]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/crypto.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[mirror_ubuntu-eoan-kernel.git] / include / linux / crypto.h
CommitLineData
1da177e4
LT
1/*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
5cb1454b 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
1da177e4
LT
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
18735dd8 9 * and Nettle, by Niels Möller.
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17#ifndef _LINUX_CRYPTO_H
18#define _LINUX_CRYPTO_H
19
60063497 20#include <linux/atomic.h>
1da177e4 21#include <linux/kernel.h>
1da177e4 22#include <linux/list.h>
187f1882 23#include <linux/bug.h>
79911102 24#include <linux/slab.h>
1da177e4 25#include <linux/string.h>
79911102 26#include <linux/uaccess.h>
ada69a16 27#include <linux/completion.h>
1da177e4 28
5d26a105
KC
29/*
30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31 * arbitrary modules to be loaded. Loading from userspace may still need the
32 * unprefixed names, so retains those aliases as well.
33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35 * expands twice on the same line. Instead, use a separate base name for the
36 * alias.
37 */
38#define MODULE_ALIAS_CRYPTO(name) \
39 __MODULE_INFO(alias, alias_userspace, name); \
40 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
41
1da177e4
LT
42/*
43 * Algorithm masks and types.
44 */
2825982d 45#define CRYPTO_ALG_TYPE_MASK 0x0000000f
1da177e4 46#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
004a403c
LH
47#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
48#define CRYPTO_ALG_TYPE_AEAD 0x00000003
055bcee3 49#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
332f8840 50#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
4e6c3df4 51#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
61da88e2 52#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
4e5f2c40 53#define CRYPTO_ALG_TYPE_KPP 0x00000008
2ebda74f 54#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
1ab53a77 55#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
17f0f4a4 56#define CRYPTO_ALG_TYPE_RNG 0x0000000c
3c339ab8 57#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
63044c4f
GC
58#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
59#define CRYPTO_ALG_TYPE_HASH 0x0000000e
60#define CRYPTO_ALG_TYPE_SHASH 0x0000000e
61#define CRYPTO_ALG_TYPE_AHASH 0x0000000f
055bcee3
HX
62
63#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
63044c4f 64#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
332f8840 65#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
1ab53a77 66#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
1da177e4 67
2825982d 68#define CRYPTO_ALG_LARVAL 0x00000010
6bfd4809
HX
69#define CRYPTO_ALG_DEAD 0x00000020
70#define CRYPTO_ALG_DYING 0x00000040
f3f632d6 71#define CRYPTO_ALG_ASYNC 0x00000080
2825982d 72
6010439f
HX
73/*
74 * Set this bit if and only if the algorithm requires another algorithm of
75 * the same type to handle corner cases.
76 */
77#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
78
ecfc4329
HX
79/*
80 * This bit is set for symmetric key ciphers that have already been wrapped
81 * with a generic IV generator to prevent them from being wrapped again.
82 */
83#define CRYPTO_ALG_GENIV 0x00000200
84
73d3864a
HX
85/*
86 * Set if the algorithm has passed automated run-time testing. Note that
87 * if there is no run-time testing for a given algorithm it is considered
88 * to have passed.
89 */
90
91#define CRYPTO_ALG_TESTED 0x00000400
92
64a947b1 93/*
864e0981 94 * Set if the algorithm is an instance that is built from templates.
64a947b1
SK
95 */
96#define CRYPTO_ALG_INSTANCE 0x00000800
97
d912bb76
NM
98/* Set this bit if the algorithm provided is hardware accelerated but
99 * not available to userspace via instruction set or so.
100 */
101#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
102
06ca7f68
SM
103/*
104 * Mark a cipher as a service implementation only usable by another
105 * cipher and never by a normal user of the kernel crypto API
106 */
107#define CRYPTO_ALG_INTERNAL 0x00002000
108
a208fa8f
EB
109/*
110 * Set if the algorithm has a ->setkey() method but can be used without
111 * calling it first, i.e. there is a default key.
112 */
113#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
114
e2861fa7
MG
115/*
116 * Don't trigger module loading
117 */
118#define CRYPTO_NOLOAD 0x00008000
119
1da177e4
LT
120/*
121 * Transform masks and values (for crt_flags).
122 */
9fa68f62
EB
123#define CRYPTO_TFM_NEED_KEY 0x00000001
124
1da177e4
LT
125#define CRYPTO_TFM_REQ_MASK 0x000fff00
126#define CRYPTO_TFM_RES_MASK 0xfff00000
127
1da177e4 128#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
64baf3cf 129#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
32e3983f 130#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
1da177e4
LT
131#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
132#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
133#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
134#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
135#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
136
137/*
138 * Miscellaneous stuff.
139 */
f437a3f4 140#define CRYPTO_MAX_ALG_NAME 128
1da177e4 141
79911102
HX
142/*
143 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
144 * declaration) is used to ensure that the crypto_tfm context structure is
145 * aligned correctly for the given architecture so that there are no alignment
146 * faults for C data types. In particular, this is required on platforms such
147 * as arm where pointers are 32-bit aligned but there are data types such as
148 * u64 which require 64-bit alignment.
149 */
79911102 150#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
79911102 151
79911102 152#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
79911102 153
1da177e4 154struct scatterlist;
32e3983f
HX
155struct crypto_ablkcipher;
156struct crypto_async_request;
5cde0af2 157struct crypto_blkcipher;
40725181 158struct crypto_tfm;
e853c3cf 159struct crypto_type;
61da88e2 160struct skcipher_givcrypt_request;
40725181 161
32e3983f
HX
162typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
163
0d7f488f
SM
164/**
165 * DOC: Block Cipher Context Data Structures
166 *
167 * These data structures define the operating context for each block cipher
168 * type.
169 */
170
32e3983f
HX
171struct crypto_async_request {
172 struct list_head list;
173 crypto_completion_t complete;
174 void *data;
175 struct crypto_tfm *tfm;
176
177 u32 flags;
178};
179
180struct ablkcipher_request {
181 struct crypto_async_request base;
182
183 unsigned int nbytes;
184
185 void *info;
186
187 struct scatterlist *src;
188 struct scatterlist *dst;
189
190 void *__ctx[] CRYPTO_MINALIGN_ATTR;
191};
192
5cde0af2
HX
193struct blkcipher_desc {
194 struct crypto_blkcipher *tfm;
195 void *info;
196 u32 flags;
197};
198
40725181
HX
199struct cipher_desc {
200 struct crypto_tfm *tfm;
6c2bb98b 201 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
40725181
HX
202 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
203 const u8 *src, unsigned int nbytes);
204 void *info;
205};
1da177e4 206
0d7f488f
SM
207/**
208 * DOC: Block Cipher Algorithm Definitions
209 *
210 * These data structures define modular crypto algorithm implementations,
211 * managed via crypto_register_alg() and crypto_unregister_alg().
212 */
213
214/**
215 * struct ablkcipher_alg - asynchronous block cipher definition
216 * @min_keysize: Minimum key size supported by the transformation. This is the
217 * smallest key length supported by this transformation algorithm.
218 * This must be set to one of the pre-defined values as this is
219 * not hardware specific. Possible values for this field can be
220 * found via git grep "_MIN_KEY_SIZE" include/crypto/
221 * @max_keysize: Maximum key size supported by the transformation. This is the
222 * largest key length supported by this transformation algorithm.
223 * This must be set to one of the pre-defined values as this is
224 * not hardware specific. Possible values for this field can be
225 * found via git grep "_MAX_KEY_SIZE" include/crypto/
226 * @setkey: Set key for the transformation. This function is used to either
227 * program a supplied key into the hardware or store the key in the
228 * transformation context for programming it later. Note that this
229 * function does modify the transformation context. This function can
230 * be called multiple times during the existence of the transformation
231 * object, so one must make sure the key is properly reprogrammed into
232 * the hardware. This function is also responsible for checking the key
233 * length for validity. In case a software fallback was put in place in
234 * the @cra_init call, this function might need to use the fallback if
235 * the algorithm doesn't support all of the key sizes.
236 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
237 * the supplied scatterlist containing the blocks of data. The crypto
238 * API consumer is responsible for aligning the entries of the
239 * scatterlist properly and making sure the chunks are correctly
240 * sized. In case a software fallback was put in place in the
241 * @cra_init call, this function might need to use the fallback if
242 * the algorithm doesn't support all of the key sizes. In case the
243 * key was stored in transformation context, the key might need to be
244 * re-programmed into the hardware in this function. This function
245 * shall not modify the transformation context, as this function may
246 * be called in parallel with the same transformation object.
247 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
248 * and the conditions are exactly the same.
249 * @givencrypt: Update the IV for encryption. With this function, a cipher
250 * implementation may provide the function on how to update the IV
251 * for encryption.
252 * @givdecrypt: Update the IV for decryption. This is the reverse of
253 * @givencrypt .
254 * @geniv: The transformation implementation may use an "IV generator" provided
255 * by the kernel crypto API. Several use cases have a predefined
256 * approach how IVs are to be updated. For such use cases, the kernel
257 * crypto API provides ready-to-use implementations that can be
258 * referenced with this variable.
259 * @ivsize: IV size applicable for transformation. The consumer must provide an
260 * IV of exactly that size to perform the encrypt or decrypt operation.
261 *
262 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
263 * mandatory and must be filled.
1da177e4 264 */
b5b7f088
HX
265struct ablkcipher_alg {
266 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
267 unsigned int keylen);
268 int (*encrypt)(struct ablkcipher_request *req);
269 int (*decrypt)(struct ablkcipher_request *req);
61da88e2
HX
270 int (*givencrypt)(struct skcipher_givcrypt_request *req);
271 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
b5b7f088 272
23508e11
HX
273 const char *geniv;
274
b5b7f088
HX
275 unsigned int min_keysize;
276 unsigned int max_keysize;
277 unsigned int ivsize;
278};
279
0d7f488f
SM
280/**
281 * struct blkcipher_alg - synchronous block cipher definition
282 * @min_keysize: see struct ablkcipher_alg
283 * @max_keysize: see struct ablkcipher_alg
284 * @setkey: see struct ablkcipher_alg
285 * @encrypt: see struct ablkcipher_alg
286 * @decrypt: see struct ablkcipher_alg
287 * @geniv: see struct ablkcipher_alg
288 * @ivsize: see struct ablkcipher_alg
289 *
290 * All fields except @geniv and @ivsize are mandatory and must be filled.
291 */
5cde0af2
HX
292struct blkcipher_alg {
293 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
294 unsigned int keylen);
295 int (*encrypt)(struct blkcipher_desc *desc,
296 struct scatterlist *dst, struct scatterlist *src,
297 unsigned int nbytes);
298 int (*decrypt)(struct blkcipher_desc *desc,
299 struct scatterlist *dst, struct scatterlist *src,
300 unsigned int nbytes);
301
23508e11
HX
302 const char *geniv;
303
5cde0af2
HX
304 unsigned int min_keysize;
305 unsigned int max_keysize;
306 unsigned int ivsize;
307};
308
0d7f488f
SM
309/**
310 * struct cipher_alg - single-block symmetric ciphers definition
311 * @cia_min_keysize: Minimum key size supported by the transformation. This is
312 * the smallest key length supported by this transformation
313 * algorithm. This must be set to one of the pre-defined
314 * values as this is not hardware specific. Possible values
315 * for this field can be found via git grep "_MIN_KEY_SIZE"
316 * include/crypto/
317 * @cia_max_keysize: Maximum key size supported by the transformation. This is
318 * the largest key length supported by this transformation
319 * algorithm. This must be set to one of the pre-defined values
320 * as this is not hardware specific. Possible values for this
321 * field can be found via git grep "_MAX_KEY_SIZE"
322 * include/crypto/
323 * @cia_setkey: Set key for the transformation. This function is used to either
324 * program a supplied key into the hardware or store the key in the
325 * transformation context for programming it later. Note that this
326 * function does modify the transformation context. This function
327 * can be called multiple times during the existence of the
328 * transformation object, so one must make sure the key is properly
329 * reprogrammed into the hardware. This function is also
330 * responsible for checking the key length for validity.
331 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
332 * single block of data, which must be @cra_blocksize big. This
333 * always operates on a full @cra_blocksize and it is not possible
334 * to encrypt a block of smaller size. The supplied buffers must
335 * therefore also be at least of @cra_blocksize size. Both the
336 * input and output buffers are always aligned to @cra_alignmask.
337 * In case either of the input or output buffer supplied by user
338 * of the crypto API is not aligned to @cra_alignmask, the crypto
339 * API will re-align the buffers. The re-alignment means that a
340 * new buffer will be allocated, the data will be copied into the
341 * new buffer, then the processing will happen on the new buffer,
342 * then the data will be copied back into the original buffer and
343 * finally the new buffer will be freed. In case a software
344 * fallback was put in place in the @cra_init call, this function
345 * might need to use the fallback if the algorithm doesn't support
346 * all of the key sizes. In case the key was stored in
347 * transformation context, the key might need to be re-programmed
348 * into the hardware in this function. This function shall not
349 * modify the transformation context, as this function may be
350 * called in parallel with the same transformation object.
351 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
352 * @cia_encrypt, and the conditions are exactly the same.
353 *
354 * All fields are mandatory and must be filled.
355 */
1da177e4
LT
356struct cipher_alg {
357 unsigned int cia_min_keysize;
358 unsigned int cia_max_keysize;
6c2bb98b 359 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
560c06ae 360 unsigned int keylen);
6c2bb98b
HX
361 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
362 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
363};
364
1da177e4 365struct compress_alg {
6c2bb98b
HX
366 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
367 unsigned int slen, u8 *dst, unsigned int *dlen);
368 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
369 unsigned int slen, u8 *dst, unsigned int *dlen);
1da177e4
LT
370};
371
17f0f4a4 372
b5b7f088 373#define cra_ablkcipher cra_u.ablkcipher
5cde0af2 374#define cra_blkcipher cra_u.blkcipher
1da177e4 375#define cra_cipher cra_u.cipher
1da177e4
LT
376#define cra_compress cra_u.compress
377
0d7f488f
SM
378/**
379 * struct crypto_alg - definition of a cryptograpic cipher algorithm
380 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
381 * CRYPTO_ALG_* flags for the flags which go in here. Those are
382 * used for fine-tuning the description of the transformation
383 * algorithm.
384 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
385 * of the smallest possible unit which can be transformed with
386 * this algorithm. The users must respect this value.
387 * In case of HASH transformation, it is possible for a smaller
388 * block than @cra_blocksize to be passed to the crypto API for
389 * transformation, in case of any other transformation type, an
390 * error will be returned upon any attempt to transform smaller
391 * than @cra_blocksize chunks.
392 * @cra_ctxsize: Size of the operational context of the transformation. This
393 * value informs the kernel crypto API about the memory size
394 * needed to be allocated for the transformation context.
395 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
396 * buffer containing the input data for the algorithm must be
397 * aligned to this alignment mask. The data buffer for the
398 * output data must be aligned to this alignment mask. Note that
399 * the Crypto API will do the re-alignment in software, but
400 * only under special conditions and there is a performance hit.
401 * The re-alignment happens at these occasions for different
402 * @cra_u types: cipher -- For both input data and output data
403 * buffer; ahash -- For output hash destination buf; shash --
404 * For output hash destination buf.
405 * This is needed on hardware which is flawed by design and
406 * cannot pick data from arbitrary addresses.
407 * @cra_priority: Priority of this transformation implementation. In case
408 * multiple transformations with same @cra_name are available to
409 * the Crypto API, the kernel will use the one with highest
410 * @cra_priority.
411 * @cra_name: Generic name (usable by multiple implementations) of the
412 * transformation algorithm. This is the name of the transformation
413 * itself. This field is used by the kernel when looking up the
414 * providers of particular transformation.
415 * @cra_driver_name: Unique name of the transformation provider. This is the
416 * name of the provider of the transformation. This can be any
417 * arbitrary value, but in the usual case, this contains the
418 * name of the chip or provider and the name of the
419 * transformation algorithm.
420 * @cra_type: Type of the cryptographic transformation. This is a pointer to
421 * struct crypto_type, which implements callbacks common for all
12f7c14a 422 * transformation types. There are multiple options:
0d7f488f 423 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
b0d955ba 424 * &crypto_ahash_type, &crypto_rng_type.
0d7f488f
SM
425 * This field might be empty. In that case, there are no common
426 * callbacks. This is the case for: cipher, compress, shash.
427 * @cra_u: Callbacks implementing the transformation. This is a union of
428 * multiple structures. Depending on the type of transformation selected
429 * by @cra_type and @cra_flags above, the associated structure must be
430 * filled with callbacks. This field might be empty. This is the case
431 * for ahash, shash.
432 * @cra_init: Initialize the cryptographic transformation object. This function
433 * is used to initialize the cryptographic transformation object.
434 * This function is called only once at the instantiation time, right
435 * after the transformation context was allocated. In case the
436 * cryptographic hardware has some special requirements which need to
437 * be handled by software, this function shall check for the precise
438 * requirement of the transformation and put any software fallbacks
439 * in place.
440 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
441 * counterpart to @cra_init, used to remove various changes set in
442 * @cra_init.
0063ec44
GH
443 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
444 * definition. See @struct @ablkcipher_alg.
445 * @cra_u.blkcipher: Union member which contains a synchronous block cipher
446 * definition See @struct @blkcipher_alg.
447 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
448 * definition. See @struct @cipher_alg.
449 * @cra_u.compress: Union member which contains a (de)compression algorithm.
450 * See @struct @compress_alg.
0d7f488f
SM
451 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
452 * @cra_list: internally used
453 * @cra_users: internally used
454 * @cra_refcnt: internally used
455 * @cra_destroy: internally used
456 *
cac5818c
CL
457 * All following statistics are for this crypto_alg
458 * @encrypt_cnt: number of encrypt requests
459 * @decrypt_cnt: number of decrypt requests
460 * @compress_cnt: number of compress requests
461 * @decompress_cnt: number of decompress requests
462 * @generate_cnt: number of RNG generate requests
463 * @seed_cnt: number of times the rng was seeded
464 * @hash_cnt: number of hash requests
465 * @sign_cnt: number of sign requests
466 * @setsecret_cnt: number of setsecrey operation
467 * @generate_public_key_cnt: number of generate_public_key operation
468 * @verify_cnt: number of verify operation
469 * @compute_shared_secret_cnt: number of compute_shared_secret operation
470 * @encrypt_tlen: total data size handled by encrypt requests
471 * @decrypt_tlen: total data size handled by decrypt requests
472 * @compress_tlen: total data size handled by compress requests
473 * @decompress_tlen: total data size handled by decompress requests
474 * @generate_tlen: total data size of generated data by the RNG
475 * @hash_tlen: total data size hashed
476 * @akcipher_err_cnt: number of error for akcipher requests
477 * @cipher_err_cnt: number of error for akcipher requests
478 * @compress_err_cnt: number of error for akcipher requests
479 * @aead_err_cnt: number of error for akcipher requests
480 * @hash_err_cnt: number of error for akcipher requests
481 * @rng_err_cnt: number of error for akcipher requests
482 * @kpp_err_cnt: number of error for akcipher requests
483 *
0d7f488f
SM
484 * The struct crypto_alg describes a generic Crypto API algorithm and is common
485 * for all of the transformations. Any variable not documented here shall not
486 * be used by a cipher implementation as it is internal to the Crypto API.
487 */
1da177e4
LT
488struct crypto_alg {
489 struct list_head cra_list;
6bfd4809
HX
490 struct list_head cra_users;
491
1da177e4
LT
492 u32 cra_flags;
493 unsigned int cra_blocksize;
494 unsigned int cra_ctxsize;
95477377 495 unsigned int cra_alignmask;
5cb1454b
HX
496
497 int cra_priority;
ce8614a3 498 refcount_t cra_refcnt;
5cb1454b 499
d913ea0d
HX
500 char cra_name[CRYPTO_MAX_ALG_NAME];
501 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
1da177e4 502
e853c3cf
HX
503 const struct crypto_type *cra_type;
504
1da177e4 505 union {
b5b7f088 506 struct ablkcipher_alg ablkcipher;
5cde0af2 507 struct blkcipher_alg blkcipher;
1da177e4 508 struct cipher_alg cipher;
1da177e4
LT
509 struct compress_alg compress;
510 } cra_u;
c7fc0599
HX
511
512 int (*cra_init)(struct crypto_tfm *tfm);
513 void (*cra_exit)(struct crypto_tfm *tfm);
6521f302 514 void (*cra_destroy)(struct crypto_alg *alg);
1da177e4
LT
515
516 struct module *cra_module;
cac5818c
CL
517
518 union {
519 atomic_t encrypt_cnt;
520 atomic_t compress_cnt;
521 atomic_t generate_cnt;
522 atomic_t hash_cnt;
523 atomic_t setsecret_cnt;
524 };
525 union {
526 atomic64_t encrypt_tlen;
527 atomic64_t compress_tlen;
528 atomic64_t generate_tlen;
529 atomic64_t hash_tlen;
530 };
531 union {
532 atomic_t akcipher_err_cnt;
533 atomic_t cipher_err_cnt;
534 atomic_t compress_err_cnt;
535 atomic_t aead_err_cnt;
536 atomic_t hash_err_cnt;
537 atomic_t rng_err_cnt;
538 atomic_t kpp_err_cnt;
539 };
540 union {
541 atomic_t decrypt_cnt;
542 atomic_t decompress_cnt;
543 atomic_t seed_cnt;
544 atomic_t generate_public_key_cnt;
545 };
546 union {
547 atomic64_t decrypt_tlen;
548 atomic64_t decompress_tlen;
549 };
550 union {
551 atomic_t verify_cnt;
552 atomic_t compute_shared_secret_cnt;
553 };
554 atomic_t sign_cnt;
555
edf18b91 556} CRYPTO_MINALIGN_ATTR;
1da177e4 557
ada69a16
GBY
558/*
559 * A helper struct for waiting for completion of async crypto ops
560 */
561struct crypto_wait {
562 struct completion completion;
563 int err;
564};
565
566/*
567 * Macro for declaring a crypto op async wait object on stack
568 */
569#define DECLARE_CRYPTO_WAIT(_wait) \
570 struct crypto_wait _wait = { \
571 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
572
573/*
574 * Async ops completion helper functioons
575 */
576void crypto_req_done(struct crypto_async_request *req, int err);
577
578static inline int crypto_wait_req(int err, struct crypto_wait *wait)
579{
580 switch (err) {
581 case -EINPROGRESS:
582 case -EBUSY:
583 wait_for_completion(&wait->completion);
584 reinit_completion(&wait->completion);
585 err = wait->err;
586 break;
587 };
588
589 return err;
590}
591
592static inline void crypto_init_wait(struct crypto_wait *wait)
593{
594 init_completion(&wait->completion);
595}
596
1da177e4
LT
597/*
598 * Algorithm registration interface.
599 */
600int crypto_register_alg(struct crypto_alg *alg);
601int crypto_unregister_alg(struct crypto_alg *alg);
4b004346
MB
602int crypto_register_algs(struct crypto_alg *algs, int count);
603int crypto_unregister_algs(struct crypto_alg *algs, int count);
1da177e4
LT
604
605/*
606 * Algorithm query interface.
607 */
fce32d70 608int crypto_has_alg(const char *name, u32 type, u32 mask);
1da177e4
LT
609
610/*
611 * Transforms: user-instantiated objects which encapsulate algorithms
6d7d684d
HX
612 * and core processing logic. Managed via crypto_alloc_*() and
613 * crypto_free_*(), as well as the various helpers below.
1da177e4 614 */
1da177e4 615
32e3983f
HX
616struct ablkcipher_tfm {
617 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
618 unsigned int keylen);
619 int (*encrypt)(struct ablkcipher_request *req);
620 int (*decrypt)(struct ablkcipher_request *req);
61da88e2 621
ecfc4329
HX
622 struct crypto_ablkcipher *base;
623
32e3983f
HX
624 unsigned int ivsize;
625 unsigned int reqsize;
626};
627
5cde0af2
HX
628struct blkcipher_tfm {
629 void *iv;
630 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
631 unsigned int keylen);
632 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
633 struct scatterlist *src, unsigned int nbytes);
634 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
635 struct scatterlist *src, unsigned int nbytes);
636};
637
1da177e4 638struct cipher_tfm {
1da177e4
LT
639 int (*cit_setkey)(struct crypto_tfm *tfm,
640 const u8 *key, unsigned int keylen);
f28776a3
HX
641 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
642 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
643};
644
1da177e4
LT
645struct compress_tfm {
646 int (*cot_compress)(struct crypto_tfm *tfm,
647 const u8 *src, unsigned int slen,
648 u8 *dst, unsigned int *dlen);
649 int (*cot_decompress)(struct crypto_tfm *tfm,
650 const u8 *src, unsigned int slen,
651 u8 *dst, unsigned int *dlen);
652};
653
32e3983f 654#define crt_ablkcipher crt_u.ablkcipher
5cde0af2 655#define crt_blkcipher crt_u.blkcipher
1da177e4 656#define crt_cipher crt_u.cipher
1da177e4
LT
657#define crt_compress crt_u.compress
658
659struct crypto_tfm {
660
661 u32 crt_flags;
662
663 union {
32e3983f 664 struct ablkcipher_tfm ablkcipher;
5cde0af2 665 struct blkcipher_tfm blkcipher;
1da177e4 666 struct cipher_tfm cipher;
1da177e4
LT
667 struct compress_tfm compress;
668 } crt_u;
4a779486
HX
669
670 void (*exit)(struct crypto_tfm *tfm);
1da177e4
LT
671
672 struct crypto_alg *__crt_alg;
f10b7897 673
79911102 674 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
1da177e4
LT
675};
676
32e3983f
HX
677struct crypto_ablkcipher {
678 struct crypto_tfm base;
679};
680
5cde0af2
HX
681struct crypto_blkcipher {
682 struct crypto_tfm base;
683};
684
78a1fe4f
HX
685struct crypto_cipher {
686 struct crypto_tfm base;
687};
688
689struct crypto_comp {
690 struct crypto_tfm base;
691};
692
2b8c19db
HX
693enum {
694 CRYPTOA_UNSPEC,
695 CRYPTOA_ALG,
ebc610e5 696 CRYPTOA_TYPE,
39e1ee01 697 CRYPTOA_U32,
ebc610e5 698 __CRYPTOA_MAX,
2b8c19db
HX
699};
700
ebc610e5
HX
701#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
702
39e1ee01
HX
703/* Maximum number of (rtattr) parameters for each template. */
704#define CRYPTO_MAX_ATTRS 32
705
2b8c19db
HX
706struct crypto_attr_alg {
707 char name[CRYPTO_MAX_ALG_NAME];
708};
709
ebc610e5
HX
710struct crypto_attr_type {
711 u32 type;
712 u32 mask;
713};
714
39e1ee01
HX
715struct crypto_attr_u32 {
716 u32 num;
717};
718
1da177e4
LT
719/*
720 * Transform user interface.
721 */
722
6d7d684d 723struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
7b2cd92a
HX
724void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
725
726static inline void crypto_free_tfm(struct crypto_tfm *tfm)
727{
728 return crypto_destroy_tfm(tfm, tfm);
729}
1da177e4 730
da7f033d
HX
731int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
732
1da177e4
LT
733/*
734 * Transform helpers which query the underlying algorithm.
735 */
736static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
737{
738 return tfm->__crt_alg->cra_name;
739}
740
b14cdd67
ML
741static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
742{
743 return tfm->__crt_alg->cra_driver_name;
744}
745
746static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
747{
748 return tfm->__crt_alg->cra_priority;
749}
750
1da177e4
LT
751static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
752{
753 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
754}
755
1da177e4
LT
756static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
757{
758 return tfm->__crt_alg->cra_blocksize;
759}
760
fbdae9f3
HX
761static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
762{
763 return tfm->__crt_alg->cra_alignmask;
764}
765
f28776a3
HX
766static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
767{
768 return tfm->crt_flags;
769}
770
771static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
772{
773 tfm->crt_flags |= flags;
774}
775
776static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
777{
778 tfm->crt_flags &= ~flags;
779}
780
40725181
HX
781static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
782{
f10b7897
HX
783 return tfm->__crt_ctx;
784}
785
786static inline unsigned int crypto_tfm_ctx_alignment(void)
787{
788 struct crypto_tfm *tfm;
789 return __alignof__(tfm->__crt_ctx);
40725181
HX
790}
791
1da177e4
LT
792/*
793 * API wrappers.
794 */
32e3983f
HX
795static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
796 struct crypto_tfm *tfm)
797{
798 return (struct crypto_ablkcipher *)tfm;
799}
800
378f4f51 801static inline u32 crypto_skcipher_type(u32 type)
32e3983f 802{
ecfc4329 803 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
32e3983f 804 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
378f4f51
HX
805 return type;
806}
807
808static inline u32 crypto_skcipher_mask(u32 mask)
809{
ecfc4329 810 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
332f8840 811 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
378f4f51
HX
812 return mask;
813}
32e3983f 814
f13ec330
SM
815/**
816 * DOC: Asynchronous Block Cipher API
817 *
818 * Asynchronous block cipher API is used with the ciphers of type
819 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
820 *
821 * Asynchronous cipher operations imply that the function invocation for a
822 * cipher request returns immediately before the completion of the operation.
823 * The cipher request is scheduled as a separate kernel thread and therefore
824 * load-balanced on the different CPUs via the process scheduler. To allow
825 * the kernel crypto API to inform the caller about the completion of a cipher
826 * request, the caller must provide a callback function. That function is
827 * invoked with the cipher handle when the request completes.
828 *
829 * To support the asynchronous operation, additional information than just the
830 * cipher handle must be supplied to the kernel crypto API. That additional
831 * information is given by filling in the ablkcipher_request data structure.
832 *
833 * For the asynchronous block cipher API, the state is maintained with the tfm
834 * cipher handle. A single tfm can be used across multiple calls and in
835 * parallel. For asynchronous block cipher calls, context data supplied and
836 * only used by the caller can be referenced the request data structure in
837 * addition to the IV used for the cipher request. The maintenance of such
838 * state information would be important for a crypto driver implementer to
839 * have, because when calling the callback function upon completion of the
840 * cipher operation, that callback function may need some information about
841 * which operation just finished if it invoked multiple in parallel. This
842 * state information is unused by the kernel crypto API.
843 */
844
32e3983f
HX
845static inline struct crypto_tfm *crypto_ablkcipher_tfm(
846 struct crypto_ablkcipher *tfm)
847{
848 return &tfm->base;
849}
850
f13ec330
SM
851/**
852 * crypto_free_ablkcipher() - zeroize and free cipher handle
853 * @tfm: cipher handle to be freed
854 */
32e3983f
HX
855static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
856{
857 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
858}
859
f13ec330
SM
860/**
861 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
862 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
863 * ablkcipher
864 * @type: specifies the type of the cipher
865 * @mask: specifies the mask for the cipher
866 *
867 * Return: true when the ablkcipher is known to the kernel crypto API; false
868 * otherwise
869 */
32e3983f
HX
870static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
871 u32 mask)
872{
378f4f51
HX
873 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
874 crypto_skcipher_mask(mask));
32e3983f
HX
875}
876
877static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
878 struct crypto_ablkcipher *tfm)
879{
880 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
881}
882
f13ec330
SM
883/**
884 * crypto_ablkcipher_ivsize() - obtain IV size
885 * @tfm: cipher handle
886 *
887 * The size of the IV for the ablkcipher referenced by the cipher handle is
888 * returned. This IV size may be zero if the cipher does not need an IV.
889 *
890 * Return: IV size in bytes
891 */
32e3983f
HX
892static inline unsigned int crypto_ablkcipher_ivsize(
893 struct crypto_ablkcipher *tfm)
894{
895 return crypto_ablkcipher_crt(tfm)->ivsize;
896}
897
f13ec330
SM
898/**
899 * crypto_ablkcipher_blocksize() - obtain block size of cipher
900 * @tfm: cipher handle
901 *
902 * The block size for the ablkcipher referenced with the cipher handle is
903 * returned. The caller may use that information to allocate appropriate
904 * memory for the data returned by the encryption or decryption operation
905 *
906 * Return: block size of cipher
907 */
32e3983f
HX
908static inline unsigned int crypto_ablkcipher_blocksize(
909 struct crypto_ablkcipher *tfm)
910{
911 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
912}
913
914static inline unsigned int crypto_ablkcipher_alignmask(
915 struct crypto_ablkcipher *tfm)
916{
917 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
918}
919
920static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
921{
922 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
923}
924
925static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
926 u32 flags)
927{
928 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
929}
930
931static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
932 u32 flags)
933{
934 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
935}
936
f13ec330
SM
937/**
938 * crypto_ablkcipher_setkey() - set key for cipher
939 * @tfm: cipher handle
940 * @key: buffer holding the key
941 * @keylen: length of the key in bytes
942 *
943 * The caller provided key is set for the ablkcipher referenced by the cipher
944 * handle.
945 *
946 * Note, the key length determines the cipher type. Many block ciphers implement
947 * different cipher modes depending on the key size, such as AES-128 vs AES-192
948 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
949 * is performed.
950 *
951 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
952 */
32e3983f
HX
953static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
954 const u8 *key, unsigned int keylen)
955{
ecfc4329
HX
956 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
957
958 return crt->setkey(crt->base, key, keylen);
32e3983f
HX
959}
960
f13ec330
SM
961/**
962 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
963 * @req: ablkcipher_request out of which the cipher handle is to be obtained
964 *
965 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
966 * data structure.
967 *
968 * Return: crypto_ablkcipher handle
969 */
32e3983f
HX
970static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
971 struct ablkcipher_request *req)
972{
973 return __crypto_ablkcipher_cast(req->base.tfm);
974}
975
cac5818c
CL
976static inline void crypto_stat_ablkcipher_encrypt(struct ablkcipher_request *req,
977 int ret)
978{
979#ifdef CONFIG_CRYPTO_STATS
980 struct ablkcipher_tfm *crt =
981 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
982
983 if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
984 atomic_inc(&crt->base->base.__crt_alg->cipher_err_cnt);
985 } else {
986 atomic_inc(&crt->base->base.__crt_alg->encrypt_cnt);
987 atomic64_add(req->nbytes, &crt->base->base.__crt_alg->encrypt_tlen);
988 }
989#endif
990}
991
992static inline void crypto_stat_ablkcipher_decrypt(struct ablkcipher_request *req,
993 int ret)
994{
995#ifdef CONFIG_CRYPTO_STATS
996 struct ablkcipher_tfm *crt =
997 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
998
999 if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
1000 atomic_inc(&crt->base->base.__crt_alg->cipher_err_cnt);
1001 } else {
1002 atomic_inc(&crt->base->base.__crt_alg->decrypt_cnt);
1003 atomic64_add(req->nbytes, &crt->base->base.__crt_alg->decrypt_tlen);
1004 }
1005#endif
1006}
1007
f13ec330
SM
1008/**
1009 * crypto_ablkcipher_encrypt() - encrypt plaintext
1010 * @req: reference to the ablkcipher_request handle that holds all information
1011 * needed to perform the cipher operation
1012 *
1013 * Encrypt plaintext data using the ablkcipher_request handle. That data
1014 * structure and how it is filled with data is discussed with the
1015 * ablkcipher_request_* functions.
1016 *
1017 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1018 */
32e3983f
HX
1019static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1020{
1021 struct ablkcipher_tfm *crt =
1022 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
cac5818c
CL
1023 int ret;
1024
1025 ret = crt->encrypt(req);
1026 crypto_stat_ablkcipher_encrypt(req, ret);
1027 return ret;
32e3983f
HX
1028}
1029
f13ec330
SM
1030/**
1031 * crypto_ablkcipher_decrypt() - decrypt ciphertext
1032 * @req: reference to the ablkcipher_request handle that holds all information
1033 * needed to perform the cipher operation
1034 *
1035 * Decrypt ciphertext data using the ablkcipher_request handle. That data
1036 * structure and how it is filled with data is discussed with the
1037 * ablkcipher_request_* functions.
1038 *
1039 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1040 */
32e3983f
HX
1041static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1042{
1043 struct ablkcipher_tfm *crt =
1044 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
cac5818c
CL
1045 int ret;
1046
1047 ret = crt->decrypt(req);
1048 crypto_stat_ablkcipher_decrypt(req, ret);
1049 return ret;
32e3983f
HX
1050}
1051
f13ec330
SM
1052/**
1053 * DOC: Asynchronous Cipher Request Handle
1054 *
1055 * The ablkcipher_request data structure contains all pointers to data
1056 * required for the asynchronous cipher operation. This includes the cipher
1057 * handle (which can be used by multiple ablkcipher_request instances), pointer
1058 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1059 * as a handle to the ablkcipher_request_* API calls in a similar way as
1060 * ablkcipher handle to the crypto_ablkcipher_* API calls.
1061 */
1062
1063/**
1064 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1065 * @tfm: cipher handle
1066 *
1067 * Return: number of bytes
1068 */
b16c3a2e
HX
1069static inline unsigned int crypto_ablkcipher_reqsize(
1070 struct crypto_ablkcipher *tfm)
32e3983f
HX
1071{
1072 return crypto_ablkcipher_crt(tfm)->reqsize;
1073}
1074
f13ec330
SM
1075/**
1076 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1077 * @req: request handle to be modified
1078 * @tfm: cipher handle that shall be added to the request handle
1079 *
1080 * Allow the caller to replace the existing ablkcipher handle in the request
1081 * data structure with a different one.
1082 */
e196d625
HX
1083static inline void ablkcipher_request_set_tfm(
1084 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1085{
ecfc4329 1086 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
e196d625
HX
1087}
1088
b5b7f088
HX
1089static inline struct ablkcipher_request *ablkcipher_request_cast(
1090 struct crypto_async_request *req)
1091{
1092 return container_of(req, struct ablkcipher_request, base);
1093}
1094
f13ec330
SM
1095/**
1096 * ablkcipher_request_alloc() - allocate request data structure
1097 * @tfm: cipher handle to be registered with the request
1098 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1099 *
1100 * Allocate the request data structure that must be used with the ablkcipher
1101 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1102 * handle is registered in the request data structure.
1103 *
6eae29e7 1104 * Return: allocated request handle in case of success, or NULL if out of memory
f13ec330 1105 */
32e3983f
HX
1106static inline struct ablkcipher_request *ablkcipher_request_alloc(
1107 struct crypto_ablkcipher *tfm, gfp_t gfp)
1108{
1109 struct ablkcipher_request *req;
1110
1111 req = kmalloc(sizeof(struct ablkcipher_request) +
1112 crypto_ablkcipher_reqsize(tfm), gfp);
1113
1114 if (likely(req))
e196d625 1115 ablkcipher_request_set_tfm(req, tfm);
32e3983f
HX
1116
1117 return req;
1118}
1119
f13ec330
SM
1120/**
1121 * ablkcipher_request_free() - zeroize and free request data structure
1122 * @req: request data structure cipher handle to be freed
1123 */
32e3983f
HX
1124static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1125{
aef73cfc 1126 kzfree(req);
32e3983f
HX
1127}
1128
f13ec330
SM
1129/**
1130 * ablkcipher_request_set_callback() - set asynchronous callback function
1131 * @req: request handle
1132 * @flags: specify zero or an ORing of the flags
0184cfe7 1133 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
f13ec330
SM
1134 * increase the wait queue beyond the initial maximum size;
1135 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1136 * @compl: callback function pointer to be registered with the request handle
1137 * @data: The data pointer refers to memory that is not used by the kernel
1138 * crypto API, but provided to the callback function for it to use. Here,
1139 * the caller can provide a reference to memory the callback function can
1140 * operate on. As the callback function is invoked asynchronously to the
1141 * related functionality, it may need to access data structures of the
1142 * related functionality which can be referenced using this pointer. The
1143 * callback function can access the memory via the "data" field in the
1144 * crypto_async_request data structure provided to the callback function.
1145 *
1146 * This function allows setting the callback function that is triggered once the
1147 * cipher operation completes.
1148 *
1149 * The callback function is registered with the ablkcipher_request handle and
0184cfe7 1150 * must comply with the following template::
f13ec330
SM
1151 *
1152 * void callback_function(struct crypto_async_request *req, int error)
1153 */
32e3983f
HX
1154static inline void ablkcipher_request_set_callback(
1155 struct ablkcipher_request *req,
3e3dc25f 1156 u32 flags, crypto_completion_t compl, void *data)
32e3983f 1157{
3e3dc25f 1158 req->base.complete = compl;
32e3983f
HX
1159 req->base.data = data;
1160 req->base.flags = flags;
1161}
1162
f13ec330
SM
1163/**
1164 * ablkcipher_request_set_crypt() - set data buffers
1165 * @req: request handle
1166 * @src: source scatter / gather list
1167 * @dst: destination scatter / gather list
1168 * @nbytes: number of bytes to process from @src
1169 * @iv: IV for the cipher operation which must comply with the IV size defined
1170 * by crypto_ablkcipher_ivsize
1171 *
1172 * This function allows setting of the source data and destination data
1173 * scatter / gather lists.
1174 *
1175 * For encryption, the source is treated as the plaintext and the
1176 * destination is the ciphertext. For a decryption operation, the use is
379dcfb4 1177 * reversed - the source is the ciphertext and the destination is the plaintext.
f13ec330 1178 */
32e3983f
HX
1179static inline void ablkcipher_request_set_crypt(
1180 struct ablkcipher_request *req,
1181 struct scatterlist *src, struct scatterlist *dst,
1182 unsigned int nbytes, void *iv)
1183{
1184 req->src = src;
1185 req->dst = dst;
1186 req->nbytes = nbytes;
1187 req->info = iv;
1188}
1189
58284f0d
SM
1190/**
1191 * DOC: Synchronous Block Cipher API
1192 *
1193 * The synchronous block cipher API is used with the ciphers of type
1194 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1195 *
1196 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1197 * used in multiple calls and in parallel, this info should not be changeable
1198 * (unless a lock is used). This applies, for example, to the symmetric key.
1199 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1200 * structure for synchronous blkcipher api. So, its the only state info that can
1201 * be kept for synchronous calls without using a big lock across a tfm.
1202 *
1203 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1204 * consisting of a template (a block chaining mode) and a single block cipher
1205 * primitive (e.g. AES).
1206 *
1207 * The plaintext data buffer and the ciphertext data buffer are pointed to
1208 * by using scatter/gather lists. The cipher operation is performed
1209 * on all segments of the provided scatter/gather lists.
1210 *
1211 * The kernel crypto API supports a cipher operation "in-place" which means that
1212 * the caller may provide the same scatter/gather list for the plaintext and
1213 * cipher text. After the completion of the cipher operation, the plaintext
1214 * data is replaced with the ciphertext data in case of an encryption and vice
1215 * versa for a decryption. The caller must ensure that the scatter/gather lists
1216 * for the output data point to sufficiently large buffers, i.e. multiples of
1217 * the block size of the cipher.
1218 */
1219
5cde0af2
HX
1220static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1221 struct crypto_tfm *tfm)
1222{
1223 return (struct crypto_blkcipher *)tfm;
1224}
1225
1226static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1227 struct crypto_tfm *tfm)
1228{
1229 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1230 return __crypto_blkcipher_cast(tfm);
1231}
1232
58284f0d
SM
1233/**
1234 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1235 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1236 * blkcipher cipher
1237 * @type: specifies the type of the cipher
1238 * @mask: specifies the mask for the cipher
1239 *
1240 * Allocate a cipher handle for a block cipher. The returned struct
1241 * crypto_blkcipher is the cipher handle that is required for any subsequent
1242 * API invocation for that block cipher.
1243 *
1244 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1245 * of an error, PTR_ERR() returns the error code.
1246 */
5cde0af2
HX
1247static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1248 const char *alg_name, u32 type, u32 mask)
1249{
332f8840 1250 type &= ~CRYPTO_ALG_TYPE_MASK;
5cde0af2 1251 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1252 mask |= CRYPTO_ALG_TYPE_MASK;
5cde0af2
HX
1253
1254 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1255}
1256
1257static inline struct crypto_tfm *crypto_blkcipher_tfm(
1258 struct crypto_blkcipher *tfm)
1259{
1260 return &tfm->base;
1261}
1262
58284f0d
SM
1263/**
1264 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1265 * @tfm: cipher handle to be freed
1266 */
5cde0af2
HX
1267static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1268{
1269 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1270}
1271
58284f0d
SM
1272/**
1273 * crypto_has_blkcipher() - Search for the availability of a block cipher
1274 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1275 * block cipher
1276 * @type: specifies the type of the cipher
1277 * @mask: specifies the mask for the cipher
1278 *
1279 * Return: true when the block cipher is known to the kernel crypto API; false
1280 * otherwise
1281 */
fce32d70
HX
1282static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1283{
332f8840 1284 type &= ~CRYPTO_ALG_TYPE_MASK;
fce32d70 1285 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1286 mask |= CRYPTO_ALG_TYPE_MASK;
fce32d70
HX
1287
1288 return crypto_has_alg(alg_name, type, mask);
1289}
1290
58284f0d
SM
1291/**
1292 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1293 * @tfm: cipher handle
1294 *
1295 * Return: The character string holding the name of the cipher
1296 */
5cde0af2
HX
1297static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1298{
1299 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1300}
1301
1302static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1303 struct crypto_blkcipher *tfm)
1304{
1305 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1306}
1307
1308static inline struct blkcipher_alg *crypto_blkcipher_alg(
1309 struct crypto_blkcipher *tfm)
1310{
1311 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1312}
1313
58284f0d
SM
1314/**
1315 * crypto_blkcipher_ivsize() - obtain IV size
1316 * @tfm: cipher handle
1317 *
1318 * The size of the IV for the block cipher referenced by the cipher handle is
1319 * returned. This IV size may be zero if the cipher does not need an IV.
1320 *
1321 * Return: IV size in bytes
1322 */
5cde0af2
HX
1323static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1324{
1325 return crypto_blkcipher_alg(tfm)->ivsize;
1326}
1327
58284f0d
SM
1328/**
1329 * crypto_blkcipher_blocksize() - obtain block size of cipher
1330 * @tfm: cipher handle
1331 *
1332 * The block size for the block cipher referenced with the cipher handle is
1333 * returned. The caller may use that information to allocate appropriate
1334 * memory for the data returned by the encryption or decryption operation.
1335 *
1336 * Return: block size of cipher
1337 */
5cde0af2
HX
1338static inline unsigned int crypto_blkcipher_blocksize(
1339 struct crypto_blkcipher *tfm)
1340{
1341 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1342}
1343
1344static inline unsigned int crypto_blkcipher_alignmask(
1345 struct crypto_blkcipher *tfm)
1346{
1347 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1348}
1349
1350static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1351{
1352 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1353}
1354
1355static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1356 u32 flags)
1357{
1358 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1359}
1360
1361static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1362 u32 flags)
1363{
1364 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1365}
1366
58284f0d
SM
1367/**
1368 * crypto_blkcipher_setkey() - set key for cipher
1369 * @tfm: cipher handle
1370 * @key: buffer holding the key
1371 * @keylen: length of the key in bytes
1372 *
1373 * The caller provided key is set for the block cipher referenced by the cipher
1374 * handle.
1375 *
1376 * Note, the key length determines the cipher type. Many block ciphers implement
1377 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1378 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1379 * is performed.
1380 *
1381 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1382 */
5cde0af2
HX
1383static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1384 const u8 *key, unsigned int keylen)
1385{
1386 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1387 key, keylen);
1388}
1389
58284f0d
SM
1390/**
1391 * crypto_blkcipher_encrypt() - encrypt plaintext
1392 * @desc: reference to the block cipher handle with meta data
1393 * @dst: scatter/gather list that is filled by the cipher operation with the
1394 * ciphertext
1395 * @src: scatter/gather list that holds the plaintext
1396 * @nbytes: number of bytes of the plaintext to encrypt.
1397 *
1398 * Encrypt plaintext data using the IV set by the caller with a preceding
1399 * call of crypto_blkcipher_set_iv.
1400 *
1401 * The blkcipher_desc data structure must be filled by the caller and can
1402 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1403 * with the block cipher handle; desc.flags is filled with either
1404 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1405 *
1406 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1407 */
5cde0af2
HX
1408static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1409 struct scatterlist *dst,
1410 struct scatterlist *src,
1411 unsigned int nbytes)
1412{
1413 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1414 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1415}
1416
58284f0d
SM
1417/**
1418 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1419 * @desc: reference to the block cipher handle with meta data
1420 * @dst: scatter/gather list that is filled by the cipher operation with the
1421 * ciphertext
1422 * @src: scatter/gather list that holds the plaintext
1423 * @nbytes: number of bytes of the plaintext to encrypt.
1424 *
1425 * Encrypt plaintext data with the use of an IV that is solely used for this
1426 * cipher operation. Any previously set IV is not used.
1427 *
1428 * The blkcipher_desc data structure must be filled by the caller and can
1429 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1430 * with the block cipher handle; desc.info is filled with the IV to be used for
1431 * the current operation; desc.flags is filled with either
1432 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1433 *
1434 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1435 */
5cde0af2
HX
1436static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1437 struct scatterlist *dst,
1438 struct scatterlist *src,
1439 unsigned int nbytes)
1440{
1441 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1442}
1443
58284f0d
SM
1444/**
1445 * crypto_blkcipher_decrypt() - decrypt ciphertext
1446 * @desc: reference to the block cipher handle with meta data
1447 * @dst: scatter/gather list that is filled by the cipher operation with the
1448 * plaintext
1449 * @src: scatter/gather list that holds the ciphertext
1450 * @nbytes: number of bytes of the ciphertext to decrypt.
1451 *
1452 * Decrypt ciphertext data using the IV set by the caller with a preceding
1453 * call of crypto_blkcipher_set_iv.
1454 *
1455 * The blkcipher_desc data structure must be filled by the caller as documented
1456 * for the crypto_blkcipher_encrypt call above.
1457 *
1458 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1459 *
1460 */
5cde0af2
HX
1461static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1462 struct scatterlist *dst,
1463 struct scatterlist *src,
1464 unsigned int nbytes)
1465{
1466 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1467 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1468}
1469
58284f0d
SM
1470/**
1471 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1472 * @desc: reference to the block cipher handle with meta data
1473 * @dst: scatter/gather list that is filled by the cipher operation with the
1474 * plaintext
1475 * @src: scatter/gather list that holds the ciphertext
1476 * @nbytes: number of bytes of the ciphertext to decrypt.
1477 *
1478 * Decrypt ciphertext data with the use of an IV that is solely used for this
1479 * cipher operation. Any previously set IV is not used.
1480 *
1481 * The blkcipher_desc data structure must be filled by the caller as documented
1482 * for the crypto_blkcipher_encrypt_iv call above.
1483 *
1484 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1485 */
5cde0af2
HX
1486static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1487 struct scatterlist *dst,
1488 struct scatterlist *src,
1489 unsigned int nbytes)
1490{
1491 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1492}
1493
58284f0d
SM
1494/**
1495 * crypto_blkcipher_set_iv() - set IV for cipher
1496 * @tfm: cipher handle
1497 * @src: buffer holding the IV
1498 * @len: length of the IV in bytes
1499 *
1500 * The caller provided IV is set for the block cipher referenced by the cipher
1501 * handle.
1502 */
5cde0af2
HX
1503static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1504 const u8 *src, unsigned int len)
1505{
1506 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1507}
1508
58284f0d
SM
1509/**
1510 * crypto_blkcipher_get_iv() - obtain IV from cipher
1511 * @tfm: cipher handle
1512 * @dst: buffer filled with the IV
1513 * @len: length of the buffer dst
1514 *
1515 * The caller can obtain the IV set for the block cipher referenced by the
1516 * cipher handle and store it into the user-provided buffer. If the buffer
1517 * has an insufficient space, the IV is truncated to fit the buffer.
1518 */
5cde0af2
HX
1519static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1520 u8 *dst, unsigned int len)
1521{
1522 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1523}
1524
16e61030
SM
1525/**
1526 * DOC: Single Block Cipher API
1527 *
1528 * The single block cipher API is used with the ciphers of type
1529 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1530 *
1531 * Using the single block cipher API calls, operations with the basic cipher
1532 * primitive can be implemented. These cipher primitives exclude any block
1533 * chaining operations including IV handling.
1534 *
1535 * The purpose of this single block cipher API is to support the implementation
1536 * of templates or other concepts that only need to perform the cipher operation
1537 * on one block at a time. Templates invoke the underlying cipher primitive
1538 * block-wise and process either the input or the output data of these cipher
1539 * operations.
1540 */
1541
f28776a3
HX
1542static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1543{
1544 return (struct crypto_cipher *)tfm;
1545}
1546
1547static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1548{
1549 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1550 return __crypto_cipher_cast(tfm);
1551}
1552
16e61030
SM
1553/**
1554 * crypto_alloc_cipher() - allocate single block cipher handle
1555 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1556 * single block cipher
1557 * @type: specifies the type of the cipher
1558 * @mask: specifies the mask for the cipher
1559 *
1560 * Allocate a cipher handle for a single block cipher. The returned struct
1561 * crypto_cipher is the cipher handle that is required for any subsequent API
1562 * invocation for that single block cipher.
1563 *
1564 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1565 * of an error, PTR_ERR() returns the error code.
1566 */
f28776a3
HX
1567static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1568 u32 type, u32 mask)
1569{
1570 type &= ~CRYPTO_ALG_TYPE_MASK;
1571 type |= CRYPTO_ALG_TYPE_CIPHER;
1572 mask |= CRYPTO_ALG_TYPE_MASK;
1573
1574 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1575}
1576
1577static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1578{
78a1fe4f 1579 return &tfm->base;
f28776a3
HX
1580}
1581
16e61030
SM
1582/**
1583 * crypto_free_cipher() - zeroize and free the single block cipher handle
1584 * @tfm: cipher handle to be freed
1585 */
f28776a3
HX
1586static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1587{
1588 crypto_free_tfm(crypto_cipher_tfm(tfm));
1589}
1590
16e61030
SM
1591/**
1592 * crypto_has_cipher() - Search for the availability of a single block cipher
1593 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1594 * single block cipher
1595 * @type: specifies the type of the cipher
1596 * @mask: specifies the mask for the cipher
1597 *
1598 * Return: true when the single block cipher is known to the kernel crypto API;
1599 * false otherwise
1600 */
fce32d70
HX
1601static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1602{
1603 type &= ~CRYPTO_ALG_TYPE_MASK;
1604 type |= CRYPTO_ALG_TYPE_CIPHER;
1605 mask |= CRYPTO_ALG_TYPE_MASK;
1606
1607 return crypto_has_alg(alg_name, type, mask);
1608}
1609
f28776a3
HX
1610static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1611{
1612 return &crypto_cipher_tfm(tfm)->crt_cipher;
1613}
1614
16e61030
SM
1615/**
1616 * crypto_cipher_blocksize() - obtain block size for cipher
1617 * @tfm: cipher handle
1618 *
1619 * The block size for the single block cipher referenced with the cipher handle
1620 * tfm is returned. The caller may use that information to allocate appropriate
1621 * memory for the data returned by the encryption or decryption operation
1622 *
1623 * Return: block size of cipher
1624 */
f28776a3
HX
1625static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1626{
1627 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1628}
1629
1630static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1631{
1632 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1633}
1634
1635static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1636{
1637 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1638}
1639
1640static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1641 u32 flags)
1642{
1643 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1644}
1645
1646static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1647 u32 flags)
1648{
1649 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1650}
1651
16e61030
SM
1652/**
1653 * crypto_cipher_setkey() - set key for cipher
1654 * @tfm: cipher handle
1655 * @key: buffer holding the key
1656 * @keylen: length of the key in bytes
1657 *
1658 * The caller provided key is set for the single block cipher referenced by the
1659 * cipher handle.
1660 *
1661 * Note, the key length determines the cipher type. Many block ciphers implement
1662 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1663 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1664 * is performed.
1665 *
1666 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1667 */
7226bc87
HX
1668static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1669 const u8 *key, unsigned int keylen)
1670{
1671 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1672 key, keylen);
1673}
1674
16e61030
SM
1675/**
1676 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1677 * @tfm: cipher handle
1678 * @dst: points to the buffer that will be filled with the ciphertext
1679 * @src: buffer holding the plaintext to be encrypted
1680 *
1681 * Invoke the encryption operation of one block. The caller must ensure that
1682 * the plaintext and ciphertext buffers are at least one block in size.
1683 */
f28776a3
HX
1684static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1685 u8 *dst, const u8 *src)
1686{
1687 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1688 dst, src);
1689}
1690
16e61030
SM
1691/**
1692 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1693 * @tfm: cipher handle
1694 * @dst: points to the buffer that will be filled with the plaintext
1695 * @src: buffer holding the ciphertext to be decrypted
1696 *
1697 * Invoke the decryption operation of one block. The caller must ensure that
1698 * the plaintext and ciphertext buffers are at least one block in size.
1699 */
f28776a3
HX
1700static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1701 u8 *dst, const u8 *src)
1702{
1703 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1704 dst, src);
1705}
1706
fce32d70
HX
1707static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1708{
1709 return (struct crypto_comp *)tfm;
1710}
1711
1712static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1713{
1714 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1715 CRYPTO_ALG_TYPE_MASK);
1716 return __crypto_comp_cast(tfm);
1717}
1718
1719static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1720 u32 type, u32 mask)
1721{
1722 type &= ~CRYPTO_ALG_TYPE_MASK;
1723 type |= CRYPTO_ALG_TYPE_COMPRESS;
1724 mask |= CRYPTO_ALG_TYPE_MASK;
1725
1726 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1727}
1728
1729static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1730{
78a1fe4f 1731 return &tfm->base;
fce32d70
HX
1732}
1733
1734static inline void crypto_free_comp(struct crypto_comp *tfm)
1735{
1736 crypto_free_tfm(crypto_comp_tfm(tfm));
1737}
1738
1739static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1740{
1741 type &= ~CRYPTO_ALG_TYPE_MASK;
1742 type |= CRYPTO_ALG_TYPE_COMPRESS;
1743 mask |= CRYPTO_ALG_TYPE_MASK;
1744
1745 return crypto_has_alg(alg_name, type, mask);
1746}
1747
e4d5b79c
HX
1748static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1749{
1750 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1751}
1752
fce32d70
HX
1753static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1754{
1755 return &crypto_comp_tfm(tfm)->crt_compress;
1756}
1757
1758static inline int crypto_comp_compress(struct crypto_comp *tfm,
1da177e4
LT
1759 const u8 *src, unsigned int slen,
1760 u8 *dst, unsigned int *dlen)
1761{
78a1fe4f
HX
1762 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1763 src, slen, dst, dlen);
1da177e4
LT
1764}
1765
fce32d70 1766static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1da177e4
LT
1767 const u8 *src, unsigned int slen,
1768 u8 *dst, unsigned int *dlen)
1769{
78a1fe4f
HX
1770 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1771 src, slen, dst, dlen);
1da177e4
LT
1772}
1773
1da177e4
LT
1774#endif /* _LINUX_CRYPTO_H */
1775