]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/crypto.h
UBUNTU: SAUCE: LSM stacking: procfs: add smack subdir to attrs
[mirror_ubuntu-artful-kernel.git] / include / linux / crypto.h
CommitLineData
1da177e4
LT
1/*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
5cb1454b 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
1da177e4
LT
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
18735dd8 9 * and Nettle, by Niels Möller.
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17#ifndef _LINUX_CRYPTO_H
18#define _LINUX_CRYPTO_H
19
60063497 20#include <linux/atomic.h>
1da177e4 21#include <linux/kernel.h>
1da177e4 22#include <linux/list.h>
187f1882 23#include <linux/bug.h>
79911102 24#include <linux/slab.h>
1da177e4 25#include <linux/string.h>
79911102 26#include <linux/uaccess.h>
1da177e4 27
5d26a105
KC
28/*
29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
36 */
37#define MODULE_ALIAS_CRYPTO(name) \
38 __MODULE_INFO(alias, alias_userspace, name); \
39 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
1da177e4
LT
41/*
42 * Algorithm masks and types.
43 */
2825982d 44#define CRYPTO_ALG_TYPE_MASK 0x0000000f
1da177e4 45#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
004a403c
LH
46#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
47#define CRYPTO_ALG_TYPE_AEAD 0x00000003
055bcee3 48#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
332f8840 49#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
4e6c3df4 50#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
61da88e2 51#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
4e5f2c40 52#define CRYPTO_ALG_TYPE_KPP 0x00000008
2ebda74f 53#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
1ab53a77 54#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
17f0f4a4 55#define CRYPTO_ALG_TYPE_RNG 0x0000000c
3c339ab8 56#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
63044c4f
GC
57#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
58#define CRYPTO_ALG_TYPE_HASH 0x0000000e
59#define CRYPTO_ALG_TYPE_SHASH 0x0000000e
60#define CRYPTO_ALG_TYPE_AHASH 0x0000000f
055bcee3
HX
61
62#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
63044c4f 63#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
332f8840 64#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
1ab53a77 65#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
1da177e4 66
2825982d 67#define CRYPTO_ALG_LARVAL 0x00000010
6bfd4809
HX
68#define CRYPTO_ALG_DEAD 0x00000020
69#define CRYPTO_ALG_DYING 0x00000040
f3f632d6 70#define CRYPTO_ALG_ASYNC 0x00000080
2825982d 71
6010439f
HX
72/*
73 * Set this bit if and only if the algorithm requires another algorithm of
74 * the same type to handle corner cases.
75 */
76#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
77
ecfc4329
HX
78/*
79 * This bit is set for symmetric key ciphers that have already been wrapped
80 * with a generic IV generator to prevent them from being wrapped again.
81 */
82#define CRYPTO_ALG_GENIV 0x00000200
83
73d3864a
HX
84/*
85 * Set if the algorithm has passed automated run-time testing. Note that
86 * if there is no run-time testing for a given algorithm it is considered
87 * to have passed.
88 */
89
90#define CRYPTO_ALG_TESTED 0x00000400
91
64a947b1 92/*
864e0981 93 * Set if the algorithm is an instance that is built from templates.
64a947b1
SK
94 */
95#define CRYPTO_ALG_INSTANCE 0x00000800
96
d912bb76
NM
97/* Set this bit if the algorithm provided is hardware accelerated but
98 * not available to userspace via instruction set or so.
99 */
100#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
101
06ca7f68
SM
102/*
103 * Mark a cipher as a service implementation only usable by another
104 * cipher and never by a normal user of the kernel crypto API
105 */
106#define CRYPTO_ALG_INTERNAL 0x00002000
107
1da177e4
LT
108/*
109 * Transform masks and values (for crt_flags).
110 */
1da177e4
LT
111#define CRYPTO_TFM_REQ_MASK 0x000fff00
112#define CRYPTO_TFM_RES_MASK 0xfff00000
113
1da177e4 114#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
64baf3cf 115#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
32e3983f 116#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
1da177e4
LT
117#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
118#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
119#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
120#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
121#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
122
123/*
124 * Miscellaneous stuff.
125 */
f437a3f4 126#define CRYPTO_MAX_ALG_NAME 128
1da177e4 127
79911102
HX
128/*
129 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
130 * declaration) is used to ensure that the crypto_tfm context structure is
131 * aligned correctly for the given architecture so that there are no alignment
132 * faults for C data types. In particular, this is required on platforms such
133 * as arm where pointers are 32-bit aligned but there are data types such as
134 * u64 which require 64-bit alignment.
135 */
79911102 136#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
79911102 137
79911102 138#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
79911102 139
1da177e4 140struct scatterlist;
32e3983f
HX
141struct crypto_ablkcipher;
142struct crypto_async_request;
5cde0af2 143struct crypto_blkcipher;
40725181 144struct crypto_tfm;
e853c3cf 145struct crypto_type;
61da88e2 146struct skcipher_givcrypt_request;
40725181 147
32e3983f
HX
148typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
149
0d7f488f
SM
150/**
151 * DOC: Block Cipher Context Data Structures
152 *
153 * These data structures define the operating context for each block cipher
154 * type.
155 */
156
32e3983f
HX
157struct crypto_async_request {
158 struct list_head list;
159 crypto_completion_t complete;
160 void *data;
161 struct crypto_tfm *tfm;
162
163 u32 flags;
164};
165
166struct ablkcipher_request {
167 struct crypto_async_request base;
168
169 unsigned int nbytes;
170
171 void *info;
172
173 struct scatterlist *src;
174 struct scatterlist *dst;
175
176 void *__ctx[] CRYPTO_MINALIGN_ATTR;
177};
178
5cde0af2
HX
179struct blkcipher_desc {
180 struct crypto_blkcipher *tfm;
181 void *info;
182 u32 flags;
183};
184
40725181
HX
185struct cipher_desc {
186 struct crypto_tfm *tfm;
6c2bb98b 187 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
40725181
HX
188 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
189 const u8 *src, unsigned int nbytes);
190 void *info;
191};
1da177e4 192
0d7f488f
SM
193/**
194 * DOC: Block Cipher Algorithm Definitions
195 *
196 * These data structures define modular crypto algorithm implementations,
197 * managed via crypto_register_alg() and crypto_unregister_alg().
198 */
199
200/**
201 * struct ablkcipher_alg - asynchronous block cipher definition
202 * @min_keysize: Minimum key size supported by the transformation. This is the
203 * smallest key length supported by this transformation algorithm.
204 * This must be set to one of the pre-defined values as this is
205 * not hardware specific. Possible values for this field can be
206 * found via git grep "_MIN_KEY_SIZE" include/crypto/
207 * @max_keysize: Maximum key size supported by the transformation. This is the
208 * largest key length supported by this transformation algorithm.
209 * This must be set to one of the pre-defined values as this is
210 * not hardware specific. Possible values for this field can be
211 * found via git grep "_MAX_KEY_SIZE" include/crypto/
212 * @setkey: Set key for the transformation. This function is used to either
213 * program a supplied key into the hardware or store the key in the
214 * transformation context for programming it later. Note that this
215 * function does modify the transformation context. This function can
216 * be called multiple times during the existence of the transformation
217 * object, so one must make sure the key is properly reprogrammed into
218 * the hardware. This function is also responsible for checking the key
219 * length for validity. In case a software fallback was put in place in
220 * the @cra_init call, this function might need to use the fallback if
221 * the algorithm doesn't support all of the key sizes.
222 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
223 * the supplied scatterlist containing the blocks of data. The crypto
224 * API consumer is responsible for aligning the entries of the
225 * scatterlist properly and making sure the chunks are correctly
226 * sized. In case a software fallback was put in place in the
227 * @cra_init call, this function might need to use the fallback if
228 * the algorithm doesn't support all of the key sizes. In case the
229 * key was stored in transformation context, the key might need to be
230 * re-programmed into the hardware in this function. This function
231 * shall not modify the transformation context, as this function may
232 * be called in parallel with the same transformation object.
233 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
234 * and the conditions are exactly the same.
235 * @givencrypt: Update the IV for encryption. With this function, a cipher
236 * implementation may provide the function on how to update the IV
237 * for encryption.
238 * @givdecrypt: Update the IV for decryption. This is the reverse of
239 * @givencrypt .
240 * @geniv: The transformation implementation may use an "IV generator" provided
241 * by the kernel crypto API. Several use cases have a predefined
242 * approach how IVs are to be updated. For such use cases, the kernel
243 * crypto API provides ready-to-use implementations that can be
244 * referenced with this variable.
245 * @ivsize: IV size applicable for transformation. The consumer must provide an
246 * IV of exactly that size to perform the encrypt or decrypt operation.
247 *
248 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
249 * mandatory and must be filled.
1da177e4 250 */
b5b7f088
HX
251struct ablkcipher_alg {
252 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
253 unsigned int keylen);
254 int (*encrypt)(struct ablkcipher_request *req);
255 int (*decrypt)(struct ablkcipher_request *req);
61da88e2
HX
256 int (*givencrypt)(struct skcipher_givcrypt_request *req);
257 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
b5b7f088 258
23508e11
HX
259 const char *geniv;
260
b5b7f088
HX
261 unsigned int min_keysize;
262 unsigned int max_keysize;
263 unsigned int ivsize;
264};
265
0d7f488f
SM
266/**
267 * struct blkcipher_alg - synchronous block cipher definition
268 * @min_keysize: see struct ablkcipher_alg
269 * @max_keysize: see struct ablkcipher_alg
270 * @setkey: see struct ablkcipher_alg
271 * @encrypt: see struct ablkcipher_alg
272 * @decrypt: see struct ablkcipher_alg
273 * @geniv: see struct ablkcipher_alg
274 * @ivsize: see struct ablkcipher_alg
275 *
276 * All fields except @geniv and @ivsize are mandatory and must be filled.
277 */
5cde0af2
HX
278struct blkcipher_alg {
279 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
280 unsigned int keylen);
281 int (*encrypt)(struct blkcipher_desc *desc,
282 struct scatterlist *dst, struct scatterlist *src,
283 unsigned int nbytes);
284 int (*decrypt)(struct blkcipher_desc *desc,
285 struct scatterlist *dst, struct scatterlist *src,
286 unsigned int nbytes);
287
23508e11
HX
288 const char *geniv;
289
5cde0af2
HX
290 unsigned int min_keysize;
291 unsigned int max_keysize;
292 unsigned int ivsize;
293};
294
0d7f488f
SM
295/**
296 * struct cipher_alg - single-block symmetric ciphers definition
297 * @cia_min_keysize: Minimum key size supported by the transformation. This is
298 * the smallest key length supported by this transformation
299 * algorithm. This must be set to one of the pre-defined
300 * values as this is not hardware specific. Possible values
301 * for this field can be found via git grep "_MIN_KEY_SIZE"
302 * include/crypto/
303 * @cia_max_keysize: Maximum key size supported by the transformation. This is
304 * the largest key length supported by this transformation
305 * algorithm. This must be set to one of the pre-defined values
306 * as this is not hardware specific. Possible values for this
307 * field can be found via git grep "_MAX_KEY_SIZE"
308 * include/crypto/
309 * @cia_setkey: Set key for the transformation. This function is used to either
310 * program a supplied key into the hardware or store the key in the
311 * transformation context for programming it later. Note that this
312 * function does modify the transformation context. This function
313 * can be called multiple times during the existence of the
314 * transformation object, so one must make sure the key is properly
315 * reprogrammed into the hardware. This function is also
316 * responsible for checking the key length for validity.
317 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
318 * single block of data, which must be @cra_blocksize big. This
319 * always operates on a full @cra_blocksize and it is not possible
320 * to encrypt a block of smaller size. The supplied buffers must
321 * therefore also be at least of @cra_blocksize size. Both the
322 * input and output buffers are always aligned to @cra_alignmask.
323 * In case either of the input or output buffer supplied by user
324 * of the crypto API is not aligned to @cra_alignmask, the crypto
325 * API will re-align the buffers. The re-alignment means that a
326 * new buffer will be allocated, the data will be copied into the
327 * new buffer, then the processing will happen on the new buffer,
328 * then the data will be copied back into the original buffer and
329 * finally the new buffer will be freed. In case a software
330 * fallback was put in place in the @cra_init call, this function
331 * might need to use the fallback if the algorithm doesn't support
332 * all of the key sizes. In case the key was stored in
333 * transformation context, the key might need to be re-programmed
334 * into the hardware in this function. This function shall not
335 * modify the transformation context, as this function may be
336 * called in parallel with the same transformation object.
337 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
338 * @cia_encrypt, and the conditions are exactly the same.
339 *
340 * All fields are mandatory and must be filled.
341 */
1da177e4
LT
342struct cipher_alg {
343 unsigned int cia_min_keysize;
344 unsigned int cia_max_keysize;
6c2bb98b 345 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
560c06ae 346 unsigned int keylen);
6c2bb98b
HX
347 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
348 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
349};
350
1da177e4 351struct compress_alg {
6c2bb98b
HX
352 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
353 unsigned int slen, u8 *dst, unsigned int *dlen);
354 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
355 unsigned int slen, u8 *dst, unsigned int *dlen);
1da177e4
LT
356};
357
17f0f4a4 358
b5b7f088 359#define cra_ablkcipher cra_u.ablkcipher
5cde0af2 360#define cra_blkcipher cra_u.blkcipher
1da177e4 361#define cra_cipher cra_u.cipher
1da177e4
LT
362#define cra_compress cra_u.compress
363
0d7f488f
SM
364/**
365 * struct crypto_alg - definition of a cryptograpic cipher algorithm
366 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
367 * CRYPTO_ALG_* flags for the flags which go in here. Those are
368 * used for fine-tuning the description of the transformation
369 * algorithm.
370 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
371 * of the smallest possible unit which can be transformed with
372 * this algorithm. The users must respect this value.
373 * In case of HASH transformation, it is possible for a smaller
374 * block than @cra_blocksize to be passed to the crypto API for
375 * transformation, in case of any other transformation type, an
376 * error will be returned upon any attempt to transform smaller
377 * than @cra_blocksize chunks.
378 * @cra_ctxsize: Size of the operational context of the transformation. This
379 * value informs the kernel crypto API about the memory size
380 * needed to be allocated for the transformation context.
381 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
382 * buffer containing the input data for the algorithm must be
383 * aligned to this alignment mask. The data buffer for the
384 * output data must be aligned to this alignment mask. Note that
385 * the Crypto API will do the re-alignment in software, but
386 * only under special conditions and there is a performance hit.
387 * The re-alignment happens at these occasions for different
388 * @cra_u types: cipher -- For both input data and output data
389 * buffer; ahash -- For output hash destination buf; shash --
390 * For output hash destination buf.
391 * This is needed on hardware which is flawed by design and
392 * cannot pick data from arbitrary addresses.
393 * @cra_priority: Priority of this transformation implementation. In case
394 * multiple transformations with same @cra_name are available to
395 * the Crypto API, the kernel will use the one with highest
396 * @cra_priority.
397 * @cra_name: Generic name (usable by multiple implementations) of the
398 * transformation algorithm. This is the name of the transformation
399 * itself. This field is used by the kernel when looking up the
400 * providers of particular transformation.
401 * @cra_driver_name: Unique name of the transformation provider. This is the
402 * name of the provider of the transformation. This can be any
403 * arbitrary value, but in the usual case, this contains the
404 * name of the chip or provider and the name of the
405 * transformation algorithm.
406 * @cra_type: Type of the cryptographic transformation. This is a pointer to
407 * struct crypto_type, which implements callbacks common for all
12f7c14a 408 * transformation types. There are multiple options:
0d7f488f 409 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
b0d955ba 410 * &crypto_ahash_type, &crypto_rng_type.
0d7f488f
SM
411 * This field might be empty. In that case, there are no common
412 * callbacks. This is the case for: cipher, compress, shash.
413 * @cra_u: Callbacks implementing the transformation. This is a union of
414 * multiple structures. Depending on the type of transformation selected
415 * by @cra_type and @cra_flags above, the associated structure must be
416 * filled with callbacks. This field might be empty. This is the case
417 * for ahash, shash.
418 * @cra_init: Initialize the cryptographic transformation object. This function
419 * is used to initialize the cryptographic transformation object.
420 * This function is called only once at the instantiation time, right
421 * after the transformation context was allocated. In case the
422 * cryptographic hardware has some special requirements which need to
423 * be handled by software, this function shall check for the precise
424 * requirement of the transformation and put any software fallbacks
425 * in place.
426 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
427 * counterpart to @cra_init, used to remove various changes set in
428 * @cra_init.
429 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
430 * @cra_list: internally used
431 * @cra_users: internally used
432 * @cra_refcnt: internally used
433 * @cra_destroy: internally used
434 *
435 * The struct crypto_alg describes a generic Crypto API algorithm and is common
436 * for all of the transformations. Any variable not documented here shall not
437 * be used by a cipher implementation as it is internal to the Crypto API.
438 */
1da177e4
LT
439struct crypto_alg {
440 struct list_head cra_list;
6bfd4809
HX
441 struct list_head cra_users;
442
1da177e4
LT
443 u32 cra_flags;
444 unsigned int cra_blocksize;
445 unsigned int cra_ctxsize;
95477377 446 unsigned int cra_alignmask;
5cb1454b
HX
447
448 int cra_priority;
6521f302 449 atomic_t cra_refcnt;
5cb1454b 450
d913ea0d
HX
451 char cra_name[CRYPTO_MAX_ALG_NAME];
452 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
1da177e4 453
e853c3cf
HX
454 const struct crypto_type *cra_type;
455
1da177e4 456 union {
b5b7f088 457 struct ablkcipher_alg ablkcipher;
5cde0af2 458 struct blkcipher_alg blkcipher;
1da177e4 459 struct cipher_alg cipher;
1da177e4
LT
460 struct compress_alg compress;
461 } cra_u;
c7fc0599
HX
462
463 int (*cra_init)(struct crypto_tfm *tfm);
464 void (*cra_exit)(struct crypto_tfm *tfm);
6521f302 465 void (*cra_destroy)(struct crypto_alg *alg);
1da177e4
LT
466
467 struct module *cra_module;
edf18b91 468} CRYPTO_MINALIGN_ATTR;
1da177e4
LT
469
470/*
471 * Algorithm registration interface.
472 */
473int crypto_register_alg(struct crypto_alg *alg);
474int crypto_unregister_alg(struct crypto_alg *alg);
4b004346
MB
475int crypto_register_algs(struct crypto_alg *algs, int count);
476int crypto_unregister_algs(struct crypto_alg *algs, int count);
1da177e4
LT
477
478/*
479 * Algorithm query interface.
480 */
fce32d70 481int crypto_has_alg(const char *name, u32 type, u32 mask);
1da177e4
LT
482
483/*
484 * Transforms: user-instantiated objects which encapsulate algorithms
6d7d684d
HX
485 * and core processing logic. Managed via crypto_alloc_*() and
486 * crypto_free_*(), as well as the various helpers below.
1da177e4 487 */
1da177e4 488
32e3983f
HX
489struct ablkcipher_tfm {
490 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
491 unsigned int keylen);
492 int (*encrypt)(struct ablkcipher_request *req);
493 int (*decrypt)(struct ablkcipher_request *req);
61da88e2 494
ecfc4329
HX
495 struct crypto_ablkcipher *base;
496
32e3983f
HX
497 unsigned int ivsize;
498 unsigned int reqsize;
499};
500
5cde0af2
HX
501struct blkcipher_tfm {
502 void *iv;
503 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
504 unsigned int keylen);
505 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
506 struct scatterlist *src, unsigned int nbytes);
507 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
508 struct scatterlist *src, unsigned int nbytes);
509};
510
1da177e4 511struct cipher_tfm {
1da177e4
LT
512 int (*cit_setkey)(struct crypto_tfm *tfm,
513 const u8 *key, unsigned int keylen);
f28776a3
HX
514 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
515 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
516};
517
1da177e4
LT
518struct compress_tfm {
519 int (*cot_compress)(struct crypto_tfm *tfm,
520 const u8 *src, unsigned int slen,
521 u8 *dst, unsigned int *dlen);
522 int (*cot_decompress)(struct crypto_tfm *tfm,
523 const u8 *src, unsigned int slen,
524 u8 *dst, unsigned int *dlen);
525};
526
32e3983f 527#define crt_ablkcipher crt_u.ablkcipher
5cde0af2 528#define crt_blkcipher crt_u.blkcipher
1da177e4 529#define crt_cipher crt_u.cipher
1da177e4
LT
530#define crt_compress crt_u.compress
531
532struct crypto_tfm {
533
534 u32 crt_flags;
535
536 union {
32e3983f 537 struct ablkcipher_tfm ablkcipher;
5cde0af2 538 struct blkcipher_tfm blkcipher;
1da177e4 539 struct cipher_tfm cipher;
1da177e4
LT
540 struct compress_tfm compress;
541 } crt_u;
4a779486
HX
542
543 void (*exit)(struct crypto_tfm *tfm);
1da177e4
LT
544
545 struct crypto_alg *__crt_alg;
f10b7897 546
79911102 547 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
1da177e4
LT
548};
549
32e3983f
HX
550struct crypto_ablkcipher {
551 struct crypto_tfm base;
552};
553
5cde0af2
HX
554struct crypto_blkcipher {
555 struct crypto_tfm base;
556};
557
78a1fe4f
HX
558struct crypto_cipher {
559 struct crypto_tfm base;
560};
561
562struct crypto_comp {
563 struct crypto_tfm base;
564};
565
2b8c19db
HX
566enum {
567 CRYPTOA_UNSPEC,
568 CRYPTOA_ALG,
ebc610e5 569 CRYPTOA_TYPE,
39e1ee01 570 CRYPTOA_U32,
ebc610e5 571 __CRYPTOA_MAX,
2b8c19db
HX
572};
573
ebc610e5
HX
574#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
575
39e1ee01
HX
576/* Maximum number of (rtattr) parameters for each template. */
577#define CRYPTO_MAX_ATTRS 32
578
2b8c19db
HX
579struct crypto_attr_alg {
580 char name[CRYPTO_MAX_ALG_NAME];
581};
582
ebc610e5
HX
583struct crypto_attr_type {
584 u32 type;
585 u32 mask;
586};
587
39e1ee01
HX
588struct crypto_attr_u32 {
589 u32 num;
590};
591
1da177e4
LT
592/*
593 * Transform user interface.
594 */
595
6d7d684d 596struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
7b2cd92a
HX
597void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
598
599static inline void crypto_free_tfm(struct crypto_tfm *tfm)
600{
601 return crypto_destroy_tfm(tfm, tfm);
602}
1da177e4 603
da7f033d
HX
604int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
605
1da177e4
LT
606/*
607 * Transform helpers which query the underlying algorithm.
608 */
609static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
610{
611 return tfm->__crt_alg->cra_name;
612}
613
b14cdd67
ML
614static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
615{
616 return tfm->__crt_alg->cra_driver_name;
617}
618
619static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
620{
621 return tfm->__crt_alg->cra_priority;
622}
623
1da177e4
LT
624static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
625{
626 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
627}
628
1da177e4
LT
629static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
630{
631 return tfm->__crt_alg->cra_blocksize;
632}
633
fbdae9f3
HX
634static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
635{
636 return tfm->__crt_alg->cra_alignmask;
637}
638
f28776a3
HX
639static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
640{
641 return tfm->crt_flags;
642}
643
644static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
645{
646 tfm->crt_flags |= flags;
647}
648
649static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
650{
651 tfm->crt_flags &= ~flags;
652}
653
40725181
HX
654static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
655{
f10b7897
HX
656 return tfm->__crt_ctx;
657}
658
659static inline unsigned int crypto_tfm_ctx_alignment(void)
660{
661 struct crypto_tfm *tfm;
662 return __alignof__(tfm->__crt_ctx);
40725181
HX
663}
664
1da177e4
LT
665/*
666 * API wrappers.
667 */
32e3983f
HX
668static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
669 struct crypto_tfm *tfm)
670{
671 return (struct crypto_ablkcipher *)tfm;
672}
673
378f4f51 674static inline u32 crypto_skcipher_type(u32 type)
32e3983f 675{
ecfc4329 676 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
32e3983f 677 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
378f4f51
HX
678 return type;
679}
680
681static inline u32 crypto_skcipher_mask(u32 mask)
682{
ecfc4329 683 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
332f8840 684 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
378f4f51
HX
685 return mask;
686}
32e3983f 687
f13ec330
SM
688/**
689 * DOC: Asynchronous Block Cipher API
690 *
691 * Asynchronous block cipher API is used with the ciphers of type
692 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
693 *
694 * Asynchronous cipher operations imply that the function invocation for a
695 * cipher request returns immediately before the completion of the operation.
696 * The cipher request is scheduled as a separate kernel thread and therefore
697 * load-balanced on the different CPUs via the process scheduler. To allow
698 * the kernel crypto API to inform the caller about the completion of a cipher
699 * request, the caller must provide a callback function. That function is
700 * invoked with the cipher handle when the request completes.
701 *
702 * To support the asynchronous operation, additional information than just the
703 * cipher handle must be supplied to the kernel crypto API. That additional
704 * information is given by filling in the ablkcipher_request data structure.
705 *
706 * For the asynchronous block cipher API, the state is maintained with the tfm
707 * cipher handle. A single tfm can be used across multiple calls and in
708 * parallel. For asynchronous block cipher calls, context data supplied and
709 * only used by the caller can be referenced the request data structure in
710 * addition to the IV used for the cipher request. The maintenance of such
711 * state information would be important for a crypto driver implementer to
712 * have, because when calling the callback function upon completion of the
713 * cipher operation, that callback function may need some information about
714 * which operation just finished if it invoked multiple in parallel. This
715 * state information is unused by the kernel crypto API.
716 */
717
32e3983f
HX
718static inline struct crypto_tfm *crypto_ablkcipher_tfm(
719 struct crypto_ablkcipher *tfm)
720{
721 return &tfm->base;
722}
723
f13ec330
SM
724/**
725 * crypto_free_ablkcipher() - zeroize and free cipher handle
726 * @tfm: cipher handle to be freed
727 */
32e3983f
HX
728static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
729{
730 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
731}
732
f13ec330
SM
733/**
734 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
735 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
736 * ablkcipher
737 * @type: specifies the type of the cipher
738 * @mask: specifies the mask for the cipher
739 *
740 * Return: true when the ablkcipher is known to the kernel crypto API; false
741 * otherwise
742 */
32e3983f
HX
743static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
744 u32 mask)
745{
378f4f51
HX
746 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
747 crypto_skcipher_mask(mask));
32e3983f
HX
748}
749
750static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
751 struct crypto_ablkcipher *tfm)
752{
753 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
754}
755
f13ec330
SM
756/**
757 * crypto_ablkcipher_ivsize() - obtain IV size
758 * @tfm: cipher handle
759 *
760 * The size of the IV for the ablkcipher referenced by the cipher handle is
761 * returned. This IV size may be zero if the cipher does not need an IV.
762 *
763 * Return: IV size in bytes
764 */
32e3983f
HX
765static inline unsigned int crypto_ablkcipher_ivsize(
766 struct crypto_ablkcipher *tfm)
767{
768 return crypto_ablkcipher_crt(tfm)->ivsize;
769}
770
f13ec330
SM
771/**
772 * crypto_ablkcipher_blocksize() - obtain block size of cipher
773 * @tfm: cipher handle
774 *
775 * The block size for the ablkcipher referenced with the cipher handle is
776 * returned. The caller may use that information to allocate appropriate
777 * memory for the data returned by the encryption or decryption operation
778 *
779 * Return: block size of cipher
780 */
32e3983f
HX
781static inline unsigned int crypto_ablkcipher_blocksize(
782 struct crypto_ablkcipher *tfm)
783{
784 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
785}
786
787static inline unsigned int crypto_ablkcipher_alignmask(
788 struct crypto_ablkcipher *tfm)
789{
790 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
791}
792
793static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
794{
795 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
796}
797
798static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
799 u32 flags)
800{
801 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
802}
803
804static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
805 u32 flags)
806{
807 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
808}
809
f13ec330
SM
810/**
811 * crypto_ablkcipher_setkey() - set key for cipher
812 * @tfm: cipher handle
813 * @key: buffer holding the key
814 * @keylen: length of the key in bytes
815 *
816 * The caller provided key is set for the ablkcipher referenced by the cipher
817 * handle.
818 *
819 * Note, the key length determines the cipher type. Many block ciphers implement
820 * different cipher modes depending on the key size, such as AES-128 vs AES-192
821 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
822 * is performed.
823 *
824 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
825 */
32e3983f
HX
826static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
827 const u8 *key, unsigned int keylen)
828{
ecfc4329
HX
829 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
830
831 return crt->setkey(crt->base, key, keylen);
32e3983f
HX
832}
833
f13ec330
SM
834/**
835 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
836 * @req: ablkcipher_request out of which the cipher handle is to be obtained
837 *
838 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
839 * data structure.
840 *
841 * Return: crypto_ablkcipher handle
842 */
32e3983f
HX
843static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
844 struct ablkcipher_request *req)
845{
846 return __crypto_ablkcipher_cast(req->base.tfm);
847}
848
f13ec330
SM
849/**
850 * crypto_ablkcipher_encrypt() - encrypt plaintext
851 * @req: reference to the ablkcipher_request handle that holds all information
852 * needed to perform the cipher operation
853 *
854 * Encrypt plaintext data using the ablkcipher_request handle. That data
855 * structure and how it is filled with data is discussed with the
856 * ablkcipher_request_* functions.
857 *
858 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
859 */
32e3983f
HX
860static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
861{
862 struct ablkcipher_tfm *crt =
863 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
864 return crt->encrypt(req);
865}
866
f13ec330
SM
867/**
868 * crypto_ablkcipher_decrypt() - decrypt ciphertext
869 * @req: reference to the ablkcipher_request handle that holds all information
870 * needed to perform the cipher operation
871 *
872 * Decrypt ciphertext data using the ablkcipher_request handle. That data
873 * structure and how it is filled with data is discussed with the
874 * ablkcipher_request_* functions.
875 *
876 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
877 */
32e3983f
HX
878static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
879{
880 struct ablkcipher_tfm *crt =
881 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
882 return crt->decrypt(req);
883}
884
f13ec330
SM
885/**
886 * DOC: Asynchronous Cipher Request Handle
887 *
888 * The ablkcipher_request data structure contains all pointers to data
889 * required for the asynchronous cipher operation. This includes the cipher
890 * handle (which can be used by multiple ablkcipher_request instances), pointer
891 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
892 * as a handle to the ablkcipher_request_* API calls in a similar way as
893 * ablkcipher handle to the crypto_ablkcipher_* API calls.
894 */
895
896/**
897 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
898 * @tfm: cipher handle
899 *
900 * Return: number of bytes
901 */
b16c3a2e
HX
902static inline unsigned int crypto_ablkcipher_reqsize(
903 struct crypto_ablkcipher *tfm)
32e3983f
HX
904{
905 return crypto_ablkcipher_crt(tfm)->reqsize;
906}
907
f13ec330
SM
908/**
909 * ablkcipher_request_set_tfm() - update cipher handle reference in request
910 * @req: request handle to be modified
911 * @tfm: cipher handle that shall be added to the request handle
912 *
913 * Allow the caller to replace the existing ablkcipher handle in the request
914 * data structure with a different one.
915 */
e196d625
HX
916static inline void ablkcipher_request_set_tfm(
917 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
918{
ecfc4329 919 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
e196d625
HX
920}
921
b5b7f088
HX
922static inline struct ablkcipher_request *ablkcipher_request_cast(
923 struct crypto_async_request *req)
924{
925 return container_of(req, struct ablkcipher_request, base);
926}
927
f13ec330
SM
928/**
929 * ablkcipher_request_alloc() - allocate request data structure
930 * @tfm: cipher handle to be registered with the request
931 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
932 *
933 * Allocate the request data structure that must be used with the ablkcipher
934 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
935 * handle is registered in the request data structure.
936 *
6eae29e7 937 * Return: allocated request handle in case of success, or NULL if out of memory
f13ec330 938 */
32e3983f
HX
939static inline struct ablkcipher_request *ablkcipher_request_alloc(
940 struct crypto_ablkcipher *tfm, gfp_t gfp)
941{
942 struct ablkcipher_request *req;
943
944 req = kmalloc(sizeof(struct ablkcipher_request) +
945 crypto_ablkcipher_reqsize(tfm), gfp);
946
947 if (likely(req))
e196d625 948 ablkcipher_request_set_tfm(req, tfm);
32e3983f
HX
949
950 return req;
951}
952
f13ec330
SM
953/**
954 * ablkcipher_request_free() - zeroize and free request data structure
955 * @req: request data structure cipher handle to be freed
956 */
32e3983f
HX
957static inline void ablkcipher_request_free(struct ablkcipher_request *req)
958{
aef73cfc 959 kzfree(req);
32e3983f
HX
960}
961
f13ec330
SM
962/**
963 * ablkcipher_request_set_callback() - set asynchronous callback function
964 * @req: request handle
965 * @flags: specify zero or an ORing of the flags
0184cfe7 966 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
f13ec330
SM
967 * increase the wait queue beyond the initial maximum size;
968 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
969 * @compl: callback function pointer to be registered with the request handle
970 * @data: The data pointer refers to memory that is not used by the kernel
971 * crypto API, but provided to the callback function for it to use. Here,
972 * the caller can provide a reference to memory the callback function can
973 * operate on. As the callback function is invoked asynchronously to the
974 * related functionality, it may need to access data structures of the
975 * related functionality which can be referenced using this pointer. The
976 * callback function can access the memory via the "data" field in the
977 * crypto_async_request data structure provided to the callback function.
978 *
979 * This function allows setting the callback function that is triggered once the
980 * cipher operation completes.
981 *
982 * The callback function is registered with the ablkcipher_request handle and
0184cfe7 983 * must comply with the following template::
f13ec330
SM
984 *
985 * void callback_function(struct crypto_async_request *req, int error)
986 */
32e3983f
HX
987static inline void ablkcipher_request_set_callback(
988 struct ablkcipher_request *req,
3e3dc25f 989 u32 flags, crypto_completion_t compl, void *data)
32e3983f 990{
3e3dc25f 991 req->base.complete = compl;
32e3983f
HX
992 req->base.data = data;
993 req->base.flags = flags;
994}
995
f13ec330
SM
996/**
997 * ablkcipher_request_set_crypt() - set data buffers
998 * @req: request handle
999 * @src: source scatter / gather list
1000 * @dst: destination scatter / gather list
1001 * @nbytes: number of bytes to process from @src
1002 * @iv: IV for the cipher operation which must comply with the IV size defined
1003 * by crypto_ablkcipher_ivsize
1004 *
1005 * This function allows setting of the source data and destination data
1006 * scatter / gather lists.
1007 *
1008 * For encryption, the source is treated as the plaintext and the
1009 * destination is the ciphertext. For a decryption operation, the use is
379dcfb4 1010 * reversed - the source is the ciphertext and the destination is the plaintext.
f13ec330 1011 */
32e3983f
HX
1012static inline void ablkcipher_request_set_crypt(
1013 struct ablkcipher_request *req,
1014 struct scatterlist *src, struct scatterlist *dst,
1015 unsigned int nbytes, void *iv)
1016{
1017 req->src = src;
1018 req->dst = dst;
1019 req->nbytes = nbytes;
1020 req->info = iv;
1021}
1022
58284f0d
SM
1023/**
1024 * DOC: Synchronous Block Cipher API
1025 *
1026 * The synchronous block cipher API is used with the ciphers of type
1027 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1028 *
1029 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1030 * used in multiple calls and in parallel, this info should not be changeable
1031 * (unless a lock is used). This applies, for example, to the symmetric key.
1032 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1033 * structure for synchronous blkcipher api. So, its the only state info that can
1034 * be kept for synchronous calls without using a big lock across a tfm.
1035 *
1036 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1037 * consisting of a template (a block chaining mode) and a single block cipher
1038 * primitive (e.g. AES).
1039 *
1040 * The plaintext data buffer and the ciphertext data buffer are pointed to
1041 * by using scatter/gather lists. The cipher operation is performed
1042 * on all segments of the provided scatter/gather lists.
1043 *
1044 * The kernel crypto API supports a cipher operation "in-place" which means that
1045 * the caller may provide the same scatter/gather list for the plaintext and
1046 * cipher text. After the completion of the cipher operation, the plaintext
1047 * data is replaced with the ciphertext data in case of an encryption and vice
1048 * versa for a decryption. The caller must ensure that the scatter/gather lists
1049 * for the output data point to sufficiently large buffers, i.e. multiples of
1050 * the block size of the cipher.
1051 */
1052
5cde0af2
HX
1053static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1054 struct crypto_tfm *tfm)
1055{
1056 return (struct crypto_blkcipher *)tfm;
1057}
1058
1059static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1060 struct crypto_tfm *tfm)
1061{
1062 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1063 return __crypto_blkcipher_cast(tfm);
1064}
1065
58284f0d
SM
1066/**
1067 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1068 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1069 * blkcipher cipher
1070 * @type: specifies the type of the cipher
1071 * @mask: specifies the mask for the cipher
1072 *
1073 * Allocate a cipher handle for a block cipher. The returned struct
1074 * crypto_blkcipher is the cipher handle that is required for any subsequent
1075 * API invocation for that block cipher.
1076 *
1077 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1078 * of an error, PTR_ERR() returns the error code.
1079 */
5cde0af2
HX
1080static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1081 const char *alg_name, u32 type, u32 mask)
1082{
332f8840 1083 type &= ~CRYPTO_ALG_TYPE_MASK;
5cde0af2 1084 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1085 mask |= CRYPTO_ALG_TYPE_MASK;
5cde0af2
HX
1086
1087 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1088}
1089
1090static inline struct crypto_tfm *crypto_blkcipher_tfm(
1091 struct crypto_blkcipher *tfm)
1092{
1093 return &tfm->base;
1094}
1095
58284f0d
SM
1096/**
1097 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1098 * @tfm: cipher handle to be freed
1099 */
5cde0af2
HX
1100static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1101{
1102 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1103}
1104
58284f0d
SM
1105/**
1106 * crypto_has_blkcipher() - Search for the availability of a block cipher
1107 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1108 * block cipher
1109 * @type: specifies the type of the cipher
1110 * @mask: specifies the mask for the cipher
1111 *
1112 * Return: true when the block cipher is known to the kernel crypto API; false
1113 * otherwise
1114 */
fce32d70
HX
1115static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1116{
332f8840 1117 type &= ~CRYPTO_ALG_TYPE_MASK;
fce32d70 1118 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1119 mask |= CRYPTO_ALG_TYPE_MASK;
fce32d70
HX
1120
1121 return crypto_has_alg(alg_name, type, mask);
1122}
1123
58284f0d
SM
1124/**
1125 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1126 * @tfm: cipher handle
1127 *
1128 * Return: The character string holding the name of the cipher
1129 */
5cde0af2
HX
1130static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1131{
1132 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1133}
1134
1135static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1136 struct crypto_blkcipher *tfm)
1137{
1138 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1139}
1140
1141static inline struct blkcipher_alg *crypto_blkcipher_alg(
1142 struct crypto_blkcipher *tfm)
1143{
1144 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1145}
1146
58284f0d
SM
1147/**
1148 * crypto_blkcipher_ivsize() - obtain IV size
1149 * @tfm: cipher handle
1150 *
1151 * The size of the IV for the block cipher referenced by the cipher handle is
1152 * returned. This IV size may be zero if the cipher does not need an IV.
1153 *
1154 * Return: IV size in bytes
1155 */
5cde0af2
HX
1156static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1157{
1158 return crypto_blkcipher_alg(tfm)->ivsize;
1159}
1160
58284f0d
SM
1161/**
1162 * crypto_blkcipher_blocksize() - obtain block size of cipher
1163 * @tfm: cipher handle
1164 *
1165 * The block size for the block cipher referenced with the cipher handle is
1166 * returned. The caller may use that information to allocate appropriate
1167 * memory for the data returned by the encryption or decryption operation.
1168 *
1169 * Return: block size of cipher
1170 */
5cde0af2
HX
1171static inline unsigned int crypto_blkcipher_blocksize(
1172 struct crypto_blkcipher *tfm)
1173{
1174 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1175}
1176
1177static inline unsigned int crypto_blkcipher_alignmask(
1178 struct crypto_blkcipher *tfm)
1179{
1180 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1181}
1182
1183static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1184{
1185 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1186}
1187
1188static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1189 u32 flags)
1190{
1191 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1192}
1193
1194static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1195 u32 flags)
1196{
1197 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1198}
1199
58284f0d
SM
1200/**
1201 * crypto_blkcipher_setkey() - set key for cipher
1202 * @tfm: cipher handle
1203 * @key: buffer holding the key
1204 * @keylen: length of the key in bytes
1205 *
1206 * The caller provided key is set for the block cipher referenced by the cipher
1207 * handle.
1208 *
1209 * Note, the key length determines the cipher type. Many block ciphers implement
1210 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1211 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1212 * is performed.
1213 *
1214 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1215 */
5cde0af2
HX
1216static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1217 const u8 *key, unsigned int keylen)
1218{
1219 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1220 key, keylen);
1221}
1222
58284f0d
SM
1223/**
1224 * crypto_blkcipher_encrypt() - encrypt plaintext
1225 * @desc: reference to the block cipher handle with meta data
1226 * @dst: scatter/gather list that is filled by the cipher operation with the
1227 * ciphertext
1228 * @src: scatter/gather list that holds the plaintext
1229 * @nbytes: number of bytes of the plaintext to encrypt.
1230 *
1231 * Encrypt plaintext data using the IV set by the caller with a preceding
1232 * call of crypto_blkcipher_set_iv.
1233 *
1234 * The blkcipher_desc data structure must be filled by the caller and can
1235 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1236 * with the block cipher handle; desc.flags is filled with either
1237 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1238 *
1239 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1240 */
5cde0af2
HX
1241static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1242 struct scatterlist *dst,
1243 struct scatterlist *src,
1244 unsigned int nbytes)
1245{
1246 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1247 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1248}
1249
58284f0d
SM
1250/**
1251 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1252 * @desc: reference to the block cipher handle with meta data
1253 * @dst: scatter/gather list that is filled by the cipher operation with the
1254 * ciphertext
1255 * @src: scatter/gather list that holds the plaintext
1256 * @nbytes: number of bytes of the plaintext to encrypt.
1257 *
1258 * Encrypt plaintext data with the use of an IV that is solely used for this
1259 * cipher operation. Any previously set IV is not used.
1260 *
1261 * The blkcipher_desc data structure must be filled by the caller and can
1262 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1263 * with the block cipher handle; desc.info is filled with the IV to be used for
1264 * the current operation; desc.flags is filled with either
1265 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1266 *
1267 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1268 */
5cde0af2
HX
1269static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1270 struct scatterlist *dst,
1271 struct scatterlist *src,
1272 unsigned int nbytes)
1273{
1274 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1275}
1276
58284f0d
SM
1277/**
1278 * crypto_blkcipher_decrypt() - decrypt ciphertext
1279 * @desc: reference to the block cipher handle with meta data
1280 * @dst: scatter/gather list that is filled by the cipher operation with the
1281 * plaintext
1282 * @src: scatter/gather list that holds the ciphertext
1283 * @nbytes: number of bytes of the ciphertext to decrypt.
1284 *
1285 * Decrypt ciphertext data using the IV set by the caller with a preceding
1286 * call of crypto_blkcipher_set_iv.
1287 *
1288 * The blkcipher_desc data structure must be filled by the caller as documented
1289 * for the crypto_blkcipher_encrypt call above.
1290 *
1291 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1292 *
1293 */
5cde0af2
HX
1294static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1295 struct scatterlist *dst,
1296 struct scatterlist *src,
1297 unsigned int nbytes)
1298{
1299 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1300 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1301}
1302
58284f0d
SM
1303/**
1304 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1305 * @desc: reference to the block cipher handle with meta data
1306 * @dst: scatter/gather list that is filled by the cipher operation with the
1307 * plaintext
1308 * @src: scatter/gather list that holds the ciphertext
1309 * @nbytes: number of bytes of the ciphertext to decrypt.
1310 *
1311 * Decrypt ciphertext data with the use of an IV that is solely used for this
1312 * cipher operation. Any previously set IV is not used.
1313 *
1314 * The blkcipher_desc data structure must be filled by the caller as documented
1315 * for the crypto_blkcipher_encrypt_iv call above.
1316 *
1317 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1318 */
5cde0af2
HX
1319static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1320 struct scatterlist *dst,
1321 struct scatterlist *src,
1322 unsigned int nbytes)
1323{
1324 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1325}
1326
58284f0d
SM
1327/**
1328 * crypto_blkcipher_set_iv() - set IV for cipher
1329 * @tfm: cipher handle
1330 * @src: buffer holding the IV
1331 * @len: length of the IV in bytes
1332 *
1333 * The caller provided IV is set for the block cipher referenced by the cipher
1334 * handle.
1335 */
5cde0af2
HX
1336static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1337 const u8 *src, unsigned int len)
1338{
1339 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1340}
1341
58284f0d
SM
1342/**
1343 * crypto_blkcipher_get_iv() - obtain IV from cipher
1344 * @tfm: cipher handle
1345 * @dst: buffer filled with the IV
1346 * @len: length of the buffer dst
1347 *
1348 * The caller can obtain the IV set for the block cipher referenced by the
1349 * cipher handle and store it into the user-provided buffer. If the buffer
1350 * has an insufficient space, the IV is truncated to fit the buffer.
1351 */
5cde0af2
HX
1352static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1353 u8 *dst, unsigned int len)
1354{
1355 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1356}
1357
16e61030
SM
1358/**
1359 * DOC: Single Block Cipher API
1360 *
1361 * The single block cipher API is used with the ciphers of type
1362 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1363 *
1364 * Using the single block cipher API calls, operations with the basic cipher
1365 * primitive can be implemented. These cipher primitives exclude any block
1366 * chaining operations including IV handling.
1367 *
1368 * The purpose of this single block cipher API is to support the implementation
1369 * of templates or other concepts that only need to perform the cipher operation
1370 * on one block at a time. Templates invoke the underlying cipher primitive
1371 * block-wise and process either the input or the output data of these cipher
1372 * operations.
1373 */
1374
f28776a3
HX
1375static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1376{
1377 return (struct crypto_cipher *)tfm;
1378}
1379
1380static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1381{
1382 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1383 return __crypto_cipher_cast(tfm);
1384}
1385
16e61030
SM
1386/**
1387 * crypto_alloc_cipher() - allocate single block cipher handle
1388 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1389 * single block cipher
1390 * @type: specifies the type of the cipher
1391 * @mask: specifies the mask for the cipher
1392 *
1393 * Allocate a cipher handle for a single block cipher. The returned struct
1394 * crypto_cipher is the cipher handle that is required for any subsequent API
1395 * invocation for that single block cipher.
1396 *
1397 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1398 * of an error, PTR_ERR() returns the error code.
1399 */
f28776a3
HX
1400static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1401 u32 type, u32 mask)
1402{
1403 type &= ~CRYPTO_ALG_TYPE_MASK;
1404 type |= CRYPTO_ALG_TYPE_CIPHER;
1405 mask |= CRYPTO_ALG_TYPE_MASK;
1406
1407 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1408}
1409
1410static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1411{
78a1fe4f 1412 return &tfm->base;
f28776a3
HX
1413}
1414
16e61030
SM
1415/**
1416 * crypto_free_cipher() - zeroize and free the single block cipher handle
1417 * @tfm: cipher handle to be freed
1418 */
f28776a3
HX
1419static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1420{
1421 crypto_free_tfm(crypto_cipher_tfm(tfm));
1422}
1423
16e61030
SM
1424/**
1425 * crypto_has_cipher() - Search for the availability of a single block cipher
1426 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1427 * single block cipher
1428 * @type: specifies the type of the cipher
1429 * @mask: specifies the mask for the cipher
1430 *
1431 * Return: true when the single block cipher is known to the kernel crypto API;
1432 * false otherwise
1433 */
fce32d70
HX
1434static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1435{
1436 type &= ~CRYPTO_ALG_TYPE_MASK;
1437 type |= CRYPTO_ALG_TYPE_CIPHER;
1438 mask |= CRYPTO_ALG_TYPE_MASK;
1439
1440 return crypto_has_alg(alg_name, type, mask);
1441}
1442
f28776a3
HX
1443static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1444{
1445 return &crypto_cipher_tfm(tfm)->crt_cipher;
1446}
1447
16e61030
SM
1448/**
1449 * crypto_cipher_blocksize() - obtain block size for cipher
1450 * @tfm: cipher handle
1451 *
1452 * The block size for the single block cipher referenced with the cipher handle
1453 * tfm is returned. The caller may use that information to allocate appropriate
1454 * memory for the data returned by the encryption or decryption operation
1455 *
1456 * Return: block size of cipher
1457 */
f28776a3
HX
1458static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1459{
1460 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1461}
1462
1463static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1464{
1465 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1466}
1467
1468static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1469{
1470 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1471}
1472
1473static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1474 u32 flags)
1475{
1476 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1477}
1478
1479static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1480 u32 flags)
1481{
1482 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1483}
1484
16e61030
SM
1485/**
1486 * crypto_cipher_setkey() - set key for cipher
1487 * @tfm: cipher handle
1488 * @key: buffer holding the key
1489 * @keylen: length of the key in bytes
1490 *
1491 * The caller provided key is set for the single block cipher referenced by the
1492 * cipher handle.
1493 *
1494 * Note, the key length determines the cipher type. Many block ciphers implement
1495 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1496 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1497 * is performed.
1498 *
1499 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1500 */
7226bc87
HX
1501static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1502 const u8 *key, unsigned int keylen)
1503{
1504 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1505 key, keylen);
1506}
1507
16e61030
SM
1508/**
1509 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1510 * @tfm: cipher handle
1511 * @dst: points to the buffer that will be filled with the ciphertext
1512 * @src: buffer holding the plaintext to be encrypted
1513 *
1514 * Invoke the encryption operation of one block. The caller must ensure that
1515 * the plaintext and ciphertext buffers are at least one block in size.
1516 */
f28776a3
HX
1517static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1518 u8 *dst, const u8 *src)
1519{
1520 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1521 dst, src);
1522}
1523
16e61030
SM
1524/**
1525 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1526 * @tfm: cipher handle
1527 * @dst: points to the buffer that will be filled with the plaintext
1528 * @src: buffer holding the ciphertext to be decrypted
1529 *
1530 * Invoke the decryption operation of one block. The caller must ensure that
1531 * the plaintext and ciphertext buffers are at least one block in size.
1532 */
f28776a3
HX
1533static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1534 u8 *dst, const u8 *src)
1535{
1536 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1537 dst, src);
1538}
1539
fce32d70
HX
1540static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1541{
1542 return (struct crypto_comp *)tfm;
1543}
1544
1545static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1546{
1547 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1548 CRYPTO_ALG_TYPE_MASK);
1549 return __crypto_comp_cast(tfm);
1550}
1551
1552static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1553 u32 type, u32 mask)
1554{
1555 type &= ~CRYPTO_ALG_TYPE_MASK;
1556 type |= CRYPTO_ALG_TYPE_COMPRESS;
1557 mask |= CRYPTO_ALG_TYPE_MASK;
1558
1559 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1560}
1561
1562static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1563{
78a1fe4f 1564 return &tfm->base;
fce32d70
HX
1565}
1566
1567static inline void crypto_free_comp(struct crypto_comp *tfm)
1568{
1569 crypto_free_tfm(crypto_comp_tfm(tfm));
1570}
1571
1572static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1573{
1574 type &= ~CRYPTO_ALG_TYPE_MASK;
1575 type |= CRYPTO_ALG_TYPE_COMPRESS;
1576 mask |= CRYPTO_ALG_TYPE_MASK;
1577
1578 return crypto_has_alg(alg_name, type, mask);
1579}
1580
e4d5b79c
HX
1581static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1582{
1583 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1584}
1585
fce32d70
HX
1586static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1587{
1588 return &crypto_comp_tfm(tfm)->crt_compress;
1589}
1590
1591static inline int crypto_comp_compress(struct crypto_comp *tfm,
1da177e4
LT
1592 const u8 *src, unsigned int slen,
1593 u8 *dst, unsigned int *dlen)
1594{
78a1fe4f
HX
1595 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1596 src, slen, dst, dlen);
1da177e4
LT
1597}
1598
fce32d70 1599static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1da177e4
LT
1600 const u8 *src, unsigned int slen,
1601 u8 *dst, unsigned int *dlen)
1602{
78a1fe4f
HX
1603 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1604 src, slen, dst, dlen);
1da177e4
LT
1605}
1606
1da177e4
LT
1607#endif /* _LINUX_CRYPTO_H */
1608