]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/dmaengine.h
seccomp: Add filter flag to opt-out of SSB mitigation
[mirror_ubuntu-artful-kernel.git] / include / linux / dmaengine.h
CommitLineData
c13c8260
CL
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
c13c8260
CL
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
d2ebfb33
RKAL
17#ifndef LINUX_DMAENGINE_H
18#define LINUX_DMAENGINE_H
1c0f16e5 19
c13c8260 20#include <linux/device.h>
0ad7c000 21#include <linux/err.h>
c13c8260 22#include <linux/uio.h>
187f1882 23#include <linux/bug.h>
90b44f8f 24#include <linux/scatterlist.h>
a8efa9d6 25#include <linux/bitmap.h>
dcc043dc 26#include <linux/types.h>
a8efa9d6 27#include <asm/page.h>
b7f080cf 28
c13c8260 29/**
fe4ada2d 30 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34typedef s32 dma_cookie_t;
76bd061f 35#define DMA_MIN_COOKIE 1
c13c8260 36
71ea1483
DC
37static inline int dma_submit_error(dma_cookie_t cookie)
38{
39 return cookie < 0 ? cookie : 0;
40}
c13c8260
CL
41
42/**
43 * enum dma_status - DMA transaction status
adfedd9a 44 * @DMA_COMPLETE: transaction completed
c13c8260 45 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 46 * @DMA_PAUSED: transaction is paused
c13c8260
CL
47 * @DMA_ERROR: transaction failed
48 */
49enum dma_status {
7db5f727 50 DMA_COMPLETE,
c13c8260 51 DMA_IN_PROGRESS,
07934481 52 DMA_PAUSED,
c13c8260
CL
53 DMA_ERROR,
54};
55
7405f74b
DW
56/**
57 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
7405f74b
DW
61 */
62enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
b2f46fd8 65 DMA_PQ,
099f53cb
DW
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
4983a501 68 DMA_MEMSET,
50c7cd2b 69 DMA_MEMSET_SG,
7405f74b 70 DMA_INTERRUPT,
a86ee03c 71 DMA_SG,
59b5ec21 72 DMA_PRIVATE,
138f4c35 73 DMA_ASYNC_TX,
dc0ee643 74 DMA_SLAVE,
782bc950 75 DMA_CYCLIC,
b14dab79 76 DMA_INTERLEAVE,
7405f74b 77/* last transaction type for creation of the capabilities mask */
b14dab79
JB
78 DMA_TX_TYPE_END,
79};
dc0ee643 80
49920bc6
VK
81/**
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 */
88enum dma_transfer_direction {
89 DMA_MEM_TO_MEM,
90 DMA_MEM_TO_DEV,
91 DMA_DEV_TO_MEM,
92 DMA_DEV_TO_DEV,
62268ce9 93 DMA_TRANS_NONE,
49920bc6 94};
7405f74b 95
b14dab79
JB
96/**
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
106 *
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
110 *
111 *
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114 *
115 * == Chunk size
116 * ... ICG
117 */
118
119/**
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
e1031dc1
MR
127 * @dst_icg: Number of bytes to jump after last dst address of this
128 * chunk and before the first dst address for next chunk.
129 * Ignored if dst_inc is true and dst_sgl is false.
130 * @src_icg: Number of bytes to jump after last src address of this
131 * chunk and before the first src address for next chunk.
132 * Ignored if src_inc is true and src_sgl is false.
b14dab79
JB
133 */
134struct data_chunk {
135 size_t size;
136 size_t icg;
e1031dc1
MR
137 size_t dst_icg;
138 size_t src_icg;
b14dab79
JB
139};
140
141/**
142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143 * and attributes.
144 * @src_start: Bus address of source for the first chunk.
145 * @dst_start: Bus address of destination for the first chunk.
146 * @dir: Specifies the type of Source and Destination.
147 * @src_inc: If the source address increments after reading from it.
148 * @dst_inc: If the destination address increments after writing to it.
149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150 * Otherwise, source is read contiguously (icg ignored).
151 * Ignored if src_inc is false.
152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153 * Otherwise, destination is filled contiguously (icg ignored).
154 * Ignored if dst_inc is false.
155 * @numf: Number of frames in this template.
156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
158 */
159struct dma_interleaved_template {
160 dma_addr_t src_start;
161 dma_addr_t dst_start;
162 enum dma_transfer_direction dir;
163 bool src_inc;
164 bool dst_inc;
165 bool src_sgl;
166 bool dst_sgl;
167 size_t numf;
168 size_t frame_size;
169 struct data_chunk sgl[0];
170};
171
d4c56f97 172/**
636bdeaa 173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 174 * control completion, and communicate status.
d4c56f97 175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 176 * this transaction
a88f6667 177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
b2f46fd8
DW
178 * acknowledges receipt, i.e. has has a chance to establish any dependency
179 * chains
b2f46fd8
DW
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
0403e382
DW
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
27242021
VK
187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188 * cleared or freed
d4c56f97 189 */
636bdeaa 190enum dma_ctrl_flags {
d4c56f97 191 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 192 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
193 DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 DMA_PREP_CONTINUE = (1 << 4),
196 DMA_PREP_FENCE = (1 << 5),
27242021 197 DMA_CTRL_REUSE = (1 << 6),
d4c56f97
DW
198};
199
ad283ea4
DW
200/**
201 * enum sum_check_bits - bit position of pq_check_flags
202 */
203enum sum_check_bits {
204 SUM_CHECK_P = 0,
205 SUM_CHECK_Q = 1,
206};
207
208/**
209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212 */
213enum sum_check_flags {
214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216};
217
218
7405f74b
DW
219/**
220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221 * See linux/cpumask.h
222 */
223typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224
c13c8260
CL
225/**
226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
c13c8260
CL
227 * @memcpy_count: transaction counter
228 * @bytes_transferred: byte counter
229 */
230
231struct dma_chan_percpu {
c13c8260
CL
232 /* stats */
233 unsigned long memcpy_count;
234 unsigned long bytes_transferred;
235};
236
56f13c0d
PU
237/**
238 * struct dma_router - DMA router structure
239 * @dev: pointer to the DMA router device
240 * @route_free: function to be called when the route can be disconnected
241 */
242struct dma_router {
243 struct device *dev;
244 void (*route_free)(struct device *dev, void *route_data);
245};
246
c13c8260
CL
247/**
248 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 249 * @device: ptr to the dma device who supplies this channel, always !%NULL
c13c8260 250 * @cookie: last cookie value returned to client
4d4e58de 251 * @completed_cookie: last completed cookie for this channel
fe4ada2d 252 * @chan_id: channel ID for sysfs
41d5e59c 253 * @dev: class device for sysfs
c13c8260
CL
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 256 * @client_count: how many clients are using this channel
bec08513 257 * @table_count: number of appearances in the mem-to-mem allocation table
56f13c0d
PU
258 * @router: pointer to the DMA router structure
259 * @route_data: channel specific data for the router
287d8592 260 * @private: private data for certain client-channel associations
c13c8260
CL
261 */
262struct dma_chan {
c13c8260
CL
263 struct dma_device *device;
264 dma_cookie_t cookie;
4d4e58de 265 dma_cookie_t completed_cookie;
c13c8260
CL
266
267 /* sysfs */
268 int chan_id;
41d5e59c 269 struct dma_chan_dev *dev;
c13c8260 270
c13c8260 271 struct list_head device_node;
a29d8b8e 272 struct dma_chan_percpu __percpu *local;
7cc5bf9a 273 int client_count;
bec08513 274 int table_count;
56f13c0d
PU
275
276 /* DMA router */
277 struct dma_router *router;
278 void *route_data;
279
287d8592 280 void *private;
c13c8260
CL
281};
282
41d5e59c
DW
283/**
284 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
285 * @chan: driver channel device
286 * @device: sysfs device
287 * @dev_id: parent dma_device dev_id
288 * @idr_ref: reference count to gate release of dma_device dev_id
41d5e59c
DW
289 */
290struct dma_chan_dev {
291 struct dma_chan *chan;
292 struct device device;
864498aa
DW
293 int dev_id;
294 atomic_t *idr_ref;
41d5e59c
DW
295};
296
c156d0a5 297/**
ba730340 298 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
299 * device, source or target buses
300 */
301enum dma_slave_buswidth {
302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
534a7298
LP
308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
c156d0a5
LW
311};
312
313/**
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
397321f4 316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
317 * legal values. DEPRECATED, drivers should use the direction argument
318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
320 * @src_addr: this is the physical address where DMA slave data
321 * should be read (RX), if the source is memory this argument is
322 * ignored.
323 * @dst_addr: this is the physical address where DMA slave data
324 * should be written (TX), if the source is memory this argument
325 * is ignored.
326 * @src_addr_width: this is the width in bytes of the source (RX)
327 * register where DMA data shall be read. If the source
328 * is memory this may be ignored depending on architecture.
329 * Legal values: 1, 2, 4, 8.
330 * @dst_addr_width: same as src_addr_width but for destination
331 * target (TX) mutatis mutandis.
332 * @src_maxburst: the maximum number of words (note: words, as in
333 * units of the src_addr_width member, not bytes) that can be sent
334 * in one burst to the device. Typically something like half the
335 * FIFO depth on I/O peripherals so you don't overflow it. This
336 * may or may not be applicable on memory sources.
337 * @dst_maxburst: same as src_maxburst but for destination target
338 * mutatis mutandis.
54cd2558
PU
339 * @src_port_window_size: The length of the register area in words the data need
340 * to be accessed on the device side. It is only used for devices which is using
341 * an area instead of a single register to receive the data. Typically the DMA
342 * loops in this area in order to transfer the data.
343 * @dst_port_window_size: same as src_port_window_size but for the destination
344 * port.
dcc043dc
VK
345 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
346 * with 'true' if peripheral should be flow controller. Direction will be
347 * selected at Runtime.
4fd1e324
LD
348 * @slave_id: Slave requester id. Only valid for slave channels. The dma
349 * slave peripheral will have unique id as dma requester which need to be
350 * pass as slave config.
c156d0a5
LW
351 *
352 * This struct is passed in as configuration data to a DMA engine
353 * in order to set up a certain channel for DMA transport at runtime.
354 * The DMA device/engine has to provide support for an additional
2c44ad91
MR
355 * callback in the dma_device structure, device_config and this struct
356 * will then be passed in as an argument to the function.
c156d0a5 357 *
7cbccb55
LPC
358 * The rationale for adding configuration information to this struct is as
359 * follows: if it is likely that more than one DMA slave controllers in
360 * the world will support the configuration option, then make it generic.
361 * If not: if it is fixed so that it be sent in static from the platform
362 * data, then prefer to do that.
c156d0a5
LW
363 */
364struct dma_slave_config {
49920bc6 365 enum dma_transfer_direction direction;
95756320
VK
366 phys_addr_t src_addr;
367 phys_addr_t dst_addr;
c156d0a5
LW
368 enum dma_slave_buswidth src_addr_width;
369 enum dma_slave_buswidth dst_addr_width;
370 u32 src_maxburst;
371 u32 dst_maxburst;
54cd2558
PU
372 u32 src_port_window_size;
373 u32 dst_port_window_size;
dcc043dc 374 bool device_fc;
4fd1e324 375 unsigned int slave_id;
c156d0a5
LW
376};
377
50720563
LPC
378/**
379 * enum dma_residue_granularity - Granularity of the reported transfer residue
380 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
381 * DMA channel is only able to tell whether a descriptor has been completed or
382 * not, which means residue reporting is not supported by this channel. The
383 * residue field of the dma_tx_state field will always be 0.
384 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
385 * completed segment of the transfer (For cyclic transfers this is after each
386 * period). This is typically implemented by having the hardware generate an
387 * interrupt after each transferred segment and then the drivers updates the
388 * outstanding residue by the size of the segment. Another possibility is if
389 * the hardware supports scatter-gather and the segment descriptor has a field
390 * which gets set after the segment has been completed. The driver then counts
391 * the number of segments without the flag set to compute the residue.
392 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
393 * burst. This is typically only supported if the hardware has a progress
394 * register of some sort (E.g. a register with the current read/write address
395 * or a register with the amount of bursts/beats/bytes that have been
396 * transferred or still need to be transferred).
397 */
398enum dma_residue_granularity {
399 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
400 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
401 DMA_RESIDUE_GRANULARITY_BURST = 2,
402};
403
221a27c7
VK
404/* struct dma_slave_caps - expose capabilities of a slave channel only
405 *
406 * @src_addr_widths: bit mask of src addr widths the channel supports
ceacbdbf 407 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
221a27c7
VK
408 * @directions: bit mask of slave direction the channel supported
409 * since the enum dma_transfer_direction is not defined as bits for each
410 * type of direction, the dma controller should fill (1 << <TYPE>) and same
411 * should be checked by controller as well
6d5bbed3 412 * @max_burst: max burst capability per-transfer
221a27c7
VK
413 * @cmd_pause: true, if pause and thereby resume is supported
414 * @cmd_terminate: true, if terminate cmd is supported
50720563 415 * @residue_granularity: granularity of the reported transfer residue
27242021
VK
416 * @descriptor_reuse: if a descriptor can be reused by client and
417 * resubmitted multiple times
221a27c7
VK
418 */
419struct dma_slave_caps {
420 u32 src_addr_widths;
ceacbdbf 421 u32 dst_addr_widths;
221a27c7 422 u32 directions;
6d5bbed3 423 u32 max_burst;
221a27c7
VK
424 bool cmd_pause;
425 bool cmd_terminate;
50720563 426 enum dma_residue_granularity residue_granularity;
27242021 427 bool descriptor_reuse;
221a27c7
VK
428};
429
41d5e59c
DW
430static inline const char *dma_chan_name(struct dma_chan *chan)
431{
432 return dev_name(&chan->dev->device);
433}
d379b01e 434
c13c8260
CL
435void dma_chan_cleanup(struct kref *kref);
436
59b5ec21
DW
437/**
438 * typedef dma_filter_fn - callback filter for dma_request_channel
439 * @chan: channel to be reviewed
440 * @filter_param: opaque parameter passed through dma_request_channel
441 *
442 * When this optional parameter is specified in a call to dma_request_channel a
443 * suitable channel is passed to this routine for further dispositioning before
444 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
445 * satisfies the given capability mask. It returns 'true' to indicate that the
446 * channel is suitable.
59b5ec21 447 */
7dd60251 448typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 449
7405f74b 450typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62 451
f067025b
DJ
452enum dmaengine_tx_result {
453 DMA_TRANS_NOERROR = 0, /* SUCCESS */
454 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
455 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
456 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
457};
458
459struct dmaengine_result {
460 enum dmaengine_tx_result result;
461 u32 residue;
462};
463
464typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
465 const struct dmaengine_result *result);
466
d38a8c62 467struct dmaengine_unmap_data {
c1f43dd9 468 u8 map_cnt;
d38a8c62
DW
469 u8 to_cnt;
470 u8 from_cnt;
471 u8 bidi_cnt;
472 struct device *dev;
473 struct kref kref;
474 size_t len;
475 dma_addr_t addr[0];
476};
477
7405f74b
DW
478/**
479 * struct dma_async_tx_descriptor - async transaction descriptor
480 * ---dma generic offload fields---
481 * @cookie: tracking cookie for this transaction, set to -EBUSY if
482 * this tx is sitting on a dependency list
636bdeaa
DW
483 * @flags: flags to augment operation preparation, control completion, and
484 * communicate status
7405f74b 485 * @phys: physical address of the descriptor
7405f74b 486 * @chan: target channel for this operation
aba96bad
VK
487 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
488 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
489 * @callback: routine to call after this operation is complete
490 * @callback_param: general parameter to pass to the callback routine
491 * ---async_tx api specific fields---
19242d72 492 * @next: at completion submit this descriptor
7405f74b 493 * @parent: pointer to the next level up in the dependency chain
19242d72 494 * @lock: protect the parent and next pointers
7405f74b
DW
495 */
496struct dma_async_tx_descriptor {
497 dma_cookie_t cookie;
636bdeaa 498 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 499 dma_addr_t phys;
7405f74b
DW
500 struct dma_chan *chan;
501 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
27242021 502 int (*desc_free)(struct dma_async_tx_descriptor *tx);
7405f74b 503 dma_async_tx_callback callback;
f067025b 504 dma_async_tx_callback_result callback_result;
7405f74b 505 void *callback_param;
d38a8c62 506 struct dmaengine_unmap_data *unmap;
5fc6d897 507#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 508 struct dma_async_tx_descriptor *next;
7405f74b
DW
509 struct dma_async_tx_descriptor *parent;
510 spinlock_t lock;
caa20d97 511#endif
7405f74b
DW
512};
513
89716462 514#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
515static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
516 struct dmaengine_unmap_data *unmap)
517{
518 kref_get(&unmap->kref);
519 tx->unmap = unmap;
520}
521
89716462
DW
522struct dmaengine_unmap_data *
523dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 524void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
525#else
526static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
527 struct dmaengine_unmap_data *unmap)
528{
529}
530static inline struct dmaengine_unmap_data *
531dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
532{
533 return NULL;
534}
535static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
536{
537}
538#endif
45c463ae 539
d38a8c62
DW
540static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
541{
542 if (tx->unmap) {
45c463ae 543 dmaengine_unmap_put(tx->unmap);
d38a8c62
DW
544 tx->unmap = NULL;
545 }
546}
547
5fc6d897 548#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
549static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550{
551}
552static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
553{
554}
555static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
556{
557 BUG();
558}
559static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
560{
561}
562static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
563{
564}
565static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
566{
567 return NULL;
568}
569static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
570{
571 return NULL;
572}
573
574#else
575static inline void txd_lock(struct dma_async_tx_descriptor *txd)
576{
577 spin_lock_bh(&txd->lock);
578}
579static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
580{
581 spin_unlock_bh(&txd->lock);
582}
583static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
584{
585 txd->next = next;
586 next->parent = txd;
587}
588static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
589{
590 txd->parent = NULL;
591}
592static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
593{
594 txd->next = NULL;
595}
596static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
597{
598 return txd->parent;
599}
600static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
601{
602 return txd->next;
603}
604#endif
605
07934481
LW
606/**
607 * struct dma_tx_state - filled in to report the status of
608 * a transfer.
609 * @last: last completed DMA cookie
610 * @used: last issued DMA cookie (i.e. the one in progress)
611 * @residue: the remaining number of bytes left to transmit
612 * on the selected transfer for states DMA_IN_PROGRESS and
613 * DMA_PAUSED if this is implemented in the driver, else 0
614 */
615struct dma_tx_state {
616 dma_cookie_t last;
617 dma_cookie_t used;
618 u32 residue;
619};
620
77a68e56
MR
621/**
622 * enum dmaengine_alignment - defines alignment of the DMA async tx
623 * buffers
624 */
625enum dmaengine_alignment {
626 DMAENGINE_ALIGN_1_BYTE = 0,
627 DMAENGINE_ALIGN_2_BYTES = 1,
628 DMAENGINE_ALIGN_4_BYTES = 2,
629 DMAENGINE_ALIGN_8_BYTES = 3,
630 DMAENGINE_ALIGN_16_BYTES = 4,
631 DMAENGINE_ALIGN_32_BYTES = 5,
632 DMAENGINE_ALIGN_64_BYTES = 6,
633};
634
a8135d0d
PU
635/**
636 * struct dma_slave_map - associates slave device and it's slave channel with
637 * parameter to be used by a filter function
638 * @devname: name of the device
639 * @slave: slave channel name
640 * @param: opaque parameter to pass to struct dma_filter.fn
641 */
642struct dma_slave_map {
643 const char *devname;
644 const char *slave;
645 void *param;
646};
647
648/**
649 * struct dma_filter - information for slave device/channel to filter_fn/param
650 * mapping
651 * @fn: filter function callback
652 * @mapcnt: number of slave device/channel in the map
653 * @map: array of channel to filter mapping data
654 */
655struct dma_filter {
656 dma_filter_fn fn;
657 int mapcnt;
658 const struct dma_slave_map *map;
659};
660
c13c8260
CL
661/**
662 * struct dma_device - info on the entity supplying DMA services
663 * @chancnt: how many DMA channels are supported
0f571515 664 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
665 * @channels: the list of struct dma_chan
666 * @global_node: list_head for global dma_device_list
a8135d0d 667 * @filter: information for device/slave to filter function/param mapping
7405f74b
DW
668 * @cap_mask: one or more dma_capability flags
669 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 670 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
671 * @copy_align: alignment shift for memcpy operations
672 * @xor_align: alignment shift for xor operations
673 * @pq_align: alignment shift for pq operations
4983a501 674 * @fill_align: alignment shift for memset operations
fe4ada2d 675 * @dev_id: unique device ID
7405f74b 676 * @dev: struct device reference for dma mapping api
cb8cea51
MR
677 * @src_addr_widths: bit mask of src addr widths the device supports
678 * @dst_addr_widths: bit mask of dst addr widths the device supports
679 * @directions: bit mask of slave direction the device supports since
680 * the enum dma_transfer_direction is not defined as bits for
681 * each type of direction, the dma controller should fill (1 <<
682 * <TYPE>) and same should be checked by controller as well
6d5bbed3 683 * @max_burst: max burst capability per-transfer
cb8cea51
MR
684 * @residue_granularity: granularity of the transfer residue reported
685 * by tx_status
fe4ada2d
RD
686 * @device_alloc_chan_resources: allocate resources and return the
687 * number of allocated descriptors
688 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
689 * @device_prep_dma_memcpy: prepares a memcpy operation
690 * @device_prep_dma_xor: prepares a xor operation
099f53cb 691 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
692 * @device_prep_dma_pq: prepares a pq operation
693 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
4983a501 694 * @device_prep_dma_memset: prepares a memset operation
50c7cd2b 695 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
7405f74b 696 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 697 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
698 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
699 * The function takes a buffer of size buf_len. The callback function will
700 * be called after period_len bytes have been transferred.
b14dab79 701 * @device_prep_interleaved_dma: Transfer expression in a generic way.
ff39988a 702 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
94a73e30
MR
703 * @device_config: Pushes a new configuration to a channel, return 0 or an error
704 * code
23a3ea2f
MR
705 * @device_pause: Pauses any transfer happening on a channel. Returns
706 * 0 or an error code
707 * @device_resume: Resumes any transfer on a channel previously
708 * paused. Returns 0 or an error code
7fa0cf46
MR
709 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
710 * or an error code
b36f09c3
LPC
711 * @device_synchronize: Synchronizes the termination of a transfers to the
712 * current context.
07934481
LW
713 * @device_tx_status: poll for transaction completion, the optional
714 * txstate parameter can be supplied with a pointer to get a
25985edc 715 * struct with auxiliary transfer status information, otherwise the call
07934481 716 * will just return a simple status code
7405f74b 717 * @device_issue_pending: push pending transactions to hardware
9eeacd3a 718 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
c13c8260
CL
719 */
720struct dma_device {
721
722 unsigned int chancnt;
0f571515 723 unsigned int privatecnt;
c13c8260
CL
724 struct list_head channels;
725 struct list_head global_node;
a8135d0d 726 struct dma_filter filter;
7405f74b 727 dma_cap_mask_t cap_mask;
b2f46fd8
DW
728 unsigned short max_xor;
729 unsigned short max_pq;
77a68e56
MR
730 enum dmaengine_alignment copy_align;
731 enum dmaengine_alignment xor_align;
732 enum dmaengine_alignment pq_align;
733 enum dmaengine_alignment fill_align;
b2f46fd8 734 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 735
c13c8260 736 int dev_id;
7405f74b 737 struct device *dev;
c13c8260 738
cb8cea51
MR
739 u32 src_addr_widths;
740 u32 dst_addr_widths;
741 u32 directions;
6d5bbed3 742 u32 max_burst;
9eeacd3a 743 bool descriptor_reuse;
cb8cea51
MR
744 enum dma_residue_granularity residue_granularity;
745
aa1e6f1a 746 int (*device_alloc_chan_resources)(struct dma_chan *chan);
c13c8260 747 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
748
749 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
ceacbdbf 750 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
d4c56f97 751 size_t len, unsigned long flags);
7405f74b 752 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
ceacbdbf 753 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
d4c56f97 754 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 755 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 756 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 757 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
758 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
759 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
760 unsigned int src_cnt, const unsigned char *scf,
761 size_t len, unsigned long flags);
762 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
763 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
764 unsigned int src_cnt, const unsigned char *scf, size_t len,
765 enum sum_check_flags *pqres, unsigned long flags);
4983a501
MR
766 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
767 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
768 unsigned long flags);
50c7cd2b
MR
769 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
770 struct dma_chan *chan, struct scatterlist *sg,
771 unsigned int nents, int value, unsigned long flags);
7405f74b 772 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 773 struct dma_chan *chan, unsigned long flags);
a86ee03c
IS
774 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
775 struct dma_chan *chan,
776 struct scatterlist *dst_sg, unsigned int dst_nents,
777 struct scatterlist *src_sg, unsigned int src_nents,
778 unsigned long flags);
7405f74b 779
dc0ee643
HS
780 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
781 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 782 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 783 unsigned long flags, void *context);
782bc950
SH
784 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
785 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 786 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 787 unsigned long flags);
b14dab79
JB
788 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
789 struct dma_chan *chan, struct dma_interleaved_template *xt,
790 unsigned long flags);
ff39988a
SY
791 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
792 struct dma_chan *chan, dma_addr_t dst, u64 data,
793 unsigned long flags);
94a73e30
MR
794
795 int (*device_config)(struct dma_chan *chan,
796 struct dma_slave_config *config);
23a3ea2f
MR
797 int (*device_pause)(struct dma_chan *chan);
798 int (*device_resume)(struct dma_chan *chan);
7fa0cf46 799 int (*device_terminate_all)(struct dma_chan *chan);
b36f09c3 800 void (*device_synchronize)(struct dma_chan *chan);
dc0ee643 801
07934481
LW
802 enum dma_status (*device_tx_status)(struct dma_chan *chan,
803 dma_cookie_t cookie,
804 struct dma_tx_state *txstate);
7405f74b 805 void (*device_issue_pending)(struct dma_chan *chan);
c13c8260
CL
806};
807
6e3ecaf0
SH
808static inline int dmaengine_slave_config(struct dma_chan *chan,
809 struct dma_slave_config *config)
810{
94a73e30
MR
811 if (chan->device->device_config)
812 return chan->device->device_config(chan, config);
813
2c44ad91 814 return -ENOSYS;
6e3ecaf0
SH
815}
816
61cc13a5
AS
817static inline bool is_slave_direction(enum dma_transfer_direction direction)
818{
819 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
820}
821
90b44f8f 822static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 823 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 824 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
825{
826 struct scatterlist sg;
922ee08b
KM
827 sg_init_table(&sg, 1);
828 sg_dma_address(&sg) = buf;
829 sg_dma_len(&sg) = len;
90b44f8f 830
757d12e5
VK
831 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
832 return NULL;
833
185ecb5f
AB
834 return chan->device->device_prep_slave_sg(chan, &sg, 1,
835 dir, flags, NULL);
90b44f8f
VK
836}
837
16052827
AB
838static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
839 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
840 enum dma_transfer_direction dir, unsigned long flags)
841{
757d12e5
VK
842 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
843 return NULL;
844
16052827 845 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 846 dir, flags, NULL);
16052827
AB
847}
848
e42d98eb
AB
849#ifdef CONFIG_RAPIDIO_DMA_ENGINE
850struct rio_dma_ext;
851static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
852 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
853 enum dma_transfer_direction dir, unsigned long flags,
854 struct rio_dma_ext *rio_ext)
855{
757d12e5
VK
856 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
857 return NULL;
858
e42d98eb
AB
859 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
860 dir, flags, rio_ext);
861}
862#endif
863
16052827
AB
864static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
865 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
866 size_t period_len, enum dma_transfer_direction dir,
867 unsigned long flags)
16052827 868{
757d12e5
VK
869 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
870 return NULL;
871
16052827 872 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 873 period_len, dir, flags);
a14acb4a
BS
874}
875
876static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
877 struct dma_chan *chan, struct dma_interleaved_template *xt,
878 unsigned long flags)
879{
757d12e5
VK
880 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
881 return NULL;
882
a14acb4a 883 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
884}
885
4983a501
MR
886static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
887 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
888 unsigned long flags)
889{
757d12e5 890 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
4983a501
MR
891 return NULL;
892
893 return chan->device->device_prep_dma_memset(chan, dest, value,
894 len, flags);
895}
896
77d65d6f
BB
897static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
898 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
899 size_t len, unsigned long flags)
900{
901 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
902 return NULL;
903
904 return chan->device->device_prep_dma_memcpy(chan, dest, src,
905 len, flags);
906}
907
b65612a8
VK
908static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
909 struct dma_chan *chan,
910 struct scatterlist *dst_sg, unsigned int dst_nents,
911 struct scatterlist *src_sg, unsigned int src_nents,
912 unsigned long flags)
913{
757d12e5
VK
914 if (!chan || !chan->device || !chan->device->device_prep_dma_sg)
915 return NULL;
916
b65612a8
VK
917 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
918 src_sg, src_nents, flags);
919}
920
b36f09c3
LPC
921/**
922 * dmaengine_terminate_all() - Terminate all active DMA transfers
923 * @chan: The channel for which to terminate the transfers
924 *
925 * This function is DEPRECATED use either dmaengine_terminate_sync() or
926 * dmaengine_terminate_async() instead.
927 */
6e3ecaf0
SH
928static inline int dmaengine_terminate_all(struct dma_chan *chan)
929{
7fa0cf46
MR
930 if (chan->device->device_terminate_all)
931 return chan->device->device_terminate_all(chan);
932
2c44ad91 933 return -ENOSYS;
6e3ecaf0
SH
934}
935
b36f09c3
LPC
936/**
937 * dmaengine_terminate_async() - Terminate all active DMA transfers
938 * @chan: The channel for which to terminate the transfers
939 *
940 * Calling this function will terminate all active and pending descriptors
941 * that have previously been submitted to the channel. It is not guaranteed
942 * though that the transfer for the active descriptor has stopped when the
943 * function returns. Furthermore it is possible the complete callback of a
944 * submitted transfer is still running when this function returns.
945 *
946 * dmaengine_synchronize() needs to be called before it is safe to free
947 * any memory that is accessed by previously submitted descriptors or before
948 * freeing any resources accessed from within the completion callback of any
949 * perviously submitted descriptors.
950 *
951 * This function can be called from atomic context as well as from within a
952 * complete callback of a descriptor submitted on the same channel.
953 *
954 * If none of the two conditions above apply consider using
955 * dmaengine_terminate_sync() instead.
956 */
957static inline int dmaengine_terminate_async(struct dma_chan *chan)
958{
959 if (chan->device->device_terminate_all)
960 return chan->device->device_terminate_all(chan);
961
962 return -EINVAL;
963}
964
965/**
966 * dmaengine_synchronize() - Synchronize DMA channel termination
967 * @chan: The channel to synchronize
968 *
969 * Synchronizes to the DMA channel termination to the current context. When this
970 * function returns it is guaranteed that all transfers for previously issued
971 * descriptors have stopped and and it is safe to free the memory assoicated
972 * with them. Furthermore it is guaranteed that all complete callback functions
973 * for a previously submitted descriptor have finished running and it is safe to
974 * free resources accessed from within the complete callbacks.
975 *
976 * The behavior of this function is undefined if dma_async_issue_pending() has
977 * been called between dmaengine_terminate_async() and this function.
978 *
979 * This function must only be called from non-atomic context and must not be
980 * called from within a complete callback of a descriptor submitted on the same
981 * channel.
982 */
983static inline void dmaengine_synchronize(struct dma_chan *chan)
984{
b1d6ab1a
LPC
985 might_sleep();
986
b36f09c3
LPC
987 if (chan->device->device_synchronize)
988 chan->device->device_synchronize(chan);
989}
990
991/**
992 * dmaengine_terminate_sync() - Terminate all active DMA transfers
993 * @chan: The channel for which to terminate the transfers
994 *
995 * Calling this function will terminate all active and pending transfers
996 * that have previously been submitted to the channel. It is similar to
997 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
998 * stopped and that all complete callbacks have finished running when the
999 * function returns.
1000 *
1001 * This function must only be called from non-atomic context and must not be
1002 * called from within a complete callback of a descriptor submitted on the same
1003 * channel.
1004 */
1005static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1006{
1007 int ret;
1008
1009 ret = dmaengine_terminate_async(chan);
1010 if (ret)
1011 return ret;
1012
1013 dmaengine_synchronize(chan);
1014
1015 return 0;
1016}
1017
6e3ecaf0
SH
1018static inline int dmaengine_pause(struct dma_chan *chan)
1019{
23a3ea2f
MR
1020 if (chan->device->device_pause)
1021 return chan->device->device_pause(chan);
1022
2c44ad91 1023 return -ENOSYS;
6e3ecaf0
SH
1024}
1025
1026static inline int dmaengine_resume(struct dma_chan *chan)
1027{
23a3ea2f
MR
1028 if (chan->device->device_resume)
1029 return chan->device->device_resume(chan);
1030
2c44ad91 1031 return -ENOSYS;
6e3ecaf0
SH
1032}
1033
3052cc2c
LPC
1034static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1035 dma_cookie_t cookie, struct dma_tx_state *state)
1036{
1037 return chan->device->device_tx_status(chan, cookie, state);
1038}
1039
98d530fe 1040static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
1041{
1042 return desc->tx_submit(desc);
1043}
1044
77a68e56
MR
1045static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1046 size_t off1, size_t off2, size_t len)
83544ae9
DW
1047{
1048 size_t mask;
1049
1050 if (!align)
1051 return true;
1052 mask = (1 << align) - 1;
1053 if (mask & (off1 | off2 | len))
1054 return false;
1055 return true;
1056}
1057
1058static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1059 size_t off2, size_t len)
1060{
1061 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1062}
1063
1064static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1065 size_t off2, size_t len)
1066{
1067 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1068}
1069
1070static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1071 size_t off2, size_t len)
1072{
1073 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1074}
1075
4983a501
MR
1076static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1077 size_t off2, size_t len)
1078{
1079 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1080}
1081
b2f46fd8
DW
1082static inline void
1083dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1084{
1085 dma->max_pq = maxpq;
1086 if (has_pq_continue)
1087 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1088}
1089
1090static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1091{
1092 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1093}
1094
1095static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1096{
1097 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1098
1099 return (flags & mask) == mask;
1100}
1101
1102static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1103{
1104 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1105}
1106
d3f3cf85 1107static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
1108{
1109 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1110}
1111
1112/* dma_maxpq - reduce maxpq in the face of continued operations
1113 * @dma - dma device with PQ capability
1114 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1115 *
1116 * When an engine does not support native continuation we need 3 extra
1117 * source slots to reuse P and Q with the following coefficients:
1118 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1119 * 2/ {01} * Q : use Q to continue Q' calculation
1120 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1121 *
1122 * In the case where P is disabled we only need 1 extra source:
1123 * 1/ {01} * Q : use Q to continue Q' calculation
1124 */
1125static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1126{
1127 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1128 return dma_dev_to_maxpq(dma);
1129 else if (dmaf_p_disabled_continue(flags))
1130 return dma_dev_to_maxpq(dma) - 1;
1131 else if (dmaf_continue(flags))
1132 return dma_dev_to_maxpq(dma) - 3;
1133 BUG();
1134}
1135
87d001ef
MR
1136static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1137 size_t dir_icg)
1138{
1139 if (inc) {
1140 if (dir_icg)
1141 return dir_icg;
1142 else if (sgl)
1143 return icg;
1144 }
1145
1146 return 0;
1147}
1148
1149static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1150 struct data_chunk *chunk)
1151{
1152 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1153 chunk->icg, chunk->dst_icg);
1154}
1155
1156static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1157 struct data_chunk *chunk)
1158{
1159 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1160 chunk->icg, chunk->src_icg);
1161}
1162
c13c8260
CL
1163/* --- public DMA engine API --- */
1164
649274d9 1165#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
1166void dmaengine_get(void);
1167void dmaengine_put(void);
649274d9
DW
1168#else
1169static inline void dmaengine_get(void)
1170{
1171}
1172static inline void dmaengine_put(void)
1173{
1174}
1175#endif
1176
729b5d1b
DW
1177#ifdef CONFIG_ASYNC_TX_DMA
1178#define async_dmaengine_get() dmaengine_get()
1179#define async_dmaengine_put() dmaengine_put()
5fc6d897 1180#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
1181#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1182#else
729b5d1b 1183#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 1184#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
1185#else
1186static inline void async_dmaengine_get(void)
1187{
1188}
1189static inline void async_dmaengine_put(void)
1190{
1191}
1192static inline struct dma_chan *
1193async_dma_find_channel(enum dma_transaction_type type)
1194{
1195 return NULL;
1196}
138f4c35 1197#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 1198void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 1199 struct dma_chan *chan);
c13c8260 1200
0839875e 1201static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 1202{
636bdeaa
DW
1203 tx->flags |= DMA_CTRL_ACK;
1204}
1205
ef560682
GL
1206static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1207{
1208 tx->flags &= ~DMA_CTRL_ACK;
1209}
1210
0839875e 1211static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 1212{
0839875e 1213 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
1214}
1215
7405f74b
DW
1216#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1217static inline void
1218__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 1219{
7405f74b
DW
1220 set_bit(tx_type, dstp->bits);
1221}
c13c8260 1222
0f571515
AN
1223#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1224static inline void
1225__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1226{
1227 clear_bit(tx_type, dstp->bits);
1228}
1229
33df8ca0
DW
1230#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1231static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1232{
1233 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1234}
1235
7405f74b
DW
1236#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1237static inline int
1238__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1239{
1240 return test_bit(tx_type, srcp->bits);
c13c8260
CL
1241}
1242
7405f74b 1243#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 1244 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 1245
c13c8260 1246/**
7405f74b 1247 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 1248 * @chan: target DMA channel
c13c8260
CL
1249 *
1250 * This allows drivers to push copies to HW in batches,
1251 * reducing MMIO writes where possible.
1252 */
7405f74b 1253static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1254{
ec8670f1 1255 chan->device->device_issue_pending(chan);
c13c8260
CL
1256}
1257
1258/**
7405f74b 1259 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1260 * @chan: DMA channel
1261 * @cookie: transaction identifier to check status of
1262 * @last: returns last completed cookie, can be NULL
1263 * @used: returns last issued cookie, can be NULL
1264 *
1265 * If @last and @used are passed in, upon return they reflect the driver
1266 * internal state and can be used with dma_async_is_complete() to check
1267 * the status of multiple cookies without re-checking hardware state.
1268 */
7405f74b 1269static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1270 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1271{
07934481
LW
1272 struct dma_tx_state state;
1273 enum dma_status status;
1274
1275 status = chan->device->device_tx_status(chan, cookie, &state);
1276 if (last)
1277 *last = state.last;
1278 if (used)
1279 *used = state.used;
1280 return status;
c13c8260
CL
1281}
1282
1283/**
1284 * dma_async_is_complete - test a cookie against chan state
1285 * @cookie: transaction identifier to test status of
1286 * @last_complete: last know completed transaction
1287 * @last_used: last cookie value handed out
1288 *
e239345f 1289 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1290 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1291 */
1292static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1293 dma_cookie_t last_complete, dma_cookie_t last_used)
1294{
1295 if (last_complete <= last_used) {
1296 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1297 return DMA_COMPLETE;
c13c8260
CL
1298 } else {
1299 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1300 return DMA_COMPLETE;
c13c8260
CL
1301 }
1302 return DMA_IN_PROGRESS;
1303}
1304
bca34692
DW
1305static inline void
1306dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1307{
1308 if (st) {
1309 st->last = last;
1310 st->used = used;
1311 st->residue = residue;
1312 }
1313}
1314
07f2211e 1315#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1316struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1317enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1318enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1319void dma_issue_pending_all(void);
a53e28da
LPC
1320struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1321 dma_filter_fn fn, void *fn_param);
bef29ec5 1322struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
a8135d0d
PU
1323
1324struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1325struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1326
8f33d527 1327void dma_release_channel(struct dma_chan *chan);
fdb8df99 1328int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
07f2211e 1329#else
4a43f394
JM
1330static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1331{
1332 return NULL;
1333}
1334static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1335{
adfedd9a 1336 return DMA_COMPLETE;
4a43f394 1337}
07f2211e
DW
1338static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1339{
adfedd9a 1340 return DMA_COMPLETE;
07f2211e 1341}
c50331e8
DW
1342static inline void dma_issue_pending_all(void)
1343{
8f33d527 1344}
a53e28da 1345static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
8f33d527
GL
1346 dma_filter_fn fn, void *fn_param)
1347{
1348 return NULL;
1349}
9a6cecc8 1350static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
bef29ec5 1351 const char *name)
9a6cecc8 1352{
d18d5f59 1353 return NULL;
9a6cecc8 1354}
a8135d0d
PU
1355static inline struct dma_chan *dma_request_chan(struct device *dev,
1356 const char *name)
1357{
1358 return ERR_PTR(-ENODEV);
1359}
1360static inline struct dma_chan *dma_request_chan_by_mask(
1361 const dma_cap_mask_t *mask)
1362{
1363 return ERR_PTR(-ENODEV);
1364}
8f33d527
GL
1365static inline void dma_release_channel(struct dma_chan *chan)
1366{
c50331e8 1367}
fdb8df99
LP
1368static inline int dma_get_slave_caps(struct dma_chan *chan,
1369 struct dma_slave_caps *caps)
1370{
1371 return -ENXIO;
1372}
07f2211e 1373#endif
c13c8260 1374
a8135d0d
PU
1375#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1376
27242021
VK
1377static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1378{
1379 struct dma_slave_caps caps;
1380
1381 dma_get_slave_caps(tx->chan, &caps);
1382
1383 if (caps.descriptor_reuse) {
1384 tx->flags |= DMA_CTRL_REUSE;
1385 return 0;
1386 } else {
1387 return -EPERM;
1388 }
1389}
1390
1391static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1392{
1393 tx->flags &= ~DMA_CTRL_REUSE;
1394}
1395
1396static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1397{
1398 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1399}
1400
1401static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1402{
1403 /* this is supported for reusable desc, so check that */
1404 if (dmaengine_desc_test_reuse(desc))
1405 return desc->desc_free(desc);
1406 else
1407 return -EPERM;
1408}
1409
c13c8260
CL
1410/* --- DMA device --- */
1411
1412int dma_async_device_register(struct dma_device *device);
1413void dma_async_device_unregister(struct dma_device *device);
07f2211e 1414void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
7bb587f4 1415struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
8010dad5 1416struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
59b5ec21 1417#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
864ef69b
MP
1418#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1419 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1420
1421static inline struct dma_chan
a53e28da
LPC
1422*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1423 dma_filter_fn fn, void *fn_param,
1dc04288 1424 struct device *dev, const char *name)
864ef69b
MP
1425{
1426 struct dma_chan *chan;
1427
1428 chan = dma_request_slave_channel(dev, name);
1429 if (chan)
1430 return chan;
1431
7dfffb95
GU
1432 if (!fn || !fn_param)
1433 return NULL;
1434
864ef69b
MP
1435 return __dma_request_channel(mask, fn, fn_param);
1436}
c13c8260 1437#endif /* DMAENGINE_H */