ram_device_ptr(MemoryRegion *mr,
995 struct Object *owner,
996 const char *name,
997 uint64_t size,
998 void *ptr);
999
093bc2cd
AK
1000/**
1001 * memory_region_init_alias: Initialize a memory region that aliases all or a
1002 * part of another memory region.
1003 *
1004 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 1005 * @owner: the object that tracks the region's reference count
093bc2cd
AK
1006 * @name: used for debugging; not visible to the user or ABI
1007 * @orig: the region to be referenced; @mr will be equivalent to
1008 * @orig between @offset and @offset + @size - 1.
1009 * @offset: start of the section in @orig to be referenced.
1010 * @size: size of the region.
1011 */
1012void memory_region_init_alias(MemoryRegion *mr,
2c9b15ca 1013 struct Object *owner,
093bc2cd
AK
1014 const char *name,
1015 MemoryRegion *orig,
a8170e5e 1016 hwaddr offset,
093bc2cd 1017 uint64_t size);
d0a9b5bc 1018
a1777f7f 1019/**
b59821a9 1020 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
a1777f7f 1021 *
b59821a9 1022 * This has the same effect as calling memory_region_init_ram_nomigrate()
a1777f7f
PM
1023 * and then marking the resulting region read-only with
1024 * memory_region_set_readonly().
1025 *
b59821a9
PM
1026 * Note that this function does not do anything to cause the data in the
1027 * RAM side of the memory region to be migrated; that is the responsibility
1028 * of the caller.
1029 *
a1777f7f
PM
1030 * @mr: the #MemoryRegion to be initialized.
1031 * @owner: the object that tracks the region's reference count
e8f5fe2d
DDAG
1032 * @name: Region name, becomes part of RAMBlock name used in migration stream
1033 * must be unique within any device
a1777f7f
PM
1034 * @size: size of the region.
1035 * @errp: pointer to Error*, to store an error if it happens.
1036 */
b59821a9
PM
1037void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1038 struct Object *owner,
1039 const char *name,
1040 uint64_t size,
1041 Error **errp);
a1777f7f 1042
d0a9b5bc 1043/**
b59821a9
PM
1044 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1045 * Writes are handled via callbacks.
1046 *
1047 * Note that this function does not do anything to cause the data in the
1048 * RAM side of the memory region to be migrated; that is the responsibility
1049 * of the caller.
d0a9b5bc
AK
1050 *
1051 * @mr: the #MemoryRegion to be initialized.
2c9b15ca 1052 * @owner: the object that tracks the region's reference count
39e0b03d 1053 * @ops: callbacks for write access handling (must not be NULL).
57914ecb 1054 * @opaque: passed to the read and write callbacks of the @ops structure.
e8f5fe2d
DDAG
1055 * @name: Region name, becomes part of RAMBlock name used in migration stream
1056 * must be unique within any device
d0a9b5bc 1057 * @size: size of the region.
33e0eb52 1058 * @errp: pointer to Error*, to store an error if it happens.
d0a9b5bc 1059 */
b59821a9
PM
1060void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1061 struct Object *owner,
1062 const MemoryRegionOps *ops,
1063 void *opaque,
1064 const char *name,
1065 uint64_t size,
1066 Error **errp);
d0a9b5bc 1067
30951157 1068/**
1221a474
AK
1069 * memory_region_init_iommu: Initialize a memory region of a custom type
1070 * that translates addresses
30951157
AK
1071 *
1072 * An IOMMU region translates addresses and forwards accesses to a target
1073 * memory region.
1074 *
2ce931d0
PM
1075 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1076 * @_iommu_mr should be a pointer to enough memory for an instance of
1077 * that subclass, @instance_size is the size of that subclass, and
1078 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1079 * instance of the subclass, and its methods will then be called to handle
1080 * accesses to the memory region. See the documentation of
1081 * #IOMMUMemoryRegionClass for further details.
1082 *
1221a474
AK
1083 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1084 * @instance_size: the IOMMUMemoryRegion subclass instance size
57914ecb 1085 * @mrtypename: the type name of the #IOMMUMemoryRegion
2c9b15ca 1086 * @owner: the object that tracks the region's reference count
30951157
AK
1087 * @name: used for debugging; not visible to the user or ABI
1088 * @size: size of the region.
1089 */
1221a474
AK
1090void memory_region_init_iommu(void *_iommu_mr,
1091 size_t instance_size,
1092 const char *mrtypename,
1093 Object *owner,
30951157
AK
1094 const char *name,
1095 uint64_t size);
1096
b08199c6
PM
1097/**
1098 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1099 * region will modify memory directly.
1100 *
1101 * @mr: the #MemoryRegion to be initialized
1102 * @owner: the object that tracks the region's reference count (must be
1103 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1104 * @name: name of the memory region
1105 * @size: size of the region in bytes
1106 * @errp: pointer to Error*, to store an error if it happens.
1107 *
1108 * This function allocates RAM for a board model or device, and
1109 * arranges for it to be migrated (by calling vmstate_register_ram()
1110 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1111 * @owner is NULL).
1112 *
1113 * TODO: Currently we restrict @owner to being either NULL (for
1114 * global RAM regions with no owner) or devices, so that we can
1115 * give the RAM block a unique name for migration purposes.
1116 * We should lift this restriction and allow arbitrary Objects.
1117 * If you pass a non-NULL non-device @owner then we will assert.
1118 */
1119void memory_region_init_ram(MemoryRegion *mr,
1120 struct Object *owner,
1121 const char *name,
1122 uint64_t size,
1123 Error **errp);
1124
1125/**
1126 * memory_region_init_rom: Initialize a ROM memory region.
1127 *
1128 * This has the same effect as calling memory_region_init_ram()
1129 * and then marking the resulting region read-only with
1130 * memory_region_set_readonly(). This includes arranging for the
1131 * contents to be migrated.
1132 *
1133 * TODO: Currently we restrict @owner to being either NULL (for
1134 * global RAM regions with no owner) or devices, so that we can
1135 * give the RAM block a unique name for migration purposes.
1136 * We should lift this restriction and allow arbitrary Objects.
1137 * If you pass a non-NULL non-device @owner then we will assert.
1138 *
1139 * @mr: the #MemoryRegion to be initialized.
1140 * @owner: the object that tracks the region's reference count
1141 * @name: Region name, becomes part of RAMBlock name used in migration stream
1142 * must be unique within any device
1143 * @size: size of the region.
1144 * @errp: pointer to Error*, to store an error if it happens.
1145 */
1146void memory_region_init_rom(MemoryRegion *mr,
1147 struct Object *owner,
1148 const char *name,
1149 uint64_t size,
1150 Error **errp);
1151
1152/**
1153 * memory_region_init_rom_device: Initialize a ROM memory region.
1154 * Writes are handled via callbacks.
1155 *
1156 * This function initializes a memory region backed by RAM for reads
1157 * and callbacks for writes, and arranges for the RAM backing to
1158 * be migrated (by calling vmstate_register_ram()
1159 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1160 * @owner is NULL).
1161 *
1162 * TODO: Currently we restrict @owner to being either NULL (for
1163 * global RAM regions with no owner) or devices, so that we can
1164 * give the RAM block a unique name for migration purposes.
1165 * We should lift this restriction and allow arbitrary Objects.
1166 * If you pass a non-NULL non-device @owner then we will assert.
1167 *
1168 * @mr: the #MemoryRegion to be initialized.
1169 * @owner: the object that tracks the region's reference count
1170 * @ops: callbacks for write access handling (must not be NULL).
5d248213 1171 * @opaque: passed to the read and write callbacks of the @ops structure.
b08199c6
PM
1172 * @name: Region name, becomes part of RAMBlock name used in migration stream
1173 * must be unique within any device
1174 * @size: size of the region.
1175 * @errp: pointer to Error*, to store an error if it happens.
1176 */
1177void memory_region_init_rom_device(MemoryRegion *mr,
1178 struct Object *owner,
1179 const MemoryRegionOps *ops,
1180 void *opaque,
1181 const char *name,
1182 uint64_t size,
1183 Error **errp);
1184
1185
803c0816
PB
1186/**
1187 * memory_region_owner: get a memory region's owner.
1188 *
1189 * @mr: the memory region being queried.
1190 */
1191struct Object *memory_region_owner(MemoryRegion *mr);
1192
093bc2cd
AK
1193/**
1194 * memory_region_size: get a memory region's size.
1195 *
1196 * @mr: the memory region being queried.
1197 */
1198uint64_t memory_region_size(MemoryRegion *mr);
1199
8ea9252a
AK
1200/**
1201 * memory_region_is_ram: check whether a memory region is random access
1202 *
847b31f0 1203 * Returns %true if a memory region is random access.
8ea9252a
AK
1204 *
1205 * @mr: the memory region being queried
1206 */
1619d1fe
PB
1207static inline bool memory_region_is_ram(MemoryRegion *mr)
1208{
1209 return mr->ram;
1210}
8ea9252a 1211
e4dc3f59 1212/**
21e00fa5 1213 * memory_region_is_ram_device: check whether a memory region is a ram device
e4dc3f59 1214 *
847b31f0 1215 * Returns %true if a memory region is a device backed ram region
e4dc3f59
ND
1216 *
1217 * @mr: the memory region being queried
1218 */
21e00fa5 1219bool memory_region_is_ram_device(MemoryRegion *mr);
e4dc3f59 1220
fd062573 1221/**
5f9a5ea1 1222 * memory_region_is_romd: check whether a memory region is in ROMD mode
fd062573 1223 *
5f9a5ea1 1224 * Returns %true if a memory region is a ROM device and currently set to allow
fd062573
BS
1225 * direct reads.
1226 *
1227 * @mr: the memory region being queried
1228 */
1229static inline bool memory_region_is_romd(MemoryRegion *mr)
1230{
5f9a5ea1 1231 return mr->rom_device && mr->romd_mode;
fd062573
BS
1232}
1233
30951157 1234/**
3df9d748 1235 * memory_region_get_iommu: check whether a memory region is an iommu
30951157 1236 *
3df9d748
AK
1237 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1238 * otherwise NULL.
30951157
AK
1239 *
1240 * @mr: the memory region being queried
1241 */
3df9d748 1242static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1619d1fe 1243{
12d37882 1244 if (mr->alias) {
3df9d748
AK
1245 return memory_region_get_iommu(mr->alias);
1246 }
1247 if (mr->is_iommu) {
1248 return (IOMMUMemoryRegion *) mr;
12d37882 1249 }
3df9d748 1250 return NULL;
1619d1fe
PB
1251}
1252
1221a474
AK
1253/**
1254 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1255 * if an iommu or NULL if not
1256 *
57914ecb
JZ
1257 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1258 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1221a474 1259 *
5d248213 1260 * @iommu_mr: the memory region being queried
1221a474
AK
1261 */
1262static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1263 IOMMUMemoryRegion *iommu_mr)
1264{
1265 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1266}
1267
3df9d748 1268#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
30951157 1269
f682e9c2
AK
1270/**
1271 * memory_region_iommu_get_min_page_size: get minimum supported page size
1272 * for an iommu
1273 *
1274 * Returns minimum supported page size for an iommu.
1275 *
3df9d748 1276 * @iommu_mr: the memory region being queried
f682e9c2 1277 */
3df9d748 1278uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
f682e9c2 1279
06866575
DG
1280/**
1281 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1282 *
cdb30812
PX
1283 * The notification type will be decided by entry.perm bits:
1284 *
1285 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1286 * - For MAP (newly added entry) notifies: set entry.perm to the
1287 * permission of the page (which is definitely !IOMMU_NONE).
1288 *
1289 * Note: for any IOMMU implementation, an in-place mapping change
1290 * should be notified with an UNMAP followed by a MAP.
1291 *
3df9d748 1292 * @iommu_mr: the memory region that was changed
cb1efcf4 1293 * @iommu_idx: the IOMMU index for the translation table which has changed
06866575
DG
1294 * @entry: the new entry in the IOMMU translation table. The entry
1295 * replaces all old entries for the same virtual I/O address range.
1296 * Deleted entries have .@perm == 0.
1297 */
3df9d748 1298void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
cb1efcf4 1299 int iommu_idx,
06866575
DG
1300 IOMMUTLBEntry entry);
1301
bd2bfa4c
PX
1302/**
1303 * memory_region_notify_one: notify a change in an IOMMU translation
1304 * entry to a single notifier
1305 *
1306 * This works just like memory_region_notify_iommu(), but it only
1307 * notifies a specific notifier, not all of them.
1308 *
1309 * @notifier: the notifier to be notified
1310 * @entry: the new entry in the IOMMU translation table. The entry
1311 * replaces all old entries for the same virtual I/O address range.
1312 * Deleted entries have .@perm == 0.
1313 */
1314void memory_region_notify_one(IOMMUNotifier *notifier,
1315 IOMMUTLBEntry *entry);
1316
06866575
DG
1317/**
1318 * memory_region_register_iommu_notifier: register a notifier for changes to
1319 * IOMMU translation entries.
1320 *
549d4005
EA
1321 * Returns 0 on success, or a negative errno otherwise. In particular,
1322 * -EINVAL indicates that at least one of the attributes of the notifier
1323 * is not supported (flag/range) by the IOMMU memory region. In case of error
1324 * the error object must be created.
1325 *
06866575 1326 * @mr: the memory region to observe
cdb30812
PX
1327 * @n: the IOMMUNotifier to be added; the notify callback receives a
1328 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1329 * ceases to be valid on exit from the notifier.
5d248213 1330 * @errp: pointer to Error*, to store an error if it happens.
06866575 1331 */
549d4005
EA
1332int memory_region_register_iommu_notifier(MemoryRegion *mr,
1333 IOMMUNotifier *n, Error **errp);
06866575 1334
a788f227
DG
1335/**
1336 * memory_region_iommu_replay: replay existing IOMMU translations to
f682e9c2
AK
1337 * a notifier with the minimum page granularity returned by
1338 * mr->iommu_ops->get_page_size().
a788f227 1339 *
2ce931d0
PM
1340 * Note: this is not related to record-and-replay functionality.
1341 *
3df9d748 1342 * @iommu_mr: the memory region to observe
a788f227 1343 * @n: the notifier to which to replay iommu mappings
a788f227 1344 */
3df9d748 1345void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
a788f227 1346
06866575
DG
1347/**
1348 * memory_region_unregister_iommu_notifier: unregister a notifier for
1349 * changes to IOMMU translation entries.
1350 *
d22d8956
AK
1351 * @mr: the memory region which was observed and for which notity_stopped()
1352 * needs to be called
06866575
DG
1353 * @n: the notifier to be removed.
1354 */
cdb30812
PX
1355void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1356 IOMMUNotifier *n);
06866575 1357
f1334de6
AK
1358/**
1359 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1360 * defined on the IOMMU.
1361 *
2ce931d0
PM
1362 * Returns 0 on success, or a negative errno otherwise. In particular,
1363 * -EINVAL indicates that the IOMMU does not support the requested
1364 * attribute.
f1334de6
AK
1365 *
1366 * @iommu_mr: the memory region
1367 * @attr: the requested attribute
1368 * @data: a pointer to the requested attribute data
1369 */
1370int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1371 enum IOMMUMemoryRegionAttr attr,
1372 void *data);
1373
21f40209
PM
1374/**
1375 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1376 * use for translations with the given memory transaction attributes.
1377 *
1378 * @iommu_mr: the memory region
1379 * @attrs: the memory transaction attributes
1380 */
1381int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1382 MemTxAttrs attrs);
1383
1384/**
1385 * memory_region_iommu_num_indexes: return the total number of IOMMU
1386 * indexes that this IOMMU supports.
1387 *
1388 * @iommu_mr: the memory region
1389 */
1390int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1391
8991c79b
AK
1392/**
1393 * memory_region_name: get a memory region's name
1394 *
1395 * Returns the string that was used to initialize the memory region.
1396 *
1397 * @mr: the memory region being queried
1398 */
5d546d4b 1399const char *memory_region_name(const MemoryRegion *mr);
8991c79b 1400
55043ba3
AK
1401/**
1402 * memory_region_is_logging: return whether a memory region is logging writes
1403 *
2d1a35be 1404 * Returns %true if the memory region is logging writes for the given client
55043ba3
AK
1405 *
1406 * @mr: the memory region being queried
2d1a35be 1407 * @client: the client being queried
55043ba3 1408 */
2d1a35be
PB
1409bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1410
1411/**
1412 * memory_region_get_dirty_log_mask: return the clients for which a
1413 * memory region is logging writes.
1414 *
677e7805
PB
1415 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1416 * are the bit indices.
2d1a35be
PB
1417 *
1418 * @mr: the memory region being queried
1419 */
1420uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
55043ba3 1421
ce7923da
AK
1422/**
1423 * memory_region_is_rom: check whether a memory region is ROM
1424 *
847b31f0 1425 * Returns %true if a memory region is read-only memory.
ce7923da
AK
1426 *
1427 * @mr: the memory region being queried
1428 */
1619d1fe
PB
1429static inline bool memory_region_is_rom(MemoryRegion *mr)
1430{
1431 return mr->ram && mr->readonly;
1432}
1433
c26763f8
MAL
1434/**
1435 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1436 *
1437 * Returns %true is a memory region is non-volatile memory.
1438 *
1439 * @mr: the memory region being queried
1440 */
1441static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1442{
1443 return mr->nonvolatile;
1444}
ce7923da 1445
a35ba7be
PB
1446/**
1447 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1448 *
1449 * Returns a file descriptor backing a file-based RAM memory region,
1450 * or -1 if the region is not a file-based RAM memory region.
1451 *
1452 * @mr: the RAM or alias memory region being queried.
1453 */
1454int memory_region_get_fd(MemoryRegion *mr);
1455
07bdaa41
PB
1456/**
1457 * memory_region_from_host: Convert a pointer into a RAM memory region
1458 * and an offset within it.
1459 *
1460 * Given a host pointer inside a RAM memory region (created with
1461 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1462 * the MemoryRegion and the offset within it.
1463 *
1464 * Use with care; by the time this function returns, the returned pointer is
1465 * not protected by RCU anymore. If the caller is not within an RCU critical
1466 * section and does not hold the iothread lock, it must have other means of
1467 * protecting the pointer, such as a reference to the region that includes
1468 * the incoming ram_addr_t.
1469 *
57914ecb
JZ
1470 * @ptr: the host pointer to be converted
1471 * @offset: the offset within memory region
07bdaa41
PB
1472 */
1473MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1474
093bc2cd
AK
1475/**
1476 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1477 *
1478 * Returns a host pointer to a RAM memory region (created with
49b24afc
PB
1479 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1480 *
1481 * Use with care; by the time this function returns, the returned pointer is
1482 * not protected by RCU anymore. If the caller is not within an RCU critical
1483 * section and does not hold the iothread lock, it must have other means of
1484 * protecting the pointer, such as a reference to the region that includes
1485 * the incoming ram_addr_t.
093bc2cd
AK
1486 *
1487 * @mr: the memory region being queried.
1488 */
1489void *memory_region_get_ram_ptr(MemoryRegion *mr);
1490
37d7c084
PB
1491/* memory_region_ram_resize: Resize a RAM region.
1492 *
1493 * Only legal before guest might have detected the memory size: e.g. on
1494 * incoming migration, or right after reset.
1495 *
1496 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1497 * @newsize: the new size the region
1498 * @errp: pointer to Error*, to store an error if it happens.
1499 */
1500void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1501 Error **errp);
9ecc996a
PMD
1502
1503/**
1504 * memory_region_msync: Synchronize selected address range of
1505 * a memory mapped region
1506 *
1507 * @mr: the memory region to be msync
1508 * @addr: the initial address of the range to be sync
1509 * @size: the size of the range to be sync
1510 */
1511void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1512
61c490e2 1513/**
9ecc996a 1514 * memory_region_writeback: Trigger cache writeback for
5d248213 1515 * selected address range
61c490e2 1516 *
5d248213
PB
1517 * @mr: the memory region to be updated
1518 * @addr: the initial address of the range to be written back
1519 * @size: the size of the range to be written back
61c490e2 1520 */
4dfe59d1 1521void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
37d7c084 1522
093bc2cd
AK
1523/**
1524 * memory_region_set_log: Turn dirty logging on or off for a region.
1525 *
1526 * Turns dirty logging on or off for a specified client (display, migration).
1527 * Only meaningful for RAM regions.
1528 *
1529 * @mr: the memory region being updated.
1530 * @log: whether dirty logging is to be enabled or disabled.
dbddac6d 1531 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
093bc2cd
AK
1532 */
1533void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1534
093bc2cd 1535/**
fd4aa979 1536 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
093bc2cd 1537 *
fd4aa979
BS
1538 * Marks a range of bytes as dirty, after it has been dirtied outside
1539 * guest code.
093bc2cd 1540 *
fd4aa979 1541 * @mr: the memory region being dirtied.
093bc2cd 1542 * @addr: the address (relative to the start of the region) being dirtied.
fd4aa979 1543 * @size: size of the range being dirtied.
093bc2cd 1544 */
a8170e5e
AK
1545void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1546 hwaddr size);
093bc2cd 1547
077874e0
PX
1548/**
1549 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1550 *
1551 * This function is called when the caller wants to clear the remote
1552 * dirty bitmap of a memory range within the memory region. This can
1553 * be used by e.g. KVM to manually clear dirty log when
1554 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1555 * kernel.
1556 *
1557 * @mr: the memory region to clear the dirty log upon
1558 * @start: start address offset within the memory region
1559 * @len: length of the memory region to clear dirty bitmap
1560 */
1561void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1562 hwaddr len);
1563
8deaf12c
GH
1564/**
1565 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1566 * bitmap and clear it.
1567 *
1568 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1569 * returns the snapshot. The snapshot can then be used to query dirty
77302fb5
PB
1570 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1571 * querying the same page multiple times, which is especially useful for
1572 * display updates where the scanlines often are not page aligned.
8deaf12c
GH
1573 *
1574 * The dirty bitmap region which gets copyed into the snapshot (and
1575 * cleared afterwards) can be larger than requested. The boundaries
1576 * are rounded up/down so complete bitmap longs (covering 64 pages on
1577 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1578 * isn't a problem for display updates as the extra pages are outside
1579 * the visible area, and in case the visible area changes a full
1580 * display redraw is due anyway. Should other use cases for this
1581 * function emerge we might have to revisit this implementation
1582 * detail.
1583 *
1584 * Use g_free to release DirtyBitmapSnapshot.
1585 *
1586 * @mr: the memory region being queried.
1587 * @addr: the address (relative to the start of the region) being queried.
1588 * @size: the size of the range being queried.
1589 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1590 */
1591DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1592 hwaddr addr,
1593 hwaddr size,
1594 unsigned client);
1595
1596/**
1597 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1598 * in the specified dirty bitmap snapshot.
1599 *
1600 * @mr: the memory region being queried.
1601 * @snap: the dirty bitmap snapshot
1602 * @addr: the address (relative to the start of the region) being queried.
1603 * @size: the size of the range being queried.
1604 */
1605bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1606 DirtyBitmapSnapshot *snap,
1607 hwaddr addr, hwaddr size);
1608
093bc2cd
AK
1609/**
1610 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1611 * client.
1612 *
1613 * Marks a range of pages as no longer dirty.
1614 *
1615 * @mr: the region being updated.
1616 * @addr: the start of the subrange being cleaned.
1617 * @size: the size of the subrange being cleaned.
1618 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1619 * %DIRTY_MEMORY_VGA.
1620 */
a8170e5e
AK
1621void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1622 hwaddr size, unsigned client);
093bc2cd 1623
047be4ed
SH
1624/**
1625 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1626 * TBs (for self-modifying code).
1627 *
1628 * The MemoryRegionOps->write() callback of a ROM device must use this function
1629 * to mark byte ranges that have been modified internally, such as by directly
1630 * accessing the memory returned by memory_region_get_ram_ptr().
1631 *
1632 * This function marks the range dirty and invalidates TBs so that TCG can
1633 * detect self-modifying code.
1634 *
1635 * @mr: the region being flushed.
1636 * @addr: the start, relative to the start of the region, of the range being
1637 * flushed.
1638 * @size: the size, in bytes, of the range being flushed.
1639 */
1640void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1641
093bc2cd
AK
1642/**
1643 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1644 *
1645 * Allows a memory region to be marked as read-only (turning it into a ROM).
1646 * only useful on RAM regions.
1647 *
1648 * @mr: the region being updated.
1649 * @readonly: whether rhe region is to be ROM or RAM.
1650 */
1651void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1652
c26763f8
MAL
1653/**
1654 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1655 *
1656 * Allows a memory region to be marked as non-volatile.
1657 * only useful on RAM regions.
1658 *
1659 * @mr: the region being updated.
1660 * @nonvolatile: whether rhe region is to be non-volatile.
1661 */
1662void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1663
d0a9b5bc 1664/**
5f9a5ea1 1665 * memory_region_rom_device_set_romd: enable/disable ROMD mode
d0a9b5bc
AK
1666 *
1667 * Allows a ROM device (initialized with memory_region_init_rom_device() to
5f9a5ea1
JK
1668 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1669 * device is mapped to guest memory and satisfies read access directly.
1670 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1671 * Writes are always handled by the #MemoryRegion.write function.
d0a9b5bc
AK
1672 *
1673 * @mr: the memory region to be updated
5f9a5ea1 1674 * @romd_mode: %true to put the region into ROMD mode
d0a9b5bc 1675 */
5f9a5ea1 1676void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
d0a9b5bc 1677
093bc2cd
AK
1678/**
1679 * memory_region_set_coalescing: Enable memory coalescing for the region.
1680 *
1681 * Enabled writes to a region to be queued for later processing. MMIO ->write
1682 * callbacks may be delayed until a non-coalesced MMIO is issued.
1683 * Only useful for IO regions. Roughly similar to write-combining hardware.
1684 *
1685 * @mr: the memory region to be write coalesced
1686 */
1687void memory_region_set_coalescing(MemoryRegion *mr);
1688
1689/**
1690 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1691 * a region.
1692 *
1693 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1694 * Multiple calls can be issued coalesced disjoint ranges.
1695 *
1696 * @mr: the memory region to be updated.
1697 * @offset: the start of the range within the region to be coalesced.
1698 * @size: the size of the subrange to be coalesced.
1699 */
1700void memory_region_add_coalescing(MemoryRegion *mr,
a8170e5e 1701 hwaddr offset,
093bc2cd
AK
1702 uint64_t size);
1703
1704/**
1705 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1706 *
1707 * Disables any coalescing caused by memory_region_set_coalescing() or
1708 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1709 * hardware.
1710 *
1711 * @mr: the memory region to be updated.
1712 */
1713void memory_region_clear_coalescing(MemoryRegion *mr);
1714
d410515e
JK
1715/**
1716 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1717 * accesses.
1718 *
1719 * Ensure that pending coalesced MMIO request are flushed before the memory
1720 * region is accessed. This property is automatically enabled for all regions
1721 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1722 *
1723 * @mr: the memory region to be updated.
1724 */
1725void memory_region_set_flush_coalesced(MemoryRegion *mr);
1726
1727/**
1728 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1729 * accesses.
1730 *
1731 * Clear the automatic coalesced MMIO flushing enabled via
1732 * memory_region_set_flush_coalesced. Note that this service has no effect on
1733 * memory regions that have MMIO coalescing enabled for themselves. For them,
1734 * automatic flushing will stop once coalescing is disabled.
1735 *
1736 * @mr: the memory region to be updated.
1737 */
1738void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1739
3e9d69e7
AK
1740/**
1741 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1742 * is written to a location.
1743 *
1744 * Marks a word in an IO region (initialized with memory_region_init_io())
1745 * as a trigger for an eventfd event. The I/O callback will not be called.
69ddaf66 1746 * The caller must be prepared to handle failure (that is, take the required
3e9d69e7
AK
1747 * action if the callback _is_ called).
1748 *
1749 * @mr: the memory region being updated.
1750 * @addr: the address within @mr that is to be monitored
1751 * @size: the size of the access to trigger the eventfd
1752 * @match_data: whether to match against @data, instead of just @addr
1753 * @data: the data to match against the guest write
57914ecb 1754 * @e: event notifier to be triggered when @addr, @size, and @data all match.
3e9d69e7
AK
1755 **/
1756void memory_region_add_eventfd(MemoryRegion *mr,
a8170e5e 1757 hwaddr addr,
3e9d69e7
AK
1758 unsigned size,
1759 bool match_data,
1760 uint64_t data,
753d5e14 1761 EventNotifier *e);
3e9d69e7
AK
1762
1763/**
69ddaf66 1764 * memory_region_del_eventfd: Cancel an eventfd.
3e9d69e7 1765 *
69ddaf66
ASRJ
1766 * Cancels an eventfd trigger requested by a previous
1767 * memory_region_add_eventfd() call.
3e9d69e7
AK
1768 *
1769 * @mr: the memory region being updated.
1770 * @addr: the address within @mr that is to be monitored
1771 * @size: the size of the access to trigger the eventfd
1772 * @match_data: whether to match against @data, instead of just @addr
1773 * @data: the data to match against the guest write
57914ecb 1774 * @e: event notifier to be triggered when @addr, @size, and @data all match.
3e9d69e7
AK
1775 */
1776void memory_region_del_eventfd(MemoryRegion *mr,
a8170e5e 1777 hwaddr addr,
3e9d69e7
AK
1778 unsigned size,
1779 bool match_data,
1780 uint64_t data,
753d5e14
PB
1781 EventNotifier *e);
1782
093bc2cd 1783/**
69ddaf66 1784 * memory_region_add_subregion: Add a subregion to a container.
093bc2cd 1785 *
69ddaf66 1786 * Adds a subregion at @offset. The subregion may not overlap with other
093bc2cd
AK
1787 * subregions (except for those explicitly marked as overlapping). A region
1788 * may only be added once as a subregion (unless removed with
1789 * memory_region_del_subregion()); use memory_region_init_alias() if you
1790 * want a region to be a subregion in multiple locations.
1791 *
1792 * @mr: the region to contain the new subregion; must be a container
1793 * initialized with memory_region_init().
1794 * @offset: the offset relative to @mr where @subregion is added.
1795 * @subregion: the subregion to be added.
1796 */
1797void memory_region_add_subregion(MemoryRegion *mr,
a8170e5e 1798 hwaddr offset,
093bc2cd
AK
1799 MemoryRegion *subregion);
1800/**
1a7e8cae
BZ
1801 * memory_region_add_subregion_overlap: Add a subregion to a container
1802 * with overlap.
093bc2cd 1803 *
69ddaf66 1804 * Adds a subregion at @offset. The subregion may overlap with other
093bc2cd
AK
1805 * subregions. Conflicts are resolved by having a higher @priority hide a
1806 * lower @priority. Subregions without priority are taken as @priority 0.
1807 * A region may only be added once as a subregion (unless removed with
1808 * memory_region_del_subregion()); use memory_region_init_alias() if you
1809 * want a region to be a subregion in multiple locations.
1810 *
1811 * @mr: the region to contain the new subregion; must be a container
1812 * initialized with memory_region_init().
1813 * @offset: the offset relative to @mr where @subregion is added.
1814 * @subregion: the subregion to be added.
1815 * @priority: used for resolving overlaps; highest priority wins.
1816 */
1817void memory_region_add_subregion_overlap(MemoryRegion *mr,
a8170e5e 1818 hwaddr offset,
093bc2cd 1819 MemoryRegion *subregion,
a1ff8ae0 1820 int priority);
e34911c4
AK
1821
1822/**
1823 * memory_region_get_ram_addr: Get the ram address associated with a memory
1824 * region
5d248213
PB
1825 *
1826 * @mr: the region to be queried
e34911c4 1827 */
7ebb2745 1828ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
e34911c4 1829
a2b257d6 1830uint64_t memory_region_get_alignment(const MemoryRegion *mr);
093bc2cd
AK
1831/**
1832 * memory_region_del_subregion: Remove a subregion.
1833 *
1834 * Removes a subregion from its container.
1835 *
1836 * @mr: the container to be updated.
1837 * @subregion: the region being removed; must be a current subregion of @mr.
1838 */
1839void memory_region_del_subregion(MemoryRegion *mr,
1840 MemoryRegion *subregion);
1841
6bba19ba
AK
1842/*
1843 * memory_region_set_enabled: dynamically enable or disable a region
1844 *
1845 * Enables or disables a memory region. A disabled memory region
1846 * ignores all accesses to itself and its subregions. It does not
1847 * obscure sibling subregions with lower priority - it simply behaves as
1848 * if it was removed from the hierarchy.
1849 *
1850 * Regions default to being enabled.
1851 *
1852 * @mr: the region to be updated
1853 * @enabled: whether to enable or disable the region
1854 */
1855void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1856
2282e1af
AK
1857/*
1858 * memory_region_set_address: dynamically update the address of a region
1859 *
feca4ac1 1860 * Dynamically updates the address of a region, relative to its container.
2282e1af
AK
1861 * May be used on regions are currently part of a memory hierarchy.
1862 *
1863 * @mr: the region to be updated
feca4ac1 1864 * @addr: new address, relative to container region
2282e1af 1865 */
a8170e5e 1866void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2282e1af 1867
e7af4c67
MT
1868/*
1869 * memory_region_set_size: dynamically update the size of a region.
1870 *
1871 * Dynamically updates the size of a region.
1872 *
1873 * @mr: the region to be updated
1874 * @size: used size of the region.
1875 */
1876void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1877
4703359e
AK
1878/*
1879 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1880 *
1881 * Dynamically updates the offset into the target region that an alias points
1882 * to, as if the fourth argument to memory_region_init_alias() has changed.
1883 *
1884 * @mr: the #MemoryRegion to be updated; should be an alias.
1885 * @offset: the new offset into the target memory region
1886 */
1887void memory_region_set_alias_offset(MemoryRegion *mr,
a8170e5e 1888 hwaddr offset);
4703359e 1889
3ce10901 1890/**
feca4ac1
PB
1891 * memory_region_present: checks if an address relative to a @container
1892 * translates into #MemoryRegion within @container
3ce10901 1893 *
feca4ac1 1894 * Answer whether a #MemoryRegion within @container covers the address
3ce10901
PB
1895 * @addr.
1896 *
feca4ac1
PB
1897 * @container: a #MemoryRegion within which @addr is a relative address
1898 * @addr: the area within @container to be searched
3ce10901 1899 */
feca4ac1 1900bool memory_region_present(MemoryRegion *container, hwaddr addr);
3ce10901 1901
eed2bacf
IM
1902/**
1903 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1904 * into any address space.
1905 *
1906 * @mr: a #MemoryRegion which should be checked if it's mapped
1907 */
1908bool memory_region_is_mapped(MemoryRegion *mr);
1909
e2177955 1910/**
73034e9e
PB
1911 * memory_region_find: translate an address/size relative to a
1912 * MemoryRegion into a #MemoryRegionSection.
e2177955 1913 *
73034e9e
PB
1914 * Locates the first #MemoryRegion within @mr that overlaps the range
1915 * given by @addr and @size.
e2177955
AK
1916 *
1917 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1918 * It will have the following characteristics:
08226b44
PB
1919 * - @size = 0 iff no overlap was found
1920 * - @mr is non-%NULL iff an overlap was found
e2177955 1921 *
73034e9e
PB
1922 * Remember that in the return value the @offset_within_region is
1923 * relative to the returned region (in the .@mr field), not to the
1924 * @mr argument.
1925 *
1926 * Similarly, the .@offset_within_address_space is relative to the
1927 * address space that contains both regions, the passed and the
1928 * returned one. However, in the special case where the @mr argument
feca4ac1 1929 * has no container (and thus is the root of the address space), the
73034e9e 1930 * following will hold:
08226b44
PB
1931 * - @offset_within_address_space >= @addr
1932 * - @offset_within_address_space + .@size <= @addr + @size
73034e9e
PB
1933 *
1934 * @mr: a MemoryRegion within which @addr is a relative address
1935 * @addr: start of the area within @as to be searched
e2177955
AK
1936 * @size: size of the area to be searched
1937 */
73034e9e 1938MemoryRegionSection memory_region_find(MemoryRegion *mr,
a8170e5e 1939 hwaddr addr, uint64_t size);
e2177955 1940
86e775c6 1941/**
9c1f8f44 1942 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
86e775c6 1943 *
9c1f8f44 1944 * Synchronizes the dirty page log for all address spaces.
86e775c6 1945 */
9c1f8f44 1946void memory_global_dirty_log_sync(void);
9458a9a1
PB
1947
1948/**
1949 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1950 *
1951 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1952 * This function must be called after the dirty log bitmap is cleared, and
1953 * before dirty guest memory pages are read. If you are using
1954 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1955 * care of doing this.
1956 */
1957void memory_global_after_dirty_log_sync(void);
86e775c6 1958
69ddaf66
ASRJ
1959/**
1960 * memory_region_transaction_begin: Start a transaction.
1961 *
1962 * During a transaction, changes will be accumulated and made visible
dabdf394 1963 * only when the transaction ends (is committed).
4ef4db86
AK
1964 */
1965void memory_region_transaction_begin(void);
69ddaf66
ASRJ
1966
1967/**
1968 * memory_region_transaction_commit: Commit a transaction and make changes
1969 * visible to the guest.
4ef4db86
AK
1970 */
1971void memory_region_transaction_commit(void);
1972
7664e80c
AK
1973/**
1974 * memory_listener_register: register callbacks to be called when memory
1975 * sections are mapped or unmapped into an address
1976 * space
1977 *
1978 * @listener: an object containing the callbacks to be called
7376e582 1979 * @filter: if non-%NULL, only regions in this address space will be observed
7664e80c 1980 */
f6790af6 1981void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
7664e80c
AK
1982
1983/**
1984 * memory_listener_unregister: undo the effect of memory_listener_register()
1985 *
1986 * @listener: an object containing the callbacks to be removed
1987 */
1988void memory_listener_unregister(MemoryListener *listener);
1989
1990/**
1991 * memory_global_dirty_log_start: begin dirty logging for all regions
1992 */
1993void memory_global_dirty_log_start(void);
1994
1995/**
1a7e8cae 1996 * memory_global_dirty_log_stop: end dirty logging for all regions
7664e80c
AK
1997 */
1998void memory_global_dirty_log_stop(void);
1999
2261d393 2000void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
314e2987 2001
3b643495
PM
2002/**
2003 * memory_region_dispatch_read: perform a read directly to the specified
2004 * MemoryRegion.
2005 *
2006 * @mr: #MemoryRegion to access
2007 * @addr: address within that region
2008 * @pval: pointer to uint64_t which the data is written to
e67c9046 2009 * @op: size, sign, and endianness of the memory operation
3b643495
PM
2010 * @attrs: memory transaction attributes to use for the access
2011 */
2012MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2013 hwaddr addr,
2014 uint64_t *pval,
e67c9046 2015 MemOp op,
3b643495
PM
2016 MemTxAttrs attrs);
2017/**
2018 * memory_region_dispatch_write: perform a write directly to the specified
2019 * MemoryRegion.
2020 *
2021 * @mr: #MemoryRegion to access
2022 * @addr: address within that region
2023 * @data: data to write
e67c9046 2024 * @op: size, sign, and endianness of the memory operation
3b643495
PM
2025 * @attrs: memory transaction attributes to use for the access
2026 */
2027MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2028 hwaddr addr,
2029 uint64_t data,
e67c9046 2030 MemOp op,
3b643495
PM
2031 MemTxAttrs attrs);
2032
9ad2bbc1
AK
2033/**
2034 * address_space_init: initializes an address space
2035 *
2036 * @as: an uninitialized #AddressSpace
67cc32eb 2037 * @root: a #MemoryRegion that routes addresses for the address space
7dca8043
AK
2038 * @name: an address space name. The name is only used for debugging
2039 * output.
9ad2bbc1 2040 */
7dca8043 2041void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
9ad2bbc1 2042
83f3c251
AK
2043/**
2044 * address_space_destroy: destroy an address space
2045 *
2046 * Releases all resources associated with an address space. After an address space
2047 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2048 * as well.
2049 *
2050 * @as: address space to be destroyed
2051 */
2052void address_space_destroy(AddressSpace *as);
2053
a2166410
GK
2054/**
2055 * address_space_remove_listeners: unregister all listeners of an address space
2056 *
2057 * Removes all callbacks previously registered with memory_listener_register()
2058 * for @as.
2059 *
2060 * @as: an initialized #AddressSpace
2061 */
2062void address_space_remove_listeners(AddressSpace *as);
2063
ac1970fb
AK
2064/**
2065 * address_space_rw: read from or write to an address space.
2066 *
5c9eb028
PM
2067 * Return a MemTxResult indicating whether the operation succeeded
2068 * or failed (eg unassigned memory, device rejected the transaction,
2069 * IOMMU fault).
fd8aaa76 2070 *
ac1970fb
AK
2071 * @as: #AddressSpace to be accessed
2072 * @addr: address within that address space
5c9eb028 2073 * @attrs: memory transaction attributes
ac1970fb 2074 * @buf: buffer with the data transferred
57914ecb 2075 * @len: the number of bytes to read or write
ac1970fb
AK
2076 * @is_write: indicates the transfer direction
2077 */
5c9eb028 2078MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
daa3dda4 2079 MemTxAttrs attrs, void *buf,
0c249ff7 2080 hwaddr len, bool is_write);
ac1970fb
AK
2081
2082/**
2083 * address_space_write: write to address space.
2084 *
5c9eb028
PM
2085 * Return a MemTxResult indicating whether the operation succeeded
2086 * or failed (eg unassigned memory, device rejected the transaction,
2087 * IOMMU fault).
fd8aaa76 2088 *
ac1970fb
AK
2089 * @as: #AddressSpace to be accessed
2090 * @addr: address within that address space
5c9eb028 2091 * @attrs: memory transaction attributes
ac1970fb 2092 * @buf: buffer with the data transferred
57914ecb 2093 * @len: the number of bytes to write
ac1970fb 2094 */
5c9eb028
PM
2095MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2096 MemTxAttrs attrs,
daa3dda4 2097 const void *buf, hwaddr len);
ac1970fb 2098
3c8133f9
PM
2099/**
2100 * address_space_write_rom: write to address space, including ROM.
2101 *
2102 * This function writes to the specified address space, but will
2103 * write data to both ROM and RAM. This is used for non-guest
2104 * writes like writes from the gdb debug stub or initial loading
2105 * of ROM contents.
2106 *
2107 * Note that portions of the write which attempt to write data to
2108 * a device will be silently ignored -- only real RAM and ROM will
2109 * be written to.
2110 *
2111 * Return a MemTxResult indicating whether the operation succeeded
2112 * or failed (eg unassigned memory, device rejected the transaction,
2113 * IOMMU fault).
2114 *
2115 * @as: #AddressSpace to be accessed
2116 * @addr: address within that address space
2117 * @attrs: memory transaction attributes
2118 * @buf: buffer with the data transferred
2119 * @len: the number of bytes to write
2120 */
2121MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2122 MemTxAttrs attrs,
daa3dda4 2123 const void *buf, hwaddr len);
3c8133f9 2124
3cc8f884 2125/* address_space_ld*: load from an address space
50013115
PM
2126 * address_space_st*: store to an address space
2127 *
2128 * These functions perform a load or store of the byte, word,
2129 * longword or quad to the specified address within the AddressSpace.
2130 * The _le suffixed functions treat the data as little endian;
2131 * _be indicates big endian; no suffix indicates "same endianness
2132 * as guest CPU".
2133 *
2134 * The "guest CPU endianness" accessors are deprecated for use outside
2135 * target-* code; devices should be CPU-agnostic and use either the LE
2136 * or the BE accessors.
2137 *
2138 * @as #AddressSpace to be accessed
2139 * @addr: address within that address space
2140 * @val: data value, for stores
2141 * @attrs: memory transaction attributes
2142 * @result: location to write the success/failure of the transaction;
2143 * if NULL, this information is discarded
2144 */
4269c82b
PB
2145
2146#define SUFFIX
2147#define ARG1 as
2148#define ARG1_DECL AddressSpace *as
0979ed01 2149#include "exec/memory_ldst.h.inc"
4269c82b
PB
2150
2151#define SUFFIX
2152#define ARG1 as
2153#define ARG1_DECL AddressSpace *as
0979ed01 2154#include "exec/memory_ldst_phys.h.inc"
0ce265ff 2155
1f4e496e 2156struct MemoryRegionCache {
48564041 2157 void *ptr;
1f4e496e 2158 hwaddr xlat;
1f4e496e 2159 hwaddr len;
48564041
PB
2160 FlatView *fv;
2161 MemoryRegionSection mrs;
2162 bool is_write;
1f4e496e
PB
2163};
2164
48564041
PB
2165#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2166
5eba0404 2167
4269c82b
PB
2168/* address_space_ld*_cached: load from a cached #MemoryRegion
2169 * address_space_st*_cached: store into a cached #MemoryRegion
2170 *
2171 * These functions perform a load or store of the byte, word,
2172 * longword or quad to the specified address. The address is
2173 * a physical address in the AddressSpace, but it must lie within
2174 * a #MemoryRegion that was mapped with address_space_cache_init.
2175 *
2176 * The _le suffixed functions treat the data as little endian;
2177 * _be indicates big endian; no suffix indicates "same endianness
2178 * as guest CPU".
2179 *
2180 * The "guest CPU endianness" accessors are deprecated for use outside
2181 * target-* code; devices should be CPU-agnostic and use either the LE
2182 * or the BE accessors.
2183 *
2184 * @cache: previously initialized #MemoryRegionCache to be accessed
2185 * @addr: address within the address space
2186 * @val: data value, for stores
2187 * @attrs: memory transaction attributes
2188 * @result: location to write the success/failure of the transaction;
2189 * if NULL, this information is discarded
2190 */
2191
48564041 2192#define SUFFIX _cached_slow
4269c82b
PB
2193#define ARG1 cache
2194#define ARG1_DECL MemoryRegionCache *cache
0979ed01 2195#include "exec/memory_ldst.h.inc"
4269c82b 2196
48564041
PB
2197/* Inline fast path for direct RAM access. */
2198static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2199 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2200{
2201 assert(addr < cache->len);
2202 if (likely(cache->ptr)) {
2203 return ldub_p(cache->ptr + addr);
2204 } else {
2205 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2206 }
2207}
2208
2209static inline void address_space_stb_cached(MemoryRegionCache *cache,
2210 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2211{
2212 assert(addr < cache->len);
2213 if (likely(cache->ptr)) {
2214 stb_p(cache->ptr + addr, val);
2215 } else {
2216 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2217 }
2218}
2219
2220#define ENDIANNESS _le
0979ed01 2221#include "exec/memory_ldst_cached.h.inc"
48564041
PB
2222
2223#define ENDIANNESS _be
0979ed01 2224#include "exec/memory_ldst_cached.h.inc"
48564041 2225
4269c82b
PB
2226#define SUFFIX _cached
2227#define ARG1 cache
2228#define ARG1_DECL MemoryRegionCache *cache
0979ed01 2229#include "exec/memory_ldst_phys.h.inc"
4269c82b 2230
1f4e496e
PB
2231/* address_space_cache_init: prepare for repeated access to a physical
2232 * memory region
2233 *
2234 * @cache: #MemoryRegionCache to be filled
2235 * @as: #AddressSpace to be accessed
2236 * @addr: address within that address space
2237 * @len: length of buffer
2238 * @is_write: indicates the transfer direction
2239 *
2240 * Will only work with RAM, and may map a subset of the requested range by
2241 * returning a value that is less than @len. On failure, return a negative
2242 * errno value.
2243 *
2244 * Because it only works with RAM, this function can be used for
2245 * read-modify-write operations. In this case, is_write should be %true.
2246 *
2247 * Note that addresses passed to the address_space_*_cached functions
2248 * are relative to @addr.
2249 */
2250int64_t address_space_cache_init(MemoryRegionCache *cache,
2251 AddressSpace *as,
2252 hwaddr addr,
2253 hwaddr len,
2254 bool is_write);
2255
2256/**
2257 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2258 *
2259 * @cache: The #MemoryRegionCache to operate on.
2260 * @addr: The first physical address that was written, relative to the
2261 * address that was passed to @address_space_cache_init.
2262 * @access_len: The number of bytes that were written starting at @addr.
2263 */
2264void address_space_cache_invalidate(MemoryRegionCache *cache,
2265 hwaddr addr,
2266 hwaddr access_len);
2267
2268/**
2269 * address_space_cache_destroy: free a #MemoryRegionCache
2270 *
2271 * @cache: The #MemoryRegionCache whose memory should be released.
2272 */
2273void address_space_cache_destroy(MemoryRegionCache *cache);
2274
052c8fa9
JW
2275/* address_space_get_iotlb_entry: translate an address into an IOTLB
2276 * entry. Should be called from an RCU critical section.
2277 */
2278IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 2279 bool is_write, MemTxAttrs attrs);
1f4e496e 2280
149f54b5 2281/* address_space_translate: translate an address range into an address space
41063e1e
PB
2282 * into a MemoryRegion and an address range into that section. Should be
2283 * called from an RCU critical section, to avoid that the last reference
2284 * to the returned region disappears after address_space_translate returns.
149f54b5 2285 *
57914ecb 2286 * @fv: #FlatView to be accessed
149f54b5
PB
2287 * @addr: address within that address space
2288 * @xlat: pointer to address within the returned memory region section's
2289 * #MemoryRegion.
2290 * @len: pointer to length
2291 * @is_write: indicates the transfer direction
bc6b1cec 2292 * @attrs: memory attributes
149f54b5 2293 */
16620684
AK
2294MemoryRegion *flatview_translate(FlatView *fv,
2295 hwaddr addr, hwaddr *xlat,
efa99a2f
PM
2296 hwaddr *len, bool is_write,
2297 MemTxAttrs attrs);
16620684
AK
2298
2299static inline MemoryRegion *address_space_translate(AddressSpace *as,
2300 hwaddr addr, hwaddr *xlat,
bc6b1cec
PM
2301 hwaddr *len, bool is_write,
2302 MemTxAttrs attrs)
16620684
AK
2303{
2304 return flatview_translate(address_space_to_flatview(as),
efa99a2f 2305 addr, xlat, len, is_write, attrs);
16620684 2306}
149f54b5 2307
51644ab7
PB
2308/* address_space_access_valid: check for validity of accessing an address
2309 * space range
2310 *
30951157
AK
2311 * Check whether memory is assigned to the given address space range, and
2312 * access is permitted by any IOMMU regions that are active for the address
2313 * space.
51644ab7
PB
2314 *
2315 * For now, addr and len should be aligned to a page size. This limitation
2316 * will be lifted in the future.
2317 *
2318 * @as: #AddressSpace to be accessed
2319 * @addr: address within that address space
2320 * @len: length of the area to be checked
2321 * @is_write: indicates the transfer direction
fddffa42 2322 * @attrs: memory attributes
51644ab7 2323 */
0c249ff7 2324bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
fddffa42 2325 bool is_write, MemTxAttrs attrs);
51644ab7 2326
ac1970fb
AK
2327/* address_space_map: map a physical memory region into a host virtual address
2328 *
2329 * May map a subset of the requested range, given by and returned in @plen.
77f55eac
PP
2330 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2331 * the mapping are exhausted.
ac1970fb
AK
2332 * Use only for reads OR writes - not for read-modify-write operations.
2333 * Use cpu_register_map_client() to know when retrying the map operation is
2334 * likely to succeed.
2335 *
2336 * @as: #AddressSpace to be accessed
2337 * @addr: address within that address space
2338 * @plen: pointer to length of buffer; updated on return
2339 * @is_write: indicates the transfer direction
f26404fb 2340 * @attrs: memory attributes
ac1970fb 2341 */
a8170e5e 2342void *address_space_map(AddressSpace *as, hwaddr addr,
f26404fb 2343 hwaddr *plen, bool is_write, MemTxAttrs attrs);
ac1970fb
AK
2344
2345/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2346 *
2347 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2348 * the amount of memory that was actually read or written by the caller.
2349 *
2350 * @as: #AddressSpace used
57914ecb 2351 * @buffer: host pointer as returned by address_space_map()
ac1970fb
AK
2352 * @len: buffer length as returned by address_space_map()
2353 * @access_len: amount of data actually transferred
2354 * @is_write: indicates the transfer direction
2355 */
a8170e5e 2356void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 2357 bool is_write, hwaddr access_len);
ac1970fb
AK
2358
2359
a203ac70 2360/* Internal functions, part of the implementation of address_space_read. */
b2a44fca 2361MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 2362 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2363MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 2364 MemTxAttrs attrs, void *buf,
0c249ff7 2365 hwaddr len, hwaddr addr1, hwaddr l,
16620684 2366 MemoryRegion *mr);
0878d0e1 2367void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
3cc8f884 2368
48564041
PB
2369/* Internal functions, part of the implementation of address_space_read_cached
2370 * and address_space_write_cached. */
38df19fa
PMD
2371MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2372 hwaddr addr, void *buf, hwaddr len);
2373MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2374 hwaddr addr, const void *buf,
2375 hwaddr len);
48564041 2376
3cc8f884
PB
2377static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2378{
2379 if (is_write) {
d489ae4a
AD
2380 return memory_region_is_ram(mr) && !mr->readonly &&
2381 !mr->rom_device && !memory_region_is_ram_device(mr);
3cc8f884 2382 } else {
4a2e242b
AW
2383 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2384 memory_region_is_romd(mr);
3cc8f884 2385 }
3cc8f884
PB
2386}
2387
2388/**
2389 * address_space_read: read from an address space.
2390 *
2391 * Return a MemTxResult indicating whether the operation succeeded
2392 * or failed (eg unassigned memory, device rejected the transaction,
b2a44fca 2393 * IOMMU fault). Called within RCU critical section.
3cc8f884 2394 *
b2a44fca 2395 * @as: #AddressSpace to be accessed
3cc8f884
PB
2396 * @addr: address within that address space
2397 * @attrs: memory transaction attributes
2398 * @buf: buffer with the data transferred
5d248213 2399 * @len: length of the data transferred
3cc8f884
PB
2400 */
2401static inline __attribute__((__always_inline__))
b2a44fca 2402MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
daa3dda4 2403 MemTxAttrs attrs, void *buf,
0c249ff7 2404 hwaddr len)
3cc8f884
PB
2405{
2406 MemTxResult result = MEMTX_OK;
2407 hwaddr l, addr1;
2408 void *ptr;
2409 MemoryRegion *mr;
b2a44fca 2410 FlatView *fv;
3cc8f884
PB
2411
2412 if (__builtin_constant_p(len)) {
2413 if (len) {
293a733d 2414 RCU_READ_LOCK_GUARD();
b2a44fca 2415 fv = address_space_to_flatview(as);
3cc8f884 2416 l = len;
efa99a2f 2417 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3cc8f884 2418 if (len == l && memory_access_is_direct(mr, false)) {
0878d0e1 2419 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3cc8f884
PB
2420 memcpy(buf, ptr, len);
2421 } else {
16620684
AK
2422 result = flatview_read_continue(fv, addr, attrs, buf, len,
2423 addr1, l, mr);
3cc8f884 2424 }
3cc8f884
PB
2425 }
2426 } else {
b2a44fca 2427 result = address_space_read_full(as, addr, attrs, buf, len);
3cc8f884
PB
2428 }
2429 return result;
2430}
a203ac70 2431
1f4e496e
PB
2432/**
2433 * address_space_read_cached: read from a cached RAM region
2434 *
2435 * @cache: Cached region to be addressed
2436 * @addr: address relative to the base of the RAM region
2437 * @buf: buffer with the data transferred
2438 * @len: length of the data transferred
2439 */
38df19fa 2440static inline MemTxResult
1f4e496e 2441address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 2442 void *buf, hwaddr len)
1f4e496e
PB
2443{
2444 assert(addr < cache->len && len <= cache->len - addr);
48564041
PB
2445 if (likely(cache->ptr)) {
2446 memcpy(buf, cache->ptr + addr, len);
38df19fa 2447 return MEMTX_OK;
48564041 2448 } else {
38df19fa 2449 return address_space_read_cached_slow(cache, addr, buf, len);
48564041 2450 }
1f4e496e
PB
2451}
2452
2453/**
2454 * address_space_write_cached: write to a cached RAM region
2455 *
2456 * @cache: Cached region to be addressed
2457 * @addr: address relative to the base of the RAM region
2458 * @buf: buffer with the data transferred
2459 * @len: length of the data transferred
2460 */
38df19fa 2461static inline MemTxResult
1f4e496e 2462address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
daa3dda4 2463 const void *buf, hwaddr len)
1f4e496e
PB
2464{
2465 assert(addr < cache->len && len <= cache->len - addr);
48564041
PB
2466 if (likely(cache->ptr)) {
2467 memcpy(cache->ptr + addr, buf, len);
38df19fa 2468 return MEMTX_OK;
48564041 2469 } else {
38df19fa 2470 return address_space_write_cached_slow(cache, addr, buf, len);
48564041 2471 }
1f4e496e
PB
2472}
2473
7a3df11c 2474#ifdef NEED_CPU_H
d5d680ca 2475/* enum device_endian to MemOp. */
7a3df11c
PB
2476static inline MemOp devend_memop(enum device_endian end)
2477{
2478 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2479 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2480
2481#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2482 /* Swap if non-host endianness or native (target) endianness */
2483 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2484#else
2485 const int non_host_endianness =
2486 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2487
2488 /* In this case, native (target) endianness needs no swap. */
2489 return (end == non_host_endianness) ? MO_BSWAP : 0;
2490#endif
2491}
2492#endif
d5d680ca 2493
d24f31db
DH
2494/*
2495 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2496 * to manage the actual amount of memory consumed by the VM (then, the memory
2497 * provided by RAM blocks might be bigger than the desired memory consumption).
2498 * This *must* be set if:
2499 * - Discarding parts of a RAM blocks does not result in the change being
2500 * reflected in the VM and the pages getting freed.
2501 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2502 * discards blindly.
2503 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2504 * encrypted VMs).
2505 * Technologies that only temporarily pin the current working set of a
2506 * driver are fine, because we don't expect such pages to be discarded
2507 * (esp. based on guest action like balloon inflation).
2508 *
2509 * This is *not* to be used to protect from concurrent discards (esp.,
2510 * postcopy).
2511 *
2512 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2513 * discards to work reliably is active.
2514 */
2515int ram_block_discard_disable(bool state);
2516
2517/*
2518 * Inhibit technologies that disable discarding of pages in RAM blocks.
2519 *
2520 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2521 * broken.
2522 */
2523int ram_block_discard_require(bool state);
2524
2525/*
2526 * Test if discarding of memory in ram blocks is disabled.
2527 */
2528bool ram_block_discard_is_disabled(void);
2529
2530/*
2531 * Test if discarding of memory in ram blocks is required to work reliably.
2532 */
2533bool ram_block_discard_is_required(void);
2534
093bc2cd
AK
2535#endif
2536
2537#endif