]> git.proxmox.com Git - mirror_qemu.git/blame - include/exec/softmmu_template.h
softmmu: make do_unaligned_access a method of CPU
[mirror_qemu.git] / include / exec / softmmu_template.h
CommitLineData
b92e5a22
FB
1/*
2 * Software MMU support
5fafdf24 3 *
efbf29b6
BS
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
6 *
7 * Included from target op helpers and exec.c.
8 *
b92e5a22
FB
9 * Copyright (c) 2003 Fabrice Bellard
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
8167ee88 22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
b92e5a22 23 */
1de7afc9 24#include "qemu/timer.h"
77717094 25#include "exec/address-spaces.h"
022c62cb 26#include "exec/memory.h"
29e922b6 27
b92e5a22
FB
28#define DATA_SIZE (1 << SHIFT)
29
30#if DATA_SIZE == 8
31#define SUFFIX q
701e3a5c 32#define LSUFFIX q
c8f94df5 33#define SDATA_TYPE int64_t
dc9a353c 34#define DATA_TYPE uint64_t
b92e5a22
FB
35#elif DATA_SIZE == 4
36#define SUFFIX l
701e3a5c 37#define LSUFFIX l
c8f94df5 38#define SDATA_TYPE int32_t
dc9a353c 39#define DATA_TYPE uint32_t
b92e5a22
FB
40#elif DATA_SIZE == 2
41#define SUFFIX w
701e3a5c 42#define LSUFFIX uw
c8f94df5 43#define SDATA_TYPE int16_t
dc9a353c 44#define DATA_TYPE uint16_t
b92e5a22
FB
45#elif DATA_SIZE == 1
46#define SUFFIX b
701e3a5c 47#define LSUFFIX ub
c8f94df5 48#define SDATA_TYPE int8_t
dc9a353c 49#define DATA_TYPE uint8_t
b92e5a22
FB
50#else
51#error unsupported data size
52#endif
53
c8f94df5
RH
54
55/* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61# define WORD_TYPE DATA_TYPE
62# define USUFFIX SUFFIX
63#else
64# define WORD_TYPE tcg_target_ulong
65# define USUFFIX glue(u, SUFFIX)
66# define SSUFFIX glue(s, SUFFIX)
67#endif
68
b769d8fe
FB
69#ifdef SOFTMMU_CODE_ACCESS
70#define READ_ACCESS_TYPE 2
84b7b8e7 71#define ADDR_READ addr_code
b769d8fe
FB
72#else
73#define READ_ACCESS_TYPE 0
84b7b8e7 74#define ADDR_READ addr_read
b769d8fe
FB
75#endif
76
867b3201
RH
77#if DATA_SIZE == 8
78# define BSWAP(X) bswap64(X)
79#elif DATA_SIZE == 4
80# define BSWAP(X) bswap32(X)
81#elif DATA_SIZE == 2
82# define BSWAP(X) bswap16(X)
83#else
84# define BSWAP(X) (X)
85#endif
86
87#ifdef TARGET_WORDS_BIGENDIAN
88# define TGT_BE(X) (X)
89# define TGT_LE(X) BSWAP(X)
90#else
91# define TGT_BE(X) BSWAP(X)
92# define TGT_LE(X) (X)
93#endif
94
95#if DATA_SIZE == 1
96# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97# define helper_be_ld_name helper_le_ld_name
98# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99# define helper_be_lds_name helper_le_lds_name
100# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101# define helper_be_st_name helper_le_st_name
102#else
103# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109#endif
110
111#ifdef TARGET_WORDS_BIGENDIAN
112# define helper_te_ld_name helper_be_ld_name
113# define helper_te_st_name helper_be_st_name
114#else
115# define helper_te_ld_name helper_le_ld_name
116# define helper_te_st_name helper_le_st_name
117#endif
118
89c33337 119static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
a8170e5e 120 hwaddr physaddr,
2e70f6ef 121 target_ulong addr,
20503968 122 uintptr_t retaddr)
b92e5a22 123{
791af8c8 124 uint64_t val;
09daed84
EI
125 CPUState *cpu = ENV_GET_CPU(env);
126 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
37ec01d4 127
0f459d16 128 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
93afeade 129 cpu->mem_io_pc = retaddr;
99df7dce 130 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
90b40a69 131 cpu_io_recompile(cpu, retaddr);
2e70f6ef 132 }
b92e5a22 133
93afeade 134 cpu->mem_io_vaddr = addr;
791af8c8
PB
135 io_mem_read(mr, physaddr, &val, 1 << SHIFT);
136 return val;
b92e5a22
FB
137}
138
e25c3887 139#ifdef SOFTMMU_CODE_ACCESS
867b3201 140static __attribute__((unused))
e25c3887 141#endif
867b3201
RH
142WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
143 uintptr_t retaddr)
b92e5a22 144{
aac1fb05
RH
145 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
146 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
147 uintptr_t haddr;
867b3201 148 DATA_TYPE res;
3b46e624 149
0f842f8a
RH
150 /* Adjust the given return address. */
151 retaddr -= GETPC_ADJ;
152
aac1fb05
RH
153 /* If the TLB entry is for a different page, reload and try again. */
154 if ((addr & TARGET_PAGE_MASK)
155 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
a64d4718 156#ifdef ALIGNED_ONLY
aac1fb05 157 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326
PB
158 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
159 mmu_idx, retaddr);
aac1fb05 160 }
a64d4718 161#endif
d5a11fef 162 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
aac1fb05
RH
163 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
164 }
165
166 /* Handle an IO access. */
167 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
168 hwaddr ioaddr;
169 if ((addr & (DATA_SIZE - 1)) != 0) {
170 goto do_unaligned_access;
b92e5a22 171 }
aac1fb05 172 ioaddr = env->iotlb[mmu_idx][index];
867b3201
RH
173
174 /* ??? Note that the io helpers always read data in the target
175 byte ordering. We should push the LE/BE request down into io. */
176 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
177 res = TGT_LE(res);
178 return res;
aac1fb05
RH
179 }
180
181 /* Handle slow unaligned access (it spans two pages or IO). */
182 if (DATA_SIZE > 1
183 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
184 >= TARGET_PAGE_SIZE)) {
185 target_ulong addr1, addr2;
867b3201 186 DATA_TYPE res1, res2;
aac1fb05
RH
187 unsigned shift;
188 do_unaligned_access:
a64d4718 189#ifdef ALIGNED_ONLY
93e22326
PB
190 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
191 mmu_idx, retaddr);
a64d4718 192#endif
aac1fb05
RH
193 addr1 = addr & ~(DATA_SIZE - 1);
194 addr2 = addr1 + DATA_SIZE;
0f842f8a
RH
195 /* Note the adjustment at the beginning of the function.
196 Undo that for the recursion. */
867b3201
RH
197 res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
198 res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
aac1fb05 199 shift = (addr & (DATA_SIZE - 1)) * 8;
867b3201
RH
200
201 /* Little-endian combine. */
aac1fb05 202 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
867b3201
RH
203 return res;
204 }
205
206 /* Handle aligned access or unaligned access in the same page. */
207#ifdef ALIGNED_ONLY
208 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326
PB
209 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
210 mmu_idx, retaddr);
867b3201
RH
211 }
212#endif
213
214 haddr = addr + env->tlb_table[mmu_idx][index].addend;
215#if DATA_SIZE == 1
216 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
217#else
218 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
219#endif
220 return res;
221}
222
223#if DATA_SIZE > 1
224#ifdef SOFTMMU_CODE_ACCESS
225static __attribute__((unused))
226#endif
227WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
228 uintptr_t retaddr)
229{
230 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
231 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
232 uintptr_t haddr;
233 DATA_TYPE res;
234
235 /* Adjust the given return address. */
236 retaddr -= GETPC_ADJ;
237
238 /* If the TLB entry is for a different page, reload and try again. */
239 if ((addr & TARGET_PAGE_MASK)
240 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
241#ifdef ALIGNED_ONLY
242 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326
PB
243 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
244 mmu_idx, retaddr);
867b3201
RH
245 }
246#endif
d5a11fef 247 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
867b3201
RH
248 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
249 }
250
251 /* Handle an IO access. */
252 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
253 hwaddr ioaddr;
254 if ((addr & (DATA_SIZE - 1)) != 0) {
255 goto do_unaligned_access;
256 }
257 ioaddr = env->iotlb[mmu_idx][index];
258
259 /* ??? Note that the io helpers always read data in the target
260 byte ordering. We should push the LE/BE request down into io. */
261 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
262 res = TGT_BE(res);
263 return res;
264 }
265
266 /* Handle slow unaligned access (it spans two pages or IO). */
267 if (DATA_SIZE > 1
268 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
269 >= TARGET_PAGE_SIZE)) {
270 target_ulong addr1, addr2;
271 DATA_TYPE res1, res2;
272 unsigned shift;
273 do_unaligned_access:
274#ifdef ALIGNED_ONLY
93e22326
PB
275 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
276 mmu_idx, retaddr);
aac1fb05 277#endif
867b3201
RH
278 addr1 = addr & ~(DATA_SIZE - 1);
279 addr2 = addr1 + DATA_SIZE;
280 /* Note the adjustment at the beginning of the function.
281 Undo that for the recursion. */
282 res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
283 res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
284 shift = (addr & (DATA_SIZE - 1)) * 8;
285
286 /* Big-endian combine. */
287 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
aac1fb05
RH
288 return res;
289 }
290
291 /* Handle aligned access or unaligned access in the same page. */
292#ifdef ALIGNED_ONLY
293 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326
PB
294 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
295 mmu_idx, retaddr);
b92e5a22 296 }
aac1fb05
RH
297#endif
298
299 haddr = addr + env->tlb_table[mmu_idx][index].addend;
867b3201
RH
300 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
301 return res;
b92e5a22 302}
867b3201 303#endif /* DATA_SIZE > 1 */
b92e5a22 304
e25c3887
RH
305DATA_TYPE
306glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
307 int mmu_idx)
308{
867b3201 309 return helper_te_ld_name (env, addr, mmu_idx, GETRA());
e25c3887
RH
310}
311
b769d8fe
FB
312#ifndef SOFTMMU_CODE_ACCESS
313
c8f94df5
RH
314/* Provide signed versions of the load routines as well. We can of course
315 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
316#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
867b3201
RH
317WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
318 int mmu_idx, uintptr_t retaddr)
319{
320 return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
321}
322
323# if DATA_SIZE > 1
324WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
325 int mmu_idx, uintptr_t retaddr)
c8f94df5 326{
867b3201 327 return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
c8f94df5 328}
867b3201 329# endif
c8f94df5
RH
330#endif
331
89c33337 332static inline void glue(io_write, SUFFIX)(CPUArchState *env,
a8170e5e 333 hwaddr physaddr,
b769d8fe 334 DATA_TYPE val,
0f459d16 335 target_ulong addr,
20503968 336 uintptr_t retaddr)
b769d8fe 337{
09daed84
EI
338 CPUState *cpu = ENV_GET_CPU(env);
339 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
37ec01d4 340
0f459d16 341 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
99df7dce 342 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
90b40a69 343 cpu_io_recompile(cpu, retaddr);
2e70f6ef 344 }
b769d8fe 345
93afeade
AF
346 cpu->mem_io_vaddr = addr;
347 cpu->mem_io_pc = retaddr;
37ec01d4 348 io_mem_write(mr, physaddr, val, 1 << SHIFT);
b769d8fe 349}
b92e5a22 350
867b3201
RH
351void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
352 int mmu_idx, uintptr_t retaddr)
b92e5a22 353{
aac1fb05
RH
354 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
355 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
356 uintptr_t haddr;
3b46e624 357
0f842f8a
RH
358 /* Adjust the given return address. */
359 retaddr -= GETPC_ADJ;
360
aac1fb05
RH
361 /* If the TLB entry is for a different page, reload and try again. */
362 if ((addr & TARGET_PAGE_MASK)
363 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
a64d4718 364#ifdef ALIGNED_ONLY
aac1fb05 365 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326 366 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
aac1fb05 367 }
a64d4718 368#endif
d5a11fef 369 tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
aac1fb05
RH
370 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
371 }
372
373 /* Handle an IO access. */
374 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
375 hwaddr ioaddr;
376 if ((addr & (DATA_SIZE - 1)) != 0) {
377 goto do_unaligned_access;
378 }
379 ioaddr = env->iotlb[mmu_idx][index];
867b3201
RH
380
381 /* ??? Note that the io helpers always read data in the target
382 byte ordering. We should push the LE/BE request down into io. */
383 val = TGT_LE(val);
aac1fb05
RH
384 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
385 return;
386 }
387
388 /* Handle slow unaligned access (it spans two pages or IO). */
389 if (DATA_SIZE > 1
390 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
391 >= TARGET_PAGE_SIZE)) {
392 int i;
393 do_unaligned_access:
a64d4718 394#ifdef ALIGNED_ONLY
93e22326 395 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
aac1fb05
RH
396#endif
397 /* XXX: not efficient, but simple */
398 /* Note: relies on the fact that tlb_fill() does not remove the
399 * previous page from the TLB cache. */
400 for (i = DATA_SIZE - 1; i >= 0; i--) {
867b3201 401 /* Little-endian extract. */
aac1fb05 402 uint8_t val8 = val >> (i * 8);
867b3201
RH
403 /* Note the adjustment at the beginning of the function.
404 Undo that for the recursion. */
405 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
406 mmu_idx, retaddr + GETPC_ADJ);
407 }
408 return;
409 }
410
411 /* Handle aligned access or unaligned access in the same page. */
412#ifdef ALIGNED_ONLY
413 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326 414 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
415 }
416#endif
417
418 haddr = addr + env->tlb_table[mmu_idx][index].addend;
419#if DATA_SIZE == 1
420 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
421#else
422 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
a64d4718 423#endif
867b3201
RH
424}
425
426#if DATA_SIZE > 1
427void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
428 int mmu_idx, uintptr_t retaddr)
429{
430 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
431 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
432 uintptr_t haddr;
433
434 /* Adjust the given return address. */
435 retaddr -= GETPC_ADJ;
436
437 /* If the TLB entry is for a different page, reload and try again. */
438 if ((addr & TARGET_PAGE_MASK)
439 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
440#ifdef ALIGNED_ONLY
441 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326 442 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
443 }
444#endif
d5a11fef 445 tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
446 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
447 }
448
449 /* Handle an IO access. */
450 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
451 hwaddr ioaddr;
452 if ((addr & (DATA_SIZE - 1)) != 0) {
453 goto do_unaligned_access;
454 }
455 ioaddr = env->iotlb[mmu_idx][index];
456
457 /* ??? Note that the io helpers always read data in the target
458 byte ordering. We should push the LE/BE request down into io. */
459 val = TGT_BE(val);
460 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
461 return;
462 }
463
464 /* Handle slow unaligned access (it spans two pages or IO). */
465 if (DATA_SIZE > 1
466 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
467 >= TARGET_PAGE_SIZE)) {
468 int i;
469 do_unaligned_access:
470#ifdef ALIGNED_ONLY
93e22326 471 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
472#endif
473 /* XXX: not efficient, but simple */
474 /* Note: relies on the fact that tlb_fill() does not remove the
475 * previous page from the TLB cache. */
476 for (i = DATA_SIZE - 1; i >= 0; i--) {
477 /* Big-endian extract. */
478 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
0f842f8a
RH
479 /* Note the adjustment at the beginning of the function.
480 Undo that for the recursion. */
aac1fb05 481 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
0f842f8a 482 mmu_idx, retaddr + GETPC_ADJ);
b92e5a22 483 }
aac1fb05
RH
484 return;
485 }
486
487 /* Handle aligned access or unaligned access in the same page. */
a64d4718 488#ifdef ALIGNED_ONLY
aac1fb05 489 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326 490 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
b92e5a22 491 }
aac1fb05
RH
492#endif
493
494 haddr = addr + env->tlb_table[mmu_idx][index].addend;
867b3201 495 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
b92e5a22 496}
867b3201 497#endif /* DATA_SIZE > 1 */
b92e5a22 498
e25c3887
RH
499void
500glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
501 DATA_TYPE val, int mmu_idx)
502{
867b3201 503 helper_te_st_name(env, addr, val, mmu_idx, GETRA());
e25c3887
RH
504}
505
b769d8fe
FB
506#endif /* !defined(SOFTMMU_CODE_ACCESS) */
507
508#undef READ_ACCESS_TYPE
b92e5a22
FB
509#undef SHIFT
510#undef DATA_TYPE
511#undef SUFFIX
701e3a5c 512#undef LSUFFIX
b92e5a22 513#undef DATA_SIZE
84b7b8e7 514#undef ADDR_READ
c8f94df5
RH
515#undef WORD_TYPE
516#undef SDATA_TYPE
517#undef USUFFIX
518#undef SSUFFIX
867b3201
RH
519#undef BSWAP
520#undef TGT_BE
521#undef TGT_LE
522#undef CPU_BE
523#undef CPU_LE
524#undef helper_le_ld_name
525#undef helper_be_ld_name
526#undef helper_le_lds_name
527#undef helper_be_lds_name
528#undef helper_le_st_name
529#undef helper_be_st_name
530#undef helper_te_ld_name
531#undef helper_te_st_name