]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - include/linux/bpf_verifier.h
Merge tag 'powerpc-5.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-kernels.git] / include / linux / bpf_verifier.h
CommitLineData
25763b3c 1/* SPDX-License-Identifier: GPL-2.0-only */
58e2af8b 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
58e2af8b
JK
3 */
4#ifndef _LINUX_BPF_VERIFIER_H
5#define _LINUX_BPF_VERIFIER_H 1
6
7#include <linux/bpf.h> /* for enum bpf_reg_type */
22dc4a0f 8#include <linux/btf.h> /* for struct btf and btf_id() */
58e2af8b 9#include <linux/filter.h> /* for MAX_BPF_STACK */
f1174f77 10#include <linux/tnum.h>
58e2af8b 11
b03c9f9f
EC
12/* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15 */
bb7f0f98 16#define BPF_MAX_VAR_OFF (1 << 29)
b03c9f9f
EC
17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
19 */
bb7f0f98 20#define BPF_MAX_VAR_SIZ (1 << 29)
48461135 21
8e9cd9ce
EC
22/* Liveness marks, used for registers and spilled-regs (in stack slots).
23 * Read marks propagate upwards until they find a write mark; they record that
24 * "one of this state's descendants read this reg" (and therefore the reg is
25 * relevant for states_equal() checks).
26 * Write marks collect downwards and do not propagate; they record that "the
27 * straight-line code that reached this state (from its parent) wrote this reg"
28 * (and therefore that reads propagated from this state or its descendants
29 * should not propagate to its parent).
30 * A state with a write mark can receive read marks; it just won't propagate
31 * them to its parent, since the write mark is a property, not of the state,
32 * but of the link between it and its parent. See mark_reg_read() and
33 * mark_stack_slot_read() in kernel/bpf/verifier.c.
34 */
dc503a8a
EC
35enum bpf_reg_liveness {
36 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
5327ed3d
JW
37 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
38 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
39 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
40 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
41 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
dc503a8a
EC
42};
43
58e2af8b 44struct bpf_reg_state {
679c782d 45 /* Ordering of fields matters. See states_equal() */
58e2af8b 46 enum bpf_reg_type type;
22dc4a0f
AN
47 /* Fixed part of pointer offset, pointer types only */
48 s32 off;
58e2af8b 49 union {
f1174f77 50 /* valid when type == PTR_TO_PACKET */
6d94e741 51 int range;
58e2af8b
JK
52
53 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
54 * PTR_TO_MAP_VALUE_OR_NULL
55 */
56 struct bpf_map *map_ptr;
0962590e 57
22dc4a0f
AN
58 /* for PTR_TO_BTF_ID */
59 struct {
60 struct btf *btf;
61 u32 btf_id;
62 };
9e15db66 63
457f4436
AN
64 u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
65
0962590e 66 /* Max size from any of the above. */
22dc4a0f
AN
67 struct {
68 unsigned long raw1;
69 unsigned long raw2;
70 } raw;
69c087ba
YS
71
72 u32 subprogno; /* for PTR_TO_FUNC */
58e2af8b 73 };
f1174f77
EC
74 /* For PTR_TO_PACKET, used to find other pointers with the same variable
75 * offset, so they can share range knowledge.
76 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
77 * came from, when one is tested for != NULL.
457f4436
AN
78 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
79 * for the purpose of tracking that it's freed.
c64b7983
JS
80 * For PTR_TO_SOCKET this is used to share which pointers retain the
81 * same reference to the socket, to determine proper reference freeing.
f1174f77 82 */
d2a4dd37 83 u32 id;
1b986589
MKL
84 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
85 * from a pointer-cast helper, bpf_sk_fullsock() and
86 * bpf_tcp_sock().
87 *
88 * Consider the following where "sk" is a reference counted
89 * pointer returned from "sk = bpf_sk_lookup_tcp();":
90 *
91 * 1: sk = bpf_sk_lookup_tcp();
92 * 2: if (!sk) { return 0; }
93 * 3: fullsock = bpf_sk_fullsock(sk);
94 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
95 * 5: tp = bpf_tcp_sock(fullsock);
96 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
97 * 7: bpf_sk_release(sk);
98 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
99 *
100 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
101 * "tp" ptr should be invalidated also. In order to do that,
102 * the reg holding "fullsock" and "sk" need to remember
103 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
104 * such that the verifier can reset all regs which have
105 * ref_obj_id matching the sk_reg->id.
106 *
107 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
108 * sk_reg->id will stay as NULL-marking purpose only.
109 * After NULL-marking is done, sk_reg->id can be reset to 0.
110 *
111 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
112 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
113 *
114 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
115 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
116 * which is the same as sk_reg->ref_obj_id.
117 *
118 * From the verifier perspective, if sk, fullsock and tp
119 * are not NULL, they are the same ptr with different
120 * reg->type. In particular, bpf_sk_release(tp) is also
121 * allowed and has the same effect as bpf_sk_release(sk).
122 */
123 u32 ref_obj_id;
f1174f77
EC
124 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
125 * the actual value.
126 * For pointer types, this represents the variable part of the offset
127 * from the pointed-to object, and is shared with all bpf_reg_states
128 * with the same id as us.
129 */
130 struct tnum var_off;
d2a4dd37 131 /* Used to determine if any memory access using this register will
f1174f77
EC
132 * result in a bad access.
133 * These refer to the same value as var_off, not necessarily the actual
134 * contents of the register.
d2a4dd37 135 */
b03c9f9f
EC
136 s64 smin_value; /* minimum possible (s64)value */
137 s64 smax_value; /* maximum possible (s64)value */
138 u64 umin_value; /* minimum possible (u64)value */
139 u64 umax_value; /* maximum possible (u64)value */
3f50f132
JF
140 s32 s32_min_value; /* minimum possible (s32)value */
141 s32 s32_max_value; /* maximum possible (s32)value */
142 u32 u32_min_value; /* minimum possible (u32)value */
143 u32 u32_max_value; /* maximum possible (u32)value */
679c782d
EC
144 /* parentage chain for liveness checking */
145 struct bpf_reg_state *parent;
f4d7e40a
AS
146 /* Inside the callee two registers can be both PTR_TO_STACK like
147 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
148 * while another to the caller's stack. To differentiate them 'frameno'
149 * is used which is an index in bpf_verifier_state->frame[] array
150 * pointing to bpf_func_state.
f4d7e40a
AS
151 */
152 u32 frameno;
5327ed3d
JW
153 /* Tracks subreg definition. The stored value is the insn_idx of the
154 * writing insn. This is safe because subreg_def is used before any insn
155 * patching which only happens after main verification finished.
156 */
157 s32 subreg_def;
dc503a8a 158 enum bpf_reg_liveness live;
b5dc0163
AS
159 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
160 bool precise;
58e2af8b
JK
161};
162
163enum bpf_stack_slot_type {
164 STACK_INVALID, /* nothing was stored in this stack slot */
165 STACK_SPILL, /* register spilled into stack */
cc2b14d5
AS
166 STACK_MISC, /* BPF program wrote some data into this slot */
167 STACK_ZERO, /* BPF program wrote constant zero */
58e2af8b
JK
168};
169
170#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
171
638f5b90
AS
172struct bpf_stack_state {
173 struct bpf_reg_state spilled_ptr;
174 u8 slot_type[BPF_REG_SIZE];
175};
176
fd978bf7
JS
177struct bpf_reference_state {
178 /* Track each reference created with a unique id, even if the same
179 * instruction creates the reference multiple times (eg, via CALL).
180 */
181 int id;
182 /* Instruction where the allocation of this reference occurred. This
183 * is used purely to inform the user of a reference leak.
184 */
185 int insn_idx;
186};
187
58e2af8b
JK
188/* state of the program:
189 * type of all registers and stack info
190 */
f4d7e40a 191struct bpf_func_state {
58e2af8b 192 struct bpf_reg_state regs[MAX_BPF_REG];
f4d7e40a
AS
193 /* index of call instruction that called into this func */
194 int callsite;
195 /* stack frame number of this function state from pov of
196 * enclosing bpf_verifier_state.
197 * 0 = main function, 1 = first callee.
198 */
199 u32 frameno;
01f810ac 200 /* subprog number == index within subprog_info
f4d7e40a
AS
201 * zero == main subprog
202 */
203 u32 subprogno;
204
fd978bf7
JS
205 /* The following fields should be last. See copy_func_state() */
206 int acquired_refs;
207 struct bpf_reference_state *refs;
638f5b90 208 int allocated_stack;
69c087ba 209 bool in_callback_fn;
638f5b90 210 struct bpf_stack_state *stack;
58e2af8b
JK
211};
212
b5dc0163
AS
213struct bpf_idx_pair {
214 u32 prev_idx;
215 u32 idx;
216};
217
f4d7e40a
AS
218#define MAX_CALL_FRAMES 8
219struct bpf_verifier_state {
220 /* call stack tracking */
221 struct bpf_func_state *frame[MAX_CALL_FRAMES];
2589726d
AS
222 struct bpf_verifier_state *parent;
223 /*
224 * 'branches' field is the number of branches left to explore:
225 * 0 - all possible paths from this state reached bpf_exit or
226 * were safely pruned
227 * 1 - at least one path is being explored.
228 * This state hasn't reached bpf_exit
229 * 2 - at least two paths are being explored.
230 * This state is an immediate parent of two children.
231 * One is fallthrough branch with branches==1 and another
232 * state is pushed into stack (to be explored later) also with
233 * branches==1. The parent of this state has branches==1.
234 * The verifier state tree connected via 'parent' pointer looks like:
235 * 1
236 * 1
237 * 2 -> 1 (first 'if' pushed into stack)
238 * 1
239 * 2 -> 1 (second 'if' pushed into stack)
240 * 1
241 * 1
242 * 1 bpf_exit.
243 *
244 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
245 * and the verifier state tree will look:
246 * 1
247 * 1
248 * 2 -> 1 (first 'if' pushed into stack)
249 * 1
250 * 1 -> 1 (second 'if' pushed into stack)
251 * 0
252 * 0
253 * 0 bpf_exit.
254 * After pop_stack() the do_check() will resume at second 'if'.
255 *
256 * If is_state_visited() sees a state with branches > 0 it means
257 * there is a loop. If such state is exactly equal to the current state
258 * it's an infinite loop. Note states_equal() checks for states
259 * equvalency, so two states being 'states_equal' does not mean
260 * infinite loop. The exact comparison is provided by
261 * states_maybe_looping() function. It's a stronger pre-check and
262 * much faster than states_equal().
263 *
264 * This algorithm may not find all possible infinite loops or
265 * loop iteration count may be too high.
266 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
267 */
268 u32 branches;
dc2a4ebc 269 u32 insn_idx;
f4d7e40a 270 u32 curframe;
d83525ca 271 u32 active_spin_lock;
979d63d5 272 bool speculative;
b5dc0163
AS
273
274 /* first and last insn idx of this verifier state */
275 u32 first_insn_idx;
276 u32 last_insn_idx;
277 /* jmp history recorded from first to last.
278 * backtracking is using it to go from last to first.
279 * For most states jmp_history_cnt is [0-3].
280 * For loops can go up to ~40.
281 */
282 struct bpf_idx_pair *jmp_history;
283 u32 jmp_history_cnt;
f4d7e40a
AS
284};
285
f3709f69
JS
286#define bpf_get_spilled_reg(slot, frame) \
287 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
288 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \
289 ? &frame->stack[slot].spilled_ptr : NULL)
290
291/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
292#define bpf_for_each_spilled_reg(iter, frame, reg) \
293 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
294 iter < frame->allocated_stack / BPF_REG_SIZE; \
295 iter++, reg = bpf_get_spilled_reg(iter, frame))
296
58e2af8b
JK
297/* linked list of verifier states used to prune search */
298struct bpf_verifier_state_list {
299 struct bpf_verifier_state state;
300 struct bpf_verifier_state_list *next;
9f4686c4 301 int miss_cnt, hit_cnt;
58e2af8b
JK
302};
303
979d63d5
DB
304/* Possible states for alu_state member. */
305#define BPF_ALU_SANITIZE_SRC 1U
306#define BPF_ALU_SANITIZE_DST 2U
307#define BPF_ALU_NEG_VALUE (1U << 2)
d3bd7413 308#define BPF_ALU_NON_POINTER (1U << 3)
979d63d5
DB
309#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
310 BPF_ALU_SANITIZE_DST)
311
58e2af8b 312struct bpf_insn_aux_data {
81ed18ab
AS
313 union {
314 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
d2e4c1e6 315 unsigned long map_ptr_state; /* pointer/poison value for maps */
1c2a088a 316 s32 call_imm; /* saved imm field of call insn */
979d63d5 317 u32 alu_limit; /* limit for add/sub register with pointer */
d8eca5bb
DB
318 struct {
319 u32 map_index; /* index into used_maps[] */
320 u32 map_off; /* offset from value base address */
321 };
4976b718
HL
322 struct {
323 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
324 union {
22dc4a0f
AN
325 struct {
326 struct btf *btf;
327 u32 btf_id; /* btf_id for struct typed var */
328 };
4976b718
HL
329 u32 mem_size; /* mem_size for non-struct typed var */
330 };
331 } btf_var;
81ed18ab 332 };
d2e4c1e6 333 u64 map_key_state; /* constant (32 bit) key tracking for maps */
23994631 334 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
af86ca4e 335 int sanitize_stack_off; /* stack slot to be cleared */
51c39bb1 336 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
5327ed3d 337 bool zext_dst; /* this insn zero extends dst reg */
979d63d5 338 u8 alu_state; /* used in combination with alu_limit */
51c39bb1
AS
339
340 /* below fields are initialized once */
9e4c24e7 341 unsigned int orig_idx; /* original instruction index */
51c39bb1 342 bool prune_point;
58e2af8b
JK
343};
344
345#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
541c3bad 346#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
58e2af8b 347
a2a7d570
JK
348#define BPF_VERIFIER_TMP_LOG_SIZE 1024
349
b9193c1b 350struct bpf_verifier_log {
e7bf8249 351 u32 level;
a2a7d570 352 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
e7bf8249
JK
353 char __user *ubuf;
354 u32 len_used;
355 u32 len_total;
356};
357
b9193c1b 358static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
e7bf8249
JK
359{
360 return log->len_used >= log->len_total - 1;
361}
362
06ee7115
AS
363#define BPF_LOG_LEVEL1 1
364#define BPF_LOG_LEVEL2 2
365#define BPF_LOG_STATS 4
366#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
367#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS)
8580ac94 368#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
06ee7115 369
77d2e05a
MKL
370static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
371{
efc68158
THJ
372 return log &&
373 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
374 log->level == BPF_LOG_KERNEL);
77d2e05a
MKL
375}
376
cc8b0b92
AS
377#define BPF_MAX_SUBPROGS 256
378
9c8105bd 379struct bpf_subprog_info {
8c1b6e69 380 /* 'start' has to be the first field otherwise find_subprog() won't work */
9c8105bd 381 u32 start; /* insn idx of function entry point */
c454a46b 382 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
9c8105bd 383 u16 stack_depth; /* max. stack depth used by this function */
7f6e4312 384 bool has_tail_call;
ebf7d1f5 385 bool tail_call_reachable;
09b28d76 386 bool has_ld_abs;
9c8105bd
JW
387};
388
58e2af8b
JK
389/* single container for all structs
390 * one verifier_env per bpf_check() call
391 */
392struct bpf_verifier_env {
c08435ec
DB
393 u32 insn_idx;
394 u32 prev_insn_idx;
58e2af8b 395 struct bpf_prog *prog; /* eBPF program being verified */
00176a34 396 const struct bpf_verifier_ops *ops;
58e2af8b
JK
397 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
398 int stack_size; /* number of states to be processed */
e07b98d9 399 bool strict_alignment; /* perform strict pointer alignment checks */
10d274e8 400 bool test_state_freq; /* test verifier with different pruning frequency */
638f5b90 401 struct bpf_verifier_state *cur_state; /* current verifier state */
58e2af8b 402 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
9f4686c4 403 struct bpf_verifier_state_list *free_list;
58e2af8b 404 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
541c3bad 405 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
58e2af8b 406 u32 used_map_cnt; /* number of used maps */
541c3bad 407 u32 used_btf_cnt; /* number of used BTF objects */
58e2af8b
JK
408 u32 id_gen; /* used to generate unique reg IDs */
409 bool allow_ptr_leaks;
01f810ac 410 bool allow_uninit_stack;
41c48f3a 411 bool allow_ptr_to_map_access;
2c78ee89
AS
412 bool bpf_capable;
413 bool bypass_spec_v1;
414 bool bypass_spec_v4;
58e2af8b
JK
415 bool seen_direct_write;
416 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
d9762e84 417 const struct bpf_line_info *prev_linfo;
b9193c1b 418 struct bpf_verifier_log log;
9c8105bd 419 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
7df737e9
AS
420 struct {
421 int *insn_state;
422 int *insn_stack;
423 int cur_stack;
424 } cfg;
51c39bb1 425 u32 pass_cnt; /* number of times do_check() was called */
cc8b0b92 426 u32 subprog_cnt;
06ee7115 427 /* number of instructions analyzed by the verifier */
2589726d
AS
428 u32 prev_insn_processed, insn_processed;
429 /* number of jmps, calls, exits analyzed so far */
430 u32 prev_jmps_processed, jmps_processed;
06ee7115
AS
431 /* total verification time */
432 u64 verification_time;
433 /* maximum number of verifier states kept in 'branching' instructions */
434 u32 max_states_per_insn;
435 /* total number of allocated verifier states */
436 u32 total_states;
437 /* some states are freed during program analysis.
438 * this is peak number of states. this number dominates kernel
439 * memory consumption during verification
440 */
441 u32 peak_states;
442 /* longest register parentage chain walked for liveness marking */
443 u32 longest_mark_read_walk;
58e2af8b
JK
444};
445
be2d04d1
MM
446__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
447 const char *fmt, va_list args);
430e68d1
QM
448__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
449 const char *fmt, ...);
9e15db66
AS
450__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
451 const char *fmt, ...);
430e68d1 452
fd978bf7 453static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
638f5b90 454{
f4d7e40a
AS
455 struct bpf_verifier_state *cur = env->cur_state;
456
fd978bf7
JS
457 return cur->frame[cur->curframe];
458}
459
460static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
461{
462 return cur_func(env)->regs;
638f5b90
AS
463}
464
a40a2632 465int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
cae1927c
JK
466int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
467 int insn_idx, int prev_insn_idx);
c941ce9c 468int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
08ca90af
JK
469void
470bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
471 struct bpf_insn *insn);
472void
473bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
ab3f0063 474
51c39bb1
AS
475int check_ctx_reg(struct bpf_verifier_env *env,
476 const struct bpf_reg_state *reg, int regno);
e5069b9c
DB
477int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
478 u32 regno, u32 mem_size);
51c39bb1 479
f7b12b6f
THJ
480/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
481static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
22dc4a0f 482 struct btf *btf, u32 btf_id)
f7b12b6f 483{
22dc4a0f
AN
484 if (tgt_prog)
485 return ((u64)tgt_prog->aux->id << 32) | btf_id;
486 else
487 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
f7b12b6f
THJ
488}
489
441e8c66
THJ
490/* unpack the IDs from the key as constructed above */
491static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
492{
493 if (obj_id)
494 *obj_id = key >> 32;
495 if (btf_id)
496 *btf_id = key & 0x7FFFFFFF;
497}
498
f7b12b6f
THJ
499int bpf_check_attach_target(struct bpf_verifier_log *log,
500 const struct bpf_prog *prog,
501 const struct bpf_prog *tgt_prog,
502 u32 btf_id,
503 struct bpf_attach_target_info *tgt_info);
504
58e2af8b 505#endif /* _LINUX_BPF_VERIFIER_H */