]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/dmaengine.h
Merge branch 'for-rafael' of https://git.kernel.org/pub/scm/linux/kernel/git/mzx...
[mirror_ubuntu-zesty-kernel.git] / include / linux / dmaengine.h
CommitLineData
c13c8260
CL
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
c13c8260
CL
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
d2ebfb33
RKAL
17#ifndef LINUX_DMAENGINE_H
18#define LINUX_DMAENGINE_H
1c0f16e5 19
c13c8260 20#include <linux/device.h>
0ad7c000 21#include <linux/err.h>
c13c8260 22#include <linux/uio.h>
187f1882 23#include <linux/bug.h>
90b44f8f 24#include <linux/scatterlist.h>
a8efa9d6 25#include <linux/bitmap.h>
dcc043dc 26#include <linux/types.h>
a8efa9d6 27#include <asm/page.h>
b7f080cf 28
c13c8260 29/**
fe4ada2d 30 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34typedef s32 dma_cookie_t;
76bd061f 35#define DMA_MIN_COOKIE 1
c13c8260 36
71ea1483
DC
37static inline int dma_submit_error(dma_cookie_t cookie)
38{
39 return cookie < 0 ? cookie : 0;
40}
c13c8260
CL
41
42/**
43 * enum dma_status - DMA transaction status
adfedd9a 44 * @DMA_COMPLETE: transaction completed
c13c8260 45 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 46 * @DMA_PAUSED: transaction is paused
c13c8260
CL
47 * @DMA_ERROR: transaction failed
48 */
49enum dma_status {
7db5f727 50 DMA_COMPLETE,
c13c8260 51 DMA_IN_PROGRESS,
07934481 52 DMA_PAUSED,
c13c8260
CL
53 DMA_ERROR,
54};
55
7405f74b
DW
56/**
57 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
7405f74b
DW
61 */
62enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
b2f46fd8 65 DMA_PQ,
099f53cb
DW
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
4983a501 68 DMA_MEMSET,
50c7cd2b 69 DMA_MEMSET_SG,
7405f74b 70 DMA_INTERRUPT,
a86ee03c 71 DMA_SG,
59b5ec21 72 DMA_PRIVATE,
138f4c35 73 DMA_ASYNC_TX,
dc0ee643 74 DMA_SLAVE,
782bc950 75 DMA_CYCLIC,
b14dab79 76 DMA_INTERLEAVE,
7405f74b 77/* last transaction type for creation of the capabilities mask */
b14dab79
JB
78 DMA_TX_TYPE_END,
79};
dc0ee643 80
49920bc6
VK
81/**
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 */
88enum dma_transfer_direction {
89 DMA_MEM_TO_MEM,
90 DMA_MEM_TO_DEV,
91 DMA_DEV_TO_MEM,
92 DMA_DEV_TO_DEV,
62268ce9 93 DMA_TRANS_NONE,
49920bc6 94};
7405f74b 95
b14dab79
JB
96/**
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
106 *
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
110 *
111 *
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114 *
115 * == Chunk size
116 * ... ICG
117 */
118
119/**
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
e1031dc1
MR
127 * @dst_icg: Number of bytes to jump after last dst address of this
128 * chunk and before the first dst address for next chunk.
129 * Ignored if dst_inc is true and dst_sgl is false.
130 * @src_icg: Number of bytes to jump after last src address of this
131 * chunk and before the first src address for next chunk.
132 * Ignored if src_inc is true and src_sgl is false.
b14dab79
JB
133 */
134struct data_chunk {
135 size_t size;
136 size_t icg;
e1031dc1
MR
137 size_t dst_icg;
138 size_t src_icg;
b14dab79
JB
139};
140
141/**
142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143 * and attributes.
144 * @src_start: Bus address of source for the first chunk.
145 * @dst_start: Bus address of destination for the first chunk.
146 * @dir: Specifies the type of Source and Destination.
147 * @src_inc: If the source address increments after reading from it.
148 * @dst_inc: If the destination address increments after writing to it.
149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150 * Otherwise, source is read contiguously (icg ignored).
151 * Ignored if src_inc is false.
152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153 * Otherwise, destination is filled contiguously (icg ignored).
154 * Ignored if dst_inc is false.
155 * @numf: Number of frames in this template.
156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
158 */
159struct dma_interleaved_template {
160 dma_addr_t src_start;
161 dma_addr_t dst_start;
162 enum dma_transfer_direction dir;
163 bool src_inc;
164 bool dst_inc;
165 bool src_sgl;
166 bool dst_sgl;
167 size_t numf;
168 size_t frame_size;
169 struct data_chunk sgl[0];
170};
171
d4c56f97 172/**
636bdeaa 173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 174 * control completion, and communicate status.
d4c56f97 175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 176 * this transaction
a88f6667 177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
b2f46fd8
DW
178 * acknowledges receipt, i.e. has has a chance to establish any dependency
179 * chains
b2f46fd8
DW
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
0403e382
DW
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
27242021
VK
187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188 * cleared or freed
d4c56f97 189 */
636bdeaa 190enum dma_ctrl_flags {
d4c56f97 191 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 192 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
193 DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 DMA_PREP_CONTINUE = (1 << 4),
196 DMA_PREP_FENCE = (1 << 5),
27242021 197 DMA_CTRL_REUSE = (1 << 6),
d4c56f97
DW
198};
199
ad283ea4
DW
200/**
201 * enum sum_check_bits - bit position of pq_check_flags
202 */
203enum sum_check_bits {
204 SUM_CHECK_P = 0,
205 SUM_CHECK_Q = 1,
206};
207
208/**
209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212 */
213enum sum_check_flags {
214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216};
217
218
7405f74b
DW
219/**
220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221 * See linux/cpumask.h
222 */
223typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224
c13c8260
CL
225/**
226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
c13c8260
CL
227 * @memcpy_count: transaction counter
228 * @bytes_transferred: byte counter
229 */
230
231struct dma_chan_percpu {
c13c8260
CL
232 /* stats */
233 unsigned long memcpy_count;
234 unsigned long bytes_transferred;
235};
236
56f13c0d
PU
237/**
238 * struct dma_router - DMA router structure
239 * @dev: pointer to the DMA router device
240 * @route_free: function to be called when the route can be disconnected
241 */
242struct dma_router {
243 struct device *dev;
244 void (*route_free)(struct device *dev, void *route_data);
245};
246
c13c8260
CL
247/**
248 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 249 * @device: ptr to the dma device who supplies this channel, always !%NULL
c13c8260 250 * @cookie: last cookie value returned to client
4d4e58de 251 * @completed_cookie: last completed cookie for this channel
fe4ada2d 252 * @chan_id: channel ID for sysfs
41d5e59c 253 * @dev: class device for sysfs
c13c8260
CL
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 256 * @client_count: how many clients are using this channel
bec08513 257 * @table_count: number of appearances in the mem-to-mem allocation table
56f13c0d
PU
258 * @router: pointer to the DMA router structure
259 * @route_data: channel specific data for the router
287d8592 260 * @private: private data for certain client-channel associations
c13c8260
CL
261 */
262struct dma_chan {
c13c8260
CL
263 struct dma_device *device;
264 dma_cookie_t cookie;
4d4e58de 265 dma_cookie_t completed_cookie;
c13c8260
CL
266
267 /* sysfs */
268 int chan_id;
41d5e59c 269 struct dma_chan_dev *dev;
c13c8260 270
c13c8260 271 struct list_head device_node;
a29d8b8e 272 struct dma_chan_percpu __percpu *local;
7cc5bf9a 273 int client_count;
bec08513 274 int table_count;
56f13c0d
PU
275
276 /* DMA router */
277 struct dma_router *router;
278 void *route_data;
279
287d8592 280 void *private;
c13c8260
CL
281};
282
41d5e59c
DW
283/**
284 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
285 * @chan: driver channel device
286 * @device: sysfs device
287 * @dev_id: parent dma_device dev_id
288 * @idr_ref: reference count to gate release of dma_device dev_id
41d5e59c
DW
289 */
290struct dma_chan_dev {
291 struct dma_chan *chan;
292 struct device device;
864498aa
DW
293 int dev_id;
294 atomic_t *idr_ref;
41d5e59c
DW
295};
296
c156d0a5 297/**
ba730340 298 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
299 * device, source or target buses
300 */
301enum dma_slave_buswidth {
302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
534a7298
LP
308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
c156d0a5
LW
311};
312
313/**
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
397321f4 316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
317 * legal values. DEPRECATED, drivers should use the direction argument
318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
320 * @src_addr: this is the physical address where DMA slave data
321 * should be read (RX), if the source is memory this argument is
322 * ignored.
323 * @dst_addr: this is the physical address where DMA slave data
324 * should be written (TX), if the source is memory this argument
325 * is ignored.
326 * @src_addr_width: this is the width in bytes of the source (RX)
327 * register where DMA data shall be read. If the source
328 * is memory this may be ignored depending on architecture.
329 * Legal values: 1, 2, 4, 8.
330 * @dst_addr_width: same as src_addr_width but for destination
331 * target (TX) mutatis mutandis.
332 * @src_maxburst: the maximum number of words (note: words, as in
333 * units of the src_addr_width member, not bytes) that can be sent
334 * in one burst to the device. Typically something like half the
335 * FIFO depth on I/O peripherals so you don't overflow it. This
336 * may or may not be applicable on memory sources.
337 * @dst_maxburst: same as src_maxburst but for destination target
338 * mutatis mutandis.
dcc043dc
VK
339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340 * with 'true' if peripheral should be flow controller. Direction will be
341 * selected at Runtime.
4fd1e324
LD
342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
343 * slave peripheral will have unique id as dma requester which need to be
344 * pass as slave config.
c156d0a5
LW
345 *
346 * This struct is passed in as configuration data to a DMA engine
347 * in order to set up a certain channel for DMA transport at runtime.
348 * The DMA device/engine has to provide support for an additional
2c44ad91
MR
349 * callback in the dma_device structure, device_config and this struct
350 * will then be passed in as an argument to the function.
c156d0a5 351 *
7cbccb55
LPC
352 * The rationale for adding configuration information to this struct is as
353 * follows: if it is likely that more than one DMA slave controllers in
354 * the world will support the configuration option, then make it generic.
355 * If not: if it is fixed so that it be sent in static from the platform
356 * data, then prefer to do that.
c156d0a5
LW
357 */
358struct dma_slave_config {
49920bc6 359 enum dma_transfer_direction direction;
c156d0a5
LW
360 dma_addr_t src_addr;
361 dma_addr_t dst_addr;
362 enum dma_slave_buswidth src_addr_width;
363 enum dma_slave_buswidth dst_addr_width;
364 u32 src_maxburst;
365 u32 dst_maxburst;
dcc043dc 366 bool device_fc;
4fd1e324 367 unsigned int slave_id;
c156d0a5
LW
368};
369
50720563
LPC
370/**
371 * enum dma_residue_granularity - Granularity of the reported transfer residue
372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373 * DMA channel is only able to tell whether a descriptor has been completed or
374 * not, which means residue reporting is not supported by this channel. The
375 * residue field of the dma_tx_state field will always be 0.
376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377 * completed segment of the transfer (For cyclic transfers this is after each
378 * period). This is typically implemented by having the hardware generate an
379 * interrupt after each transferred segment and then the drivers updates the
380 * outstanding residue by the size of the segment. Another possibility is if
381 * the hardware supports scatter-gather and the segment descriptor has a field
382 * which gets set after the segment has been completed. The driver then counts
383 * the number of segments without the flag set to compute the residue.
384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385 * burst. This is typically only supported if the hardware has a progress
386 * register of some sort (E.g. a register with the current read/write address
387 * or a register with the amount of bursts/beats/bytes that have been
388 * transferred or still need to be transferred).
389 */
390enum dma_residue_granularity {
391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
392 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
393 DMA_RESIDUE_GRANULARITY_BURST = 2,
394};
395
221a27c7
VK
396/* struct dma_slave_caps - expose capabilities of a slave channel only
397 *
398 * @src_addr_widths: bit mask of src addr widths the channel supports
ceacbdbf 399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
221a27c7
VK
400 * @directions: bit mask of slave direction the channel supported
401 * since the enum dma_transfer_direction is not defined as bits for each
402 * type of direction, the dma controller should fill (1 << <TYPE>) and same
403 * should be checked by controller as well
404 * @cmd_pause: true, if pause and thereby resume is supported
405 * @cmd_terminate: true, if terminate cmd is supported
50720563 406 * @residue_granularity: granularity of the reported transfer residue
27242021
VK
407 * @descriptor_reuse: if a descriptor can be reused by client and
408 * resubmitted multiple times
221a27c7
VK
409 */
410struct dma_slave_caps {
411 u32 src_addr_widths;
ceacbdbf 412 u32 dst_addr_widths;
221a27c7
VK
413 u32 directions;
414 bool cmd_pause;
415 bool cmd_terminate;
50720563 416 enum dma_residue_granularity residue_granularity;
27242021 417 bool descriptor_reuse;
221a27c7
VK
418};
419
41d5e59c
DW
420static inline const char *dma_chan_name(struct dma_chan *chan)
421{
422 return dev_name(&chan->dev->device);
423}
d379b01e 424
c13c8260
CL
425void dma_chan_cleanup(struct kref *kref);
426
59b5ec21
DW
427/**
428 * typedef dma_filter_fn - callback filter for dma_request_channel
429 * @chan: channel to be reviewed
430 * @filter_param: opaque parameter passed through dma_request_channel
431 *
432 * When this optional parameter is specified in a call to dma_request_channel a
433 * suitable channel is passed to this routine for further dispositioning before
434 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
435 * satisfies the given capability mask. It returns 'true' to indicate that the
436 * channel is suitable.
59b5ec21 437 */
7dd60251 438typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 439
7405f74b 440typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62
DW
441
442struct dmaengine_unmap_data {
c1f43dd9 443 u8 map_cnt;
d38a8c62
DW
444 u8 to_cnt;
445 u8 from_cnt;
446 u8 bidi_cnt;
447 struct device *dev;
448 struct kref kref;
449 size_t len;
450 dma_addr_t addr[0];
451};
452
7405f74b
DW
453/**
454 * struct dma_async_tx_descriptor - async transaction descriptor
455 * ---dma generic offload fields---
456 * @cookie: tracking cookie for this transaction, set to -EBUSY if
457 * this tx is sitting on a dependency list
636bdeaa
DW
458 * @flags: flags to augment operation preparation, control completion, and
459 * communicate status
7405f74b 460 * @phys: physical address of the descriptor
7405f74b 461 * @chan: target channel for this operation
aba96bad
VK
462 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
463 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
464 * @callback: routine to call after this operation is complete
465 * @callback_param: general parameter to pass to the callback routine
466 * ---async_tx api specific fields---
19242d72 467 * @next: at completion submit this descriptor
7405f74b 468 * @parent: pointer to the next level up in the dependency chain
19242d72 469 * @lock: protect the parent and next pointers
7405f74b
DW
470 */
471struct dma_async_tx_descriptor {
472 dma_cookie_t cookie;
636bdeaa 473 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 474 dma_addr_t phys;
7405f74b
DW
475 struct dma_chan *chan;
476 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
27242021 477 int (*desc_free)(struct dma_async_tx_descriptor *tx);
7405f74b
DW
478 dma_async_tx_callback callback;
479 void *callback_param;
d38a8c62 480 struct dmaengine_unmap_data *unmap;
5fc6d897 481#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 482 struct dma_async_tx_descriptor *next;
7405f74b
DW
483 struct dma_async_tx_descriptor *parent;
484 spinlock_t lock;
caa20d97 485#endif
7405f74b
DW
486};
487
89716462 488#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
489static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
490 struct dmaengine_unmap_data *unmap)
491{
492 kref_get(&unmap->kref);
493 tx->unmap = unmap;
494}
495
89716462
DW
496struct dmaengine_unmap_data *
497dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 498void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
499#else
500static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
501 struct dmaengine_unmap_data *unmap)
502{
503}
504static inline struct dmaengine_unmap_data *
505dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
506{
507 return NULL;
508}
509static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
510{
511}
512#endif
45c463ae 513
d38a8c62
DW
514static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
515{
516 if (tx->unmap) {
45c463ae 517 dmaengine_unmap_put(tx->unmap);
d38a8c62
DW
518 tx->unmap = NULL;
519 }
520}
521
5fc6d897 522#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
523static inline void txd_lock(struct dma_async_tx_descriptor *txd)
524{
525}
526static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
527{
528}
529static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
530{
531 BUG();
532}
533static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
534{
535}
536static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
537{
538}
539static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
540{
541 return NULL;
542}
543static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
544{
545 return NULL;
546}
547
548#else
549static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550{
551 spin_lock_bh(&txd->lock);
552}
553static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
554{
555 spin_unlock_bh(&txd->lock);
556}
557static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
558{
559 txd->next = next;
560 next->parent = txd;
561}
562static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
563{
564 txd->parent = NULL;
565}
566static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
567{
568 txd->next = NULL;
569}
570static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
571{
572 return txd->parent;
573}
574static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
575{
576 return txd->next;
577}
578#endif
579
07934481
LW
580/**
581 * struct dma_tx_state - filled in to report the status of
582 * a transfer.
583 * @last: last completed DMA cookie
584 * @used: last issued DMA cookie (i.e. the one in progress)
585 * @residue: the remaining number of bytes left to transmit
586 * on the selected transfer for states DMA_IN_PROGRESS and
587 * DMA_PAUSED if this is implemented in the driver, else 0
588 */
589struct dma_tx_state {
590 dma_cookie_t last;
591 dma_cookie_t used;
592 u32 residue;
593};
594
77a68e56
MR
595/**
596 * enum dmaengine_alignment - defines alignment of the DMA async tx
597 * buffers
598 */
599enum dmaengine_alignment {
600 DMAENGINE_ALIGN_1_BYTE = 0,
601 DMAENGINE_ALIGN_2_BYTES = 1,
602 DMAENGINE_ALIGN_4_BYTES = 2,
603 DMAENGINE_ALIGN_8_BYTES = 3,
604 DMAENGINE_ALIGN_16_BYTES = 4,
605 DMAENGINE_ALIGN_32_BYTES = 5,
606 DMAENGINE_ALIGN_64_BYTES = 6,
607};
608
c13c8260
CL
609/**
610 * struct dma_device - info on the entity supplying DMA services
611 * @chancnt: how many DMA channels are supported
0f571515 612 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
613 * @channels: the list of struct dma_chan
614 * @global_node: list_head for global dma_device_list
7405f74b
DW
615 * @cap_mask: one or more dma_capability flags
616 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 617 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
618 * @copy_align: alignment shift for memcpy operations
619 * @xor_align: alignment shift for xor operations
620 * @pq_align: alignment shift for pq operations
4983a501 621 * @fill_align: alignment shift for memset operations
fe4ada2d 622 * @dev_id: unique device ID
7405f74b 623 * @dev: struct device reference for dma mapping api
cb8cea51
MR
624 * @src_addr_widths: bit mask of src addr widths the device supports
625 * @dst_addr_widths: bit mask of dst addr widths the device supports
626 * @directions: bit mask of slave direction the device supports since
627 * the enum dma_transfer_direction is not defined as bits for
628 * each type of direction, the dma controller should fill (1 <<
629 * <TYPE>) and same should be checked by controller as well
630 * @residue_granularity: granularity of the transfer residue reported
631 * by tx_status
fe4ada2d
RD
632 * @device_alloc_chan_resources: allocate resources and return the
633 * number of allocated descriptors
634 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
635 * @device_prep_dma_memcpy: prepares a memcpy operation
636 * @device_prep_dma_xor: prepares a xor operation
099f53cb 637 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
638 * @device_prep_dma_pq: prepares a pq operation
639 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
4983a501 640 * @device_prep_dma_memset: prepares a memset operation
50c7cd2b 641 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
7405f74b 642 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 643 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
644 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
645 * The function takes a buffer of size buf_len. The callback function will
646 * be called after period_len bytes have been transferred.
b14dab79 647 * @device_prep_interleaved_dma: Transfer expression in a generic way.
94a73e30
MR
648 * @device_config: Pushes a new configuration to a channel, return 0 or an error
649 * code
23a3ea2f
MR
650 * @device_pause: Pauses any transfer happening on a channel. Returns
651 * 0 or an error code
652 * @device_resume: Resumes any transfer on a channel previously
653 * paused. Returns 0 or an error code
7fa0cf46
MR
654 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
655 * or an error code
07934481
LW
656 * @device_tx_status: poll for transaction completion, the optional
657 * txstate parameter can be supplied with a pointer to get a
25985edc 658 * struct with auxiliary transfer status information, otherwise the call
07934481 659 * will just return a simple status code
7405f74b 660 * @device_issue_pending: push pending transactions to hardware
c13c8260
CL
661 */
662struct dma_device {
663
664 unsigned int chancnt;
0f571515 665 unsigned int privatecnt;
c13c8260
CL
666 struct list_head channels;
667 struct list_head global_node;
7405f74b 668 dma_cap_mask_t cap_mask;
b2f46fd8
DW
669 unsigned short max_xor;
670 unsigned short max_pq;
77a68e56
MR
671 enum dmaengine_alignment copy_align;
672 enum dmaengine_alignment xor_align;
673 enum dmaengine_alignment pq_align;
674 enum dmaengine_alignment fill_align;
b2f46fd8 675 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 676
c13c8260 677 int dev_id;
7405f74b 678 struct device *dev;
c13c8260 679
cb8cea51
MR
680 u32 src_addr_widths;
681 u32 dst_addr_widths;
682 u32 directions;
683 enum dma_residue_granularity residue_granularity;
684
aa1e6f1a 685 int (*device_alloc_chan_resources)(struct dma_chan *chan);
c13c8260 686 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
687
688 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
ceacbdbf 689 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
d4c56f97 690 size_t len, unsigned long flags);
7405f74b 691 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
ceacbdbf 692 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
d4c56f97 693 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 694 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 695 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 696 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
697 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
698 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
699 unsigned int src_cnt, const unsigned char *scf,
700 size_t len, unsigned long flags);
701 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
702 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
703 unsigned int src_cnt, const unsigned char *scf, size_t len,
704 enum sum_check_flags *pqres, unsigned long flags);
4983a501
MR
705 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
706 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
707 unsigned long flags);
50c7cd2b
MR
708 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
709 struct dma_chan *chan, struct scatterlist *sg,
710 unsigned int nents, int value, unsigned long flags);
7405f74b 711 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 712 struct dma_chan *chan, unsigned long flags);
a86ee03c
IS
713 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
714 struct dma_chan *chan,
715 struct scatterlist *dst_sg, unsigned int dst_nents,
716 struct scatterlist *src_sg, unsigned int src_nents,
717 unsigned long flags);
7405f74b 718
dc0ee643
HS
719 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
720 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 721 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 722 unsigned long flags, void *context);
782bc950
SH
723 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
724 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 725 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 726 unsigned long flags);
b14dab79
JB
727 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
728 struct dma_chan *chan, struct dma_interleaved_template *xt,
729 unsigned long flags);
94a73e30
MR
730
731 int (*device_config)(struct dma_chan *chan,
732 struct dma_slave_config *config);
23a3ea2f
MR
733 int (*device_pause)(struct dma_chan *chan);
734 int (*device_resume)(struct dma_chan *chan);
7fa0cf46 735 int (*device_terminate_all)(struct dma_chan *chan);
dc0ee643 736
07934481
LW
737 enum dma_status (*device_tx_status)(struct dma_chan *chan,
738 dma_cookie_t cookie,
739 struct dma_tx_state *txstate);
7405f74b 740 void (*device_issue_pending)(struct dma_chan *chan);
c13c8260
CL
741};
742
6e3ecaf0
SH
743static inline int dmaengine_slave_config(struct dma_chan *chan,
744 struct dma_slave_config *config)
745{
94a73e30
MR
746 if (chan->device->device_config)
747 return chan->device->device_config(chan, config);
748
2c44ad91 749 return -ENOSYS;
6e3ecaf0
SH
750}
751
61cc13a5
AS
752static inline bool is_slave_direction(enum dma_transfer_direction direction)
753{
754 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
755}
756
90b44f8f 757static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 758 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 759 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
760{
761 struct scatterlist sg;
922ee08b
KM
762 sg_init_table(&sg, 1);
763 sg_dma_address(&sg) = buf;
764 sg_dma_len(&sg) = len;
90b44f8f 765
185ecb5f
AB
766 return chan->device->device_prep_slave_sg(chan, &sg, 1,
767 dir, flags, NULL);
90b44f8f
VK
768}
769
16052827
AB
770static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
771 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
772 enum dma_transfer_direction dir, unsigned long flags)
773{
774 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 775 dir, flags, NULL);
16052827
AB
776}
777
e42d98eb
AB
778#ifdef CONFIG_RAPIDIO_DMA_ENGINE
779struct rio_dma_ext;
780static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
781 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
782 enum dma_transfer_direction dir, unsigned long flags,
783 struct rio_dma_ext *rio_ext)
784{
785 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
786 dir, flags, rio_ext);
787}
788#endif
789
16052827
AB
790static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
791 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
792 size_t period_len, enum dma_transfer_direction dir,
793 unsigned long flags)
16052827
AB
794{
795 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 796 period_len, dir, flags);
a14acb4a
BS
797}
798
799static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
800 struct dma_chan *chan, struct dma_interleaved_template *xt,
801 unsigned long flags)
802{
803 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
804}
805
4983a501
MR
806static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
807 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
808 unsigned long flags)
809{
810 if (!chan || !chan->device)
811 return NULL;
812
813 return chan->device->device_prep_dma_memset(chan, dest, value,
814 len, flags);
815}
816
b65612a8
VK
817static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
818 struct dma_chan *chan,
819 struct scatterlist *dst_sg, unsigned int dst_nents,
820 struct scatterlist *src_sg, unsigned int src_nents,
821 unsigned long flags)
822{
823 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
824 src_sg, src_nents, flags);
825}
826
6e3ecaf0
SH
827static inline int dmaengine_terminate_all(struct dma_chan *chan)
828{
7fa0cf46
MR
829 if (chan->device->device_terminate_all)
830 return chan->device->device_terminate_all(chan);
831
2c44ad91 832 return -ENOSYS;
6e3ecaf0
SH
833}
834
835static inline int dmaengine_pause(struct dma_chan *chan)
836{
23a3ea2f
MR
837 if (chan->device->device_pause)
838 return chan->device->device_pause(chan);
839
2c44ad91 840 return -ENOSYS;
6e3ecaf0
SH
841}
842
843static inline int dmaengine_resume(struct dma_chan *chan)
844{
23a3ea2f
MR
845 if (chan->device->device_resume)
846 return chan->device->device_resume(chan);
847
2c44ad91 848 return -ENOSYS;
6e3ecaf0
SH
849}
850
3052cc2c
LPC
851static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
852 dma_cookie_t cookie, struct dma_tx_state *state)
853{
854 return chan->device->device_tx_status(chan, cookie, state);
855}
856
98d530fe 857static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
858{
859 return desc->tx_submit(desc);
860}
861
77a68e56
MR
862static inline bool dmaengine_check_align(enum dmaengine_alignment align,
863 size_t off1, size_t off2, size_t len)
83544ae9
DW
864{
865 size_t mask;
866
867 if (!align)
868 return true;
869 mask = (1 << align) - 1;
870 if (mask & (off1 | off2 | len))
871 return false;
872 return true;
873}
874
875static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
876 size_t off2, size_t len)
877{
878 return dmaengine_check_align(dev->copy_align, off1, off2, len);
879}
880
881static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
882 size_t off2, size_t len)
883{
884 return dmaengine_check_align(dev->xor_align, off1, off2, len);
885}
886
887static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
888 size_t off2, size_t len)
889{
890 return dmaengine_check_align(dev->pq_align, off1, off2, len);
891}
892
4983a501
MR
893static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
894 size_t off2, size_t len)
895{
896 return dmaengine_check_align(dev->fill_align, off1, off2, len);
897}
898
b2f46fd8
DW
899static inline void
900dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
901{
902 dma->max_pq = maxpq;
903 if (has_pq_continue)
904 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
905}
906
907static inline bool dmaf_continue(enum dma_ctrl_flags flags)
908{
909 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
910}
911
912static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
913{
914 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
915
916 return (flags & mask) == mask;
917}
918
919static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
920{
921 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
922}
923
d3f3cf85 924static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
925{
926 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
927}
928
929/* dma_maxpq - reduce maxpq in the face of continued operations
930 * @dma - dma device with PQ capability
931 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
932 *
933 * When an engine does not support native continuation we need 3 extra
934 * source slots to reuse P and Q with the following coefficients:
935 * 1/ {00} * P : remove P from Q', but use it as a source for P'
936 * 2/ {01} * Q : use Q to continue Q' calculation
937 * 3/ {00} * Q : subtract Q from P' to cancel (2)
938 *
939 * In the case where P is disabled we only need 1 extra source:
940 * 1/ {01} * Q : use Q to continue Q' calculation
941 */
942static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
943{
944 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
945 return dma_dev_to_maxpq(dma);
946 else if (dmaf_p_disabled_continue(flags))
947 return dma_dev_to_maxpq(dma) - 1;
948 else if (dmaf_continue(flags))
949 return dma_dev_to_maxpq(dma) - 3;
950 BUG();
951}
952
87d001ef
MR
953static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
954 size_t dir_icg)
955{
956 if (inc) {
957 if (dir_icg)
958 return dir_icg;
959 else if (sgl)
960 return icg;
961 }
962
963 return 0;
964}
965
966static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
967 struct data_chunk *chunk)
968{
969 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
970 chunk->icg, chunk->dst_icg);
971}
972
973static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
974 struct data_chunk *chunk)
975{
976 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
977 chunk->icg, chunk->src_icg);
978}
979
c13c8260
CL
980/* --- public DMA engine API --- */
981
649274d9 982#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
983void dmaengine_get(void);
984void dmaengine_put(void);
649274d9
DW
985#else
986static inline void dmaengine_get(void)
987{
988}
989static inline void dmaengine_put(void)
990{
991}
992#endif
993
729b5d1b
DW
994#ifdef CONFIG_ASYNC_TX_DMA
995#define async_dmaengine_get() dmaengine_get()
996#define async_dmaengine_put() dmaengine_put()
5fc6d897 997#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
998#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
999#else
729b5d1b 1000#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 1001#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
1002#else
1003static inline void async_dmaengine_get(void)
1004{
1005}
1006static inline void async_dmaengine_put(void)
1007{
1008}
1009static inline struct dma_chan *
1010async_dma_find_channel(enum dma_transaction_type type)
1011{
1012 return NULL;
1013}
138f4c35 1014#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 1015void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 1016 struct dma_chan *chan);
c13c8260 1017
0839875e 1018static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 1019{
636bdeaa
DW
1020 tx->flags |= DMA_CTRL_ACK;
1021}
1022
ef560682
GL
1023static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1024{
1025 tx->flags &= ~DMA_CTRL_ACK;
1026}
1027
0839875e 1028static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 1029{
0839875e 1030 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
1031}
1032
7405f74b
DW
1033#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1034static inline void
1035__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 1036{
7405f74b
DW
1037 set_bit(tx_type, dstp->bits);
1038}
c13c8260 1039
0f571515
AN
1040#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1041static inline void
1042__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1043{
1044 clear_bit(tx_type, dstp->bits);
1045}
1046
33df8ca0
DW
1047#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1048static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1049{
1050 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1051}
1052
7405f74b
DW
1053#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1054static inline int
1055__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1056{
1057 return test_bit(tx_type, srcp->bits);
c13c8260
CL
1058}
1059
7405f74b 1060#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 1061 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 1062
c13c8260 1063/**
7405f74b 1064 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 1065 * @chan: target DMA channel
c13c8260
CL
1066 *
1067 * This allows drivers to push copies to HW in batches,
1068 * reducing MMIO writes where possible.
1069 */
7405f74b 1070static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1071{
ec8670f1 1072 chan->device->device_issue_pending(chan);
c13c8260
CL
1073}
1074
1075/**
7405f74b 1076 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1077 * @chan: DMA channel
1078 * @cookie: transaction identifier to check status of
1079 * @last: returns last completed cookie, can be NULL
1080 * @used: returns last issued cookie, can be NULL
1081 *
1082 * If @last and @used are passed in, upon return they reflect the driver
1083 * internal state and can be used with dma_async_is_complete() to check
1084 * the status of multiple cookies without re-checking hardware state.
1085 */
7405f74b 1086static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1087 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1088{
07934481
LW
1089 struct dma_tx_state state;
1090 enum dma_status status;
1091
1092 status = chan->device->device_tx_status(chan, cookie, &state);
1093 if (last)
1094 *last = state.last;
1095 if (used)
1096 *used = state.used;
1097 return status;
c13c8260
CL
1098}
1099
1100/**
1101 * dma_async_is_complete - test a cookie against chan state
1102 * @cookie: transaction identifier to test status of
1103 * @last_complete: last know completed transaction
1104 * @last_used: last cookie value handed out
1105 *
e239345f 1106 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1107 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1108 */
1109static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1110 dma_cookie_t last_complete, dma_cookie_t last_used)
1111{
1112 if (last_complete <= last_used) {
1113 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1114 return DMA_COMPLETE;
c13c8260
CL
1115 } else {
1116 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1117 return DMA_COMPLETE;
c13c8260
CL
1118 }
1119 return DMA_IN_PROGRESS;
1120}
1121
bca34692
DW
1122static inline void
1123dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1124{
1125 if (st) {
1126 st->last = last;
1127 st->used = used;
1128 st->residue = residue;
1129 }
1130}
1131
07f2211e 1132#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1133struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1134enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1135enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1136void dma_issue_pending_all(void);
a53e28da
LPC
1137struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1138 dma_filter_fn fn, void *fn_param);
0ad7c000
SW
1139struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1140 const char *name);
bef29ec5 1141struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
8f33d527 1142void dma_release_channel(struct dma_chan *chan);
fdb8df99 1143int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
07f2211e 1144#else
4a43f394
JM
1145static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1146{
1147 return NULL;
1148}
1149static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1150{
adfedd9a 1151 return DMA_COMPLETE;
4a43f394 1152}
07f2211e
DW
1153static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1154{
adfedd9a 1155 return DMA_COMPLETE;
07f2211e 1156}
c50331e8
DW
1157static inline void dma_issue_pending_all(void)
1158{
8f33d527 1159}
a53e28da 1160static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
8f33d527
GL
1161 dma_filter_fn fn, void *fn_param)
1162{
1163 return NULL;
1164}
0ad7c000
SW
1165static inline struct dma_chan *dma_request_slave_channel_reason(
1166 struct device *dev, const char *name)
1167{
1168 return ERR_PTR(-ENODEV);
1169}
9a6cecc8 1170static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
bef29ec5 1171 const char *name)
9a6cecc8 1172{
d18d5f59 1173 return NULL;
9a6cecc8 1174}
8f33d527
GL
1175static inline void dma_release_channel(struct dma_chan *chan)
1176{
c50331e8 1177}
fdb8df99
LP
1178static inline int dma_get_slave_caps(struct dma_chan *chan,
1179 struct dma_slave_caps *caps)
1180{
1181 return -ENXIO;
1182}
07f2211e 1183#endif
c13c8260 1184
27242021
VK
1185static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1186{
1187 struct dma_slave_caps caps;
1188
1189 dma_get_slave_caps(tx->chan, &caps);
1190
1191 if (caps.descriptor_reuse) {
1192 tx->flags |= DMA_CTRL_REUSE;
1193 return 0;
1194 } else {
1195 return -EPERM;
1196 }
1197}
1198
1199static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1200{
1201 tx->flags &= ~DMA_CTRL_REUSE;
1202}
1203
1204static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1205{
1206 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1207}
1208
1209static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1210{
1211 /* this is supported for reusable desc, so check that */
1212 if (dmaengine_desc_test_reuse(desc))
1213 return desc->desc_free(desc);
1214 else
1215 return -EPERM;
1216}
1217
c13c8260
CL
1218/* --- DMA device --- */
1219
1220int dma_async_device_register(struct dma_device *device);
1221void dma_async_device_unregister(struct dma_device *device);
07f2211e 1222void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
7bb587f4 1223struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
8010dad5 1224struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
59b5ec21 1225#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
864ef69b
MP
1226#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1227 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1228
1229static inline struct dma_chan
a53e28da
LPC
1230*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1231 dma_filter_fn fn, void *fn_param,
1dc04288 1232 struct device *dev, const char *name)
864ef69b
MP
1233{
1234 struct dma_chan *chan;
1235
1236 chan = dma_request_slave_channel(dev, name);
1237 if (chan)
1238 return chan;
1239
7dfffb95
GU
1240 if (!fn || !fn_param)
1241 return NULL;
1242
864ef69b
MP
1243 return __dma_request_channel(mask, fn, fn_param);
1244}
c13c8260 1245#endif /* DMAENGINE_H */