]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/dmaengine.h
Merge tag 'block-5.15-2021-10-01' of git://git.kernel.dk/linux-block
[mirror_ubuntu-jammy-kernel.git] / include / linux / dmaengine.h
CommitLineData
9ab65aff 1/* SPDX-License-Identifier: GPL-2.0-or-later */
c13c8260
CL
2/*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
c13c8260 4 */
d2ebfb33
RKAL
5#ifndef LINUX_DMAENGINE_H
6#define LINUX_DMAENGINE_H
1c0f16e5 7
c13c8260 8#include <linux/device.h>
0ad7c000 9#include <linux/err.h>
c13c8260 10#include <linux/uio.h>
187f1882 11#include <linux/bug.h>
90b44f8f 12#include <linux/scatterlist.h>
a8efa9d6 13#include <linux/bitmap.h>
dcc043dc 14#include <linux/types.h>
a8efa9d6 15#include <asm/page.h>
b7f080cf 16
c13c8260 17/**
fe4ada2d 18 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22typedef s32 dma_cookie_t;
76bd061f 23#define DMA_MIN_COOKIE 1
c13c8260 24
71ea1483
DC
25static inline int dma_submit_error(dma_cookie_t cookie)
26{
27 return cookie < 0 ? cookie : 0;
28}
c13c8260
CL
29
30/**
31 * enum dma_status - DMA transaction status
adfedd9a 32 * @DMA_COMPLETE: transaction completed
c13c8260 33 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 34 * @DMA_PAUSED: transaction is paused
c13c8260
CL
35 * @DMA_ERROR: transaction failed
36 */
37enum dma_status {
7db5f727 38 DMA_COMPLETE,
c13c8260 39 DMA_IN_PROGRESS,
07934481 40 DMA_PAUSED,
c13c8260 41 DMA_ERROR,
47ec7f09 42 DMA_OUT_OF_ORDER,
c13c8260
CL
43};
44
7405f74b
DW
45/**
46 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
49 * automatically set as dma devices are registered.
7405f74b
DW
50 */
51enum dma_transaction_type {
52 DMA_MEMCPY,
53 DMA_XOR,
b2f46fd8 54 DMA_PQ,
099f53cb
DW
55 DMA_XOR_VAL,
56 DMA_PQ_VAL,
4983a501 57 DMA_MEMSET,
50c7cd2b 58 DMA_MEMSET_SG,
7405f74b 59 DMA_INTERRUPT,
59b5ec21 60 DMA_PRIVATE,
138f4c35 61 DMA_ASYNC_TX,
dc0ee643 62 DMA_SLAVE,
782bc950 63 DMA_CYCLIC,
b14dab79 64 DMA_INTERLEAVE,
47ec7f09 65 DMA_COMPLETION_NO_ORDER,
9c8ebd8b
LP
66 DMA_REPEAT,
67 DMA_LOAD_EOT,
7405f74b 68/* last transaction type for creation of the capabilities mask */
b14dab79
JB
69 DMA_TX_TYPE_END,
70};
dc0ee643 71
49920bc6
VK
72/**
73 * enum dma_transfer_direction - dma transfer mode and direction indicator
74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78 */
79enum dma_transfer_direction {
80 DMA_MEM_TO_MEM,
81 DMA_MEM_TO_DEV,
82 DMA_DEV_TO_MEM,
83 DMA_DEV_TO_DEV,
62268ce9 84 DMA_TRANS_NONE,
49920bc6 85};
7405f74b 86
b14dab79
JB
87/**
88 * Interleaved Transfer Request
89 * ----------------------------
20d60f63 90 * A chunk is collection of contiguous bytes to be transferred.
b14dab79 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
20d60f63 92 * ICGs may or may not change between chunks.
b14dab79
JB
93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94 * that when repeated an integral number of times, specifies the transfer.
95 * A transfer template is specification of a Frame, the number of times
96 * it is to be repeated and other per-transfer attributes.
97 *
98 * Practically, a client driver would have ready a template for each
99 * type of transfer it is going to need during its lifetime and
100 * set only 'src_start' and 'dst_start' before submitting the requests.
101 *
102 *
103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105 *
106 * == Chunk size
107 * ... ICG
108 */
109
110/**
111 * struct data_chunk - Element of scatter-gather list that makes a frame.
112 * @size: Number of bytes to read from source.
113 * size_dst := fn(op, size_src), so doesn't mean much for destination.
114 * @icg: Number of bytes to jump after last src/dst address of this
115 * chunk and before first src/dst address for next chunk.
116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
e1031dc1
MR
118 * @dst_icg: Number of bytes to jump after last dst address of this
119 * chunk and before the first dst address for next chunk.
120 * Ignored if dst_inc is true and dst_sgl is false.
121 * @src_icg: Number of bytes to jump after last src address of this
122 * chunk and before the first src address for next chunk.
123 * Ignored if src_inc is true and src_sgl is false.
b14dab79
JB
124 */
125struct data_chunk {
126 size_t size;
127 size_t icg;
e1031dc1
MR
128 size_t dst_icg;
129 size_t src_icg;
b14dab79
JB
130};
131
132/**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
466f966b 160 struct data_chunk sgl[];
b14dab79
JB
161};
162
d4c56f97 163/**
636bdeaa 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 165 * control completion, and communicate status.
d4c56f97 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 167 * this transaction
a88f6667 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
2be90e91 169 * acknowledges receipt, i.e. has a chance to establish any dependency
b2f46fd8 170 * chains
b2f46fd8
DW
171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174 * sources that were the result of a previous operation, in the case of a PQ
175 * operation it continues the calculation with new sources
0403e382
DW
176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177 * on the result of this operation
27242021
VK
178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179 * cleared or freed
3e00ab4a
AS
180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181 * data and the descriptor should be in different format from normal
182 * data descriptors.
9c8ebd8b
LP
183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184 * repeated when it ends until a transaction is issued on the same channel
185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186 * interleaved transactions and is ignored for all other transaction types.
187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189 * repeated transaction ends. Not setting this flag when the previously queued
190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191 * to never be processed and stay in the issued queue forever. The flag is
192 * ignored if the previous transaction is not a repeated transaction.
d4c56f97 193 */
636bdeaa 194enum dma_ctrl_flags {
d4c56f97 195 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 196 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
197 DMA_PREP_PQ_DISABLE_P = (1 << 2),
198 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199 DMA_PREP_CONTINUE = (1 << 4),
200 DMA_PREP_FENCE = (1 << 5),
27242021 201 DMA_CTRL_REUSE = (1 << 6),
3e00ab4a 202 DMA_PREP_CMD = (1 << 7),
9c8ebd8b
LP
203 DMA_PREP_REPEAT = (1 << 8),
204 DMA_PREP_LOAD_EOT = (1 << 9),
d4c56f97
DW
205};
206
ad283ea4
DW
207/**
208 * enum sum_check_bits - bit position of pq_check_flags
209 */
210enum sum_check_bits {
211 SUM_CHECK_P = 0,
212 SUM_CHECK_Q = 1,
213};
214
215/**
216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219 */
220enum sum_check_flags {
221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223};
224
225
7405f74b
DW
226/**
227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228 * See linux/cpumask.h
229 */
230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231
4db8fd32
PU
232/**
233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
235 * client driver and it is attached (via the dmaengine_desc_attach_metadata()
236 * helper) to the descriptor.
237 *
238 * Client drivers interested to use this mode can follow:
239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
240 * 1. prepare the descriptor (dmaengine_prep_*)
241 * construct the metadata in the client's buffer
242 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
243 * descriptor
244 * 3. submit the transfer
245 * - DMA_DEV_TO_MEM:
246 * 1. prepare the descriptor (dmaengine_prep_*)
247 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
248 * descriptor
249 * 3. submit the transfer
250 * 4. when the transfer is completed, the metadata should be available in the
251 * attached buffer
252 *
253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
254 * driver. The client driver can ask for the pointer, maximum size and the
255 * currently used size of the metadata and can directly update or read it.
256 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
257 * provided as helper functions.
258 *
259 * Note: the metadata area for the descriptor is no longer valid after the
260 * transfer has been completed (valid up to the point when the completion
261 * callback returns if used).
262 *
263 * Client drivers interested to use this mode can follow:
264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
265 * 1. prepare the descriptor (dmaengine_prep_*)
266 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
267 * metadata area
268 * 3. update the metadata at the pointer
269 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount
270 * of data the client has placed into the metadata buffer
271 * 5. submit the transfer
272 * - DMA_DEV_TO_MEM:
273 * 1. prepare the descriptor (dmaengine_prep_*)
274 * 2. submit the transfer
275 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
276 * pointer to the engine's metadata area
277 * 4. Read out the metadata from the pointer
278 *
279 * Note: the two mode is not compatible and clients must use one mode for a
280 * descriptor.
281 */
282enum dma_desc_metadata_mode {
283 DESC_METADATA_NONE = 0,
284 DESC_METADATA_CLIENT = BIT(0),
285 DESC_METADATA_ENGINE = BIT(1),
286};
287
acfbb191
AS
288/**
289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
290 * @memcpy_count: transaction counter
291 * @bytes_transferred: byte counter
292 */
c13c8260 293struct dma_chan_percpu {
c13c8260
CL
294 /* stats */
295 unsigned long memcpy_count;
296 unsigned long bytes_transferred;
297};
298
56f13c0d
PU
299/**
300 * struct dma_router - DMA router structure
301 * @dev: pointer to the DMA router device
302 * @route_free: function to be called when the route can be disconnected
303 */
304struct dma_router {
305 struct device *dev;
306 void (*route_free)(struct device *dev, void *route_data);
307};
308
c13c8260
CL
309/**
310 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 311 * @device: ptr to the dma device who supplies this channel, always !%NULL
71723a96 312 * @slave: ptr to the device using this channel
c13c8260 313 * @cookie: last cookie value returned to client
4d4e58de 314 * @completed_cookie: last completed cookie for this channel
fe4ada2d 315 * @chan_id: channel ID for sysfs
41d5e59c 316 * @dev: class device for sysfs
71723a96 317 * @name: backlink name for sysfs
e937cc1d
PU
318 * @dbg_client_name: slave name for debugfs in format:
319 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
c13c8260
CL
320 * @device_node: used to add this to the device chan list
321 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 322 * @client_count: how many clients are using this channel
bec08513 323 * @table_count: number of appearances in the mem-to-mem allocation table
56f13c0d
PU
324 * @router: pointer to the DMA router structure
325 * @route_data: channel specific data for the router
287d8592 326 * @private: private data for certain client-channel associations
c13c8260
CL
327 */
328struct dma_chan {
c13c8260 329 struct dma_device *device;
71723a96 330 struct device *slave;
c13c8260 331 dma_cookie_t cookie;
4d4e58de 332 dma_cookie_t completed_cookie;
c13c8260
CL
333
334 /* sysfs */
335 int chan_id;
41d5e59c 336 struct dma_chan_dev *dev;
71723a96 337 const char *name;
e937cc1d
PU
338#ifdef CONFIG_DEBUG_FS
339 char *dbg_client_name;
340#endif
c13c8260 341
c13c8260 342 struct list_head device_node;
a29d8b8e 343 struct dma_chan_percpu __percpu *local;
7cc5bf9a 344 int client_count;
bec08513 345 int table_count;
56f13c0d
PU
346
347 /* DMA router */
348 struct dma_router *router;
349 void *route_data;
350
287d8592 351 void *private;
c13c8260
CL
352};
353
41d5e59c
DW
354/**
355 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
356 * @chan: driver channel device
357 * @device: sysfs device
358 * @dev_id: parent dma_device dev_id
ab650ef6
PU
359 * @chan_dma_dev: The channel is using custom/different dma-mapping
360 * compared to the parent dma_device
41d5e59c
DW
361 */
362struct dma_chan_dev {
363 struct dma_chan *chan;
364 struct device device;
864498aa 365 int dev_id;
ab650ef6 366 bool chan_dma_dev;
41d5e59c
DW
367};
368
c156d0a5 369/**
ba730340 370 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
371 * device, source or target buses
372 */
373enum dma_slave_buswidth {
374 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
375 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
376 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 377 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
378 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
379 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
534a7298
LP
380 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
381 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
382 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
ab959c7d 383 DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
c156d0a5
LW
384};
385
386/**
387 * struct dma_slave_config - dma slave channel runtime config
388 * @direction: whether the data shall go in or out on this slave
397321f4 389 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
390 * legal values. DEPRECATED, drivers should use the direction argument
391 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
392 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
393 * @src_addr: this is the physical address where DMA slave data
394 * should be read (RX), if the source is memory this argument is
395 * ignored.
396 * @dst_addr: this is the physical address where DMA slave data
397 * should be written (TX), if the source is memory this argument
398 * is ignored.
399 * @src_addr_width: this is the width in bytes of the source (RX)
400 * register where DMA data shall be read. If the source
401 * is memory this may be ignored depending on architecture.
ab959c7d 402 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
c156d0a5
LW
403 * @dst_addr_width: same as src_addr_width but for destination
404 * target (TX) mutatis mutandis.
405 * @src_maxburst: the maximum number of words (note: words, as in
406 * units of the src_addr_width member, not bytes) that can be sent
407 * in one burst to the device. Typically something like half the
408 * FIFO depth on I/O peripherals so you don't overflow it. This
409 * may or may not be applicable on memory sources.
410 * @dst_maxburst: same as src_maxburst but for destination target
411 * mutatis mutandis.
54cd2558
PU
412 * @src_port_window_size: The length of the register area in words the data need
413 * to be accessed on the device side. It is only used for devices which is using
414 * an area instead of a single register to receive the data. Typically the DMA
415 * loops in this area in order to transfer the data.
416 * @dst_port_window_size: same as src_port_window_size but for the destination
417 * port.
dcc043dc
VK
418 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
419 * with 'true' if peripheral should be flow controller. Direction will be
420 * selected at Runtime.
4fd1e324
LD
421 * @slave_id: Slave requester id. Only valid for slave channels. The dma
422 * slave peripheral will have unique id as dma requester which need to be
423 * pass as slave config.
e7bbb7ac
VK
424 * @peripheral_config: peripheral configuration for programming peripheral
425 * for dmaengine transfer
426 * @peripheral_size: peripheral configuration buffer size
c156d0a5
LW
427 *
428 * This struct is passed in as configuration data to a DMA engine
429 * in order to set up a certain channel for DMA transport at runtime.
430 * The DMA device/engine has to provide support for an additional
2c44ad91
MR
431 * callback in the dma_device structure, device_config and this struct
432 * will then be passed in as an argument to the function.
c156d0a5 433 *
7cbccb55
LPC
434 * The rationale for adding configuration information to this struct is as
435 * follows: if it is likely that more than one DMA slave controllers in
436 * the world will support the configuration option, then make it generic.
437 * If not: if it is fixed so that it be sent in static from the platform
438 * data, then prefer to do that.
c156d0a5
LW
439 */
440struct dma_slave_config {
49920bc6 441 enum dma_transfer_direction direction;
95756320
VK
442 phys_addr_t src_addr;
443 phys_addr_t dst_addr;
c156d0a5
LW
444 enum dma_slave_buswidth src_addr_width;
445 enum dma_slave_buswidth dst_addr_width;
446 u32 src_maxburst;
447 u32 dst_maxburst;
54cd2558
PU
448 u32 src_port_window_size;
449 u32 dst_port_window_size;
dcc043dc 450 bool device_fc;
4fd1e324 451 unsigned int slave_id;
e7bbb7ac
VK
452 void *peripheral_config;
453 size_t peripheral_size;
c156d0a5
LW
454};
455
50720563
LPC
456/**
457 * enum dma_residue_granularity - Granularity of the reported transfer residue
458 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
459 * DMA channel is only able to tell whether a descriptor has been completed or
460 * not, which means residue reporting is not supported by this channel. The
461 * residue field of the dma_tx_state field will always be 0.
462 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
463 * completed segment of the transfer (For cyclic transfers this is after each
464 * period). This is typically implemented by having the hardware generate an
465 * interrupt after each transferred segment and then the drivers updates the
466 * outstanding residue by the size of the segment. Another possibility is if
467 * the hardware supports scatter-gather and the segment descriptor has a field
468 * which gets set after the segment has been completed. The driver then counts
469 * the number of segments without the flag set to compute the residue.
470 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
471 * burst. This is typically only supported if the hardware has a progress
472 * register of some sort (E.g. a register with the current read/write address
473 * or a register with the amount of bursts/beats/bytes that have been
474 * transferred or still need to be transferred).
475 */
476enum dma_residue_granularity {
477 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
478 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
479 DMA_RESIDUE_GRANULARITY_BURST = 2,
480};
481
c2cbd427
SB
482/**
483 * struct dma_slave_caps - expose capabilities of a slave channel only
484 * @src_addr_widths: bit mask of src addr widths the channel supports.
485 * Width is specified in bytes, e.g. for a channel supporting
486 * a width of 4 the mask should have BIT(4) set.
487 * @dst_addr_widths: bit mask of dst addr widths the channel supports
488 * @directions: bit mask of slave directions the channel supports.
489 * Since the enum dma_transfer_direction is not defined as bit flag for
490 * each type, the dma controller should set BIT(<TYPE>) and same
491 * should be checked by controller as well
d97758e0 492 * @min_burst: min burst capability per-transfer
6d5bbed3 493 * @max_burst: max burst capability per-transfer
b1b40b8f
SS
494 * @max_sg_burst: max number of SG list entries executed in a single burst
495 * DMA tansaction with no software intervention for reinitialization.
496 * Zero value means unlimited number of entries.
d8095f94
MS
497 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
498 * for resume later)
499 * @cmd_resume: true, if resume is supported
221a27c7 500 * @cmd_terminate: true, if terminate cmd is supported
50720563 501 * @residue_granularity: granularity of the reported transfer residue
27242021
VK
502 * @descriptor_reuse: if a descriptor can be reused by client and
503 * resubmitted multiple times
221a27c7
VK
504 */
505struct dma_slave_caps {
506 u32 src_addr_widths;
ceacbdbf 507 u32 dst_addr_widths;
221a27c7 508 u32 directions;
d97758e0 509 u32 min_burst;
6d5bbed3 510 u32 max_burst;
b1b40b8f 511 u32 max_sg_burst;
221a27c7 512 bool cmd_pause;
d8095f94 513 bool cmd_resume;
221a27c7 514 bool cmd_terminate;
50720563 515 enum dma_residue_granularity residue_granularity;
27242021 516 bool descriptor_reuse;
221a27c7
VK
517};
518
41d5e59c
DW
519static inline const char *dma_chan_name(struct dma_chan *chan)
520{
521 return dev_name(&chan->dev->device);
522}
d379b01e 523
c13c8260
CL
524void dma_chan_cleanup(struct kref *kref);
525
59b5ec21
DW
526/**
527 * typedef dma_filter_fn - callback filter for dma_request_channel
528 * @chan: channel to be reviewed
529 * @filter_param: opaque parameter passed through dma_request_channel
530 *
531 * When this optional parameter is specified in a call to dma_request_channel a
532 * suitable channel is passed to this routine for further dispositioning before
533 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
534 * satisfies the given capability mask. It returns 'true' to indicate that the
535 * channel is suitable.
59b5ec21 536 */
7dd60251 537typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 538
7405f74b 539typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62 540
f067025b
DJ
541enum dmaengine_tx_result {
542 DMA_TRANS_NOERROR = 0, /* SUCCESS */
543 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
544 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
545 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
546};
547
548struct dmaengine_result {
549 enum dmaengine_tx_result result;
550 u32 residue;
551};
552
553typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
554 const struct dmaengine_result *result);
555
d38a8c62 556struct dmaengine_unmap_data {
0c0eb4ca
ZY
557#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
558 u16 map_cnt;
559#else
c1f43dd9 560 u8 map_cnt;
0c0eb4ca 561#endif
d38a8c62
DW
562 u8 to_cnt;
563 u8 from_cnt;
564 u8 bidi_cnt;
565 struct device *dev;
566 struct kref kref;
567 size_t len;
466f966b 568 dma_addr_t addr[];
d38a8c62
DW
569};
570
4db8fd32
PU
571struct dma_async_tx_descriptor;
572
573struct dma_descriptor_metadata_ops {
574 int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
575 size_t len);
576
577 void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
578 size_t *payload_len, size_t *max_len);
579 int (*set_len)(struct dma_async_tx_descriptor *desc,
580 size_t payload_len);
581};
582
7405f74b
DW
583/**
584 * struct dma_async_tx_descriptor - async transaction descriptor
585 * ---dma generic offload fields---
586 * @cookie: tracking cookie for this transaction, set to -EBUSY if
587 * this tx is sitting on a dependency list
636bdeaa 588 * @flags: flags to augment operation preparation, control completion, and
dda51089 589 * communicate status
7405f74b 590 * @phys: physical address of the descriptor
7405f74b 591 * @chan: target channel for this operation
aba96bad
VK
592 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
593 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
594 * @callback: routine to call after this operation is complete
595 * @callback_param: general parameter to pass to the callback routine
4db8fd32
PU
596 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
597 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
598 * DESC_METADATA_NONE
599 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
600 * DMA driver if metadata mode is supported with the descriptor
7405f74b 601 * ---async_tx api specific fields---
19242d72 602 * @next: at completion submit this descriptor
7405f74b 603 * @parent: pointer to the next level up in the dependency chain
19242d72 604 * @lock: protect the parent and next pointers
7405f74b
DW
605 */
606struct dma_async_tx_descriptor {
607 dma_cookie_t cookie;
636bdeaa 608 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 609 dma_addr_t phys;
7405f74b
DW
610 struct dma_chan *chan;
611 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
27242021 612 int (*desc_free)(struct dma_async_tx_descriptor *tx);
7405f74b 613 dma_async_tx_callback callback;
f067025b 614 dma_async_tx_callback_result callback_result;
7405f74b 615 void *callback_param;
d38a8c62 616 struct dmaengine_unmap_data *unmap;
4db8fd32
PU
617 enum dma_desc_metadata_mode desc_metadata_mode;
618 struct dma_descriptor_metadata_ops *metadata_ops;
5fc6d897 619#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 620 struct dma_async_tx_descriptor *next;
7405f74b
DW
621 struct dma_async_tx_descriptor *parent;
622 spinlock_t lock;
caa20d97 623#endif
7405f74b
DW
624};
625
89716462 626#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
627static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
628 struct dmaengine_unmap_data *unmap)
629{
630 kref_get(&unmap->kref);
631 tx->unmap = unmap;
632}
633
89716462
DW
634struct dmaengine_unmap_data *
635dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 636void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
637#else
638static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
639 struct dmaengine_unmap_data *unmap)
640{
641}
642static inline struct dmaengine_unmap_data *
643dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
644{
645 return NULL;
646}
647static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
648{
649}
650#endif
45c463ae 651
d38a8c62
DW
652static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
653{
3a92063b
AS
654 if (!tx->unmap)
655 return;
656
657 dmaengine_unmap_put(tx->unmap);
658 tx->unmap = NULL;
d38a8c62
DW
659}
660
5fc6d897 661#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
662static inline void txd_lock(struct dma_async_tx_descriptor *txd)
663{
664}
665static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
666{
667}
668static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
669{
670 BUG();
671}
672static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
673{
674}
675static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
676{
677}
678static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
679{
680 return NULL;
681}
682static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
683{
684 return NULL;
685}
686
687#else
688static inline void txd_lock(struct dma_async_tx_descriptor *txd)
689{
690 spin_lock_bh(&txd->lock);
691}
692static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
693{
694 spin_unlock_bh(&txd->lock);
695}
696static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
697{
698 txd->next = next;
699 next->parent = txd;
700}
701static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
702{
703 txd->parent = NULL;
704}
705static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
706{
707 txd->next = NULL;
708}
709static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
710{
711 return txd->parent;
712}
713static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
714{
715 return txd->next;
716}
717#endif
718
07934481
LW
719/**
720 * struct dma_tx_state - filled in to report the status of
721 * a transfer.
722 * @last: last completed DMA cookie
723 * @used: last issued DMA cookie (i.e. the one in progress)
724 * @residue: the remaining number of bytes left to transmit
725 * on the selected transfer for states DMA_IN_PROGRESS and
726 * DMA_PAUSED if this is implemented in the driver, else 0
6755ec06 727 * @in_flight_bytes: amount of data in bytes cached by the DMA.
07934481
LW
728 */
729struct dma_tx_state {
730 dma_cookie_t last;
731 dma_cookie_t used;
732 u32 residue;
6755ec06 733 u32 in_flight_bytes;
07934481
LW
734};
735
77a68e56
MR
736/**
737 * enum dmaengine_alignment - defines alignment of the DMA async tx
738 * buffers
739 */
740enum dmaengine_alignment {
741 DMAENGINE_ALIGN_1_BYTE = 0,
742 DMAENGINE_ALIGN_2_BYTES = 1,
743 DMAENGINE_ALIGN_4_BYTES = 2,
744 DMAENGINE_ALIGN_8_BYTES = 3,
745 DMAENGINE_ALIGN_16_BYTES = 4,
746 DMAENGINE_ALIGN_32_BYTES = 5,
747 DMAENGINE_ALIGN_64_BYTES = 6,
660343d0
PU
748 DMAENGINE_ALIGN_128_BYTES = 7,
749 DMAENGINE_ALIGN_256_BYTES = 8,
77a68e56
MR
750};
751
a8135d0d
PU
752/**
753 * struct dma_slave_map - associates slave device and it's slave channel with
754 * parameter to be used by a filter function
755 * @devname: name of the device
756 * @slave: slave channel name
757 * @param: opaque parameter to pass to struct dma_filter.fn
758 */
759struct dma_slave_map {
760 const char *devname;
761 const char *slave;
762 void *param;
763};
764
765/**
766 * struct dma_filter - information for slave device/channel to filter_fn/param
767 * mapping
768 * @fn: filter function callback
769 * @mapcnt: number of slave device/channel in the map
770 * @map: array of channel to filter mapping data
771 */
772struct dma_filter {
773 dma_filter_fn fn;
774 int mapcnt;
775 const struct dma_slave_map *map;
776};
777
c13c8260
CL
778/**
779 * struct dma_device - info on the entity supplying DMA services
780 * @chancnt: how many DMA channels are supported
0f571515 781 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
782 * @channels: the list of struct dma_chan
783 * @global_node: list_head for global dma_device_list
a8135d0d 784 * @filter: information for device/slave to filter function/param mapping
7405f74b 785 * @cap_mask: one or more dma_capability flags
4db8fd32 786 * @desc_metadata_modes: supported metadata modes by the DMA device
7405f74b 787 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 788 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
789 * @copy_align: alignment shift for memcpy operations
790 * @xor_align: alignment shift for xor operations
791 * @pq_align: alignment shift for pq operations
4983a501 792 * @fill_align: alignment shift for memset operations
fe4ada2d 793 * @dev_id: unique device ID
7405f74b 794 * @dev: struct device reference for dma mapping api
dae7a589 795 * @owner: owner module (automatically set based on the provided dev)
cb8cea51 796 * @src_addr_widths: bit mask of src addr widths the device supports
c2cbd427
SB
797 * Width is specified in bytes, e.g. for a device supporting
798 * a width of 4 the mask should have BIT(4) set.
cb8cea51 799 * @dst_addr_widths: bit mask of dst addr widths the device supports
c2cbd427
SB
800 * @directions: bit mask of slave directions the device supports.
801 * Since the enum dma_transfer_direction is not defined as bit flag for
802 * each type, the dma controller should set BIT(<TYPE>) and same
803 * should be checked by controller as well
d97758e0 804 * @min_burst: min burst capability per-transfer
6d5bbed3 805 * @max_burst: max burst capability per-transfer
b1b40b8f
SS
806 * @max_sg_burst: max number of SG list entries executed in a single burst
807 * DMA tansaction with no software intervention for reinitialization.
808 * Zero value means unlimited number of entries.
cb8cea51
MR
809 * @residue_granularity: granularity of the transfer residue reported
810 * by tx_status
fe4ada2d
RD
811 * @device_alloc_chan_resources: allocate resources and return the
812 * number of allocated descriptors
4f910c03 813 * @device_router_config: optional callback for DMA router configuration
fe4ada2d 814 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
815 * @device_prep_dma_memcpy: prepares a memcpy operation
816 * @device_prep_dma_xor: prepares a xor operation
099f53cb 817 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
818 * @device_prep_dma_pq: prepares a pq operation
819 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
4983a501 820 * @device_prep_dma_memset: prepares a memset operation
50c7cd2b 821 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
7405f74b 822 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 823 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
824 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
825 * The function takes a buffer of size buf_len. The callback function will
826 * be called after period_len bytes have been transferred.
b14dab79 827 * @device_prep_interleaved_dma: Transfer expression in a generic way.
ff39988a 828 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
3b6d694e
SS
829 * @device_caps: May be used to override the generic DMA slave capabilities
830 * with per-channel specific ones
94a73e30
MR
831 * @device_config: Pushes a new configuration to a channel, return 0 or an error
832 * code
23a3ea2f
MR
833 * @device_pause: Pauses any transfer happening on a channel. Returns
834 * 0 or an error code
835 * @device_resume: Resumes any transfer on a channel previously
836 * paused. Returns 0 or an error code
7fa0cf46
MR
837 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
838 * or an error code
b36f09c3
LPC
839 * @device_synchronize: Synchronizes the termination of a transfers to the
840 * current context.
07934481
LW
841 * @device_tx_status: poll for transaction completion, the optional
842 * txstate parameter can be supplied with a pointer to get a
25985edc 843 * struct with auxiliary transfer status information, otherwise the call
07934481 844 * will just return a simple status code
7405f74b 845 * @device_issue_pending: push pending transactions to hardware
9eeacd3a 846 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
8ad342a8
LG
847 * @device_release: called sometime atfer dma_async_device_unregister() is
848 * called and there are no further references to this structure. This
849 * must be implemented to free resources however many existing drivers
850 * do not and are therefore not safe to unbind while in use.
e937cc1d
PU
851 * @dbg_summary_show: optional routine to show contents in debugfs; default code
852 * will be used when this is omitted, but custom code can show extra,
853 * controller specific information.
c13c8260
CL
854 */
855struct dma_device {
8ad342a8 856 struct kref ref;
c13c8260 857 unsigned int chancnt;
0f571515 858 unsigned int privatecnt;
c13c8260
CL
859 struct list_head channels;
860 struct list_head global_node;
a8135d0d 861 struct dma_filter filter;
7405f74b 862 dma_cap_mask_t cap_mask;
4db8fd32 863 enum dma_desc_metadata_mode desc_metadata_modes;
b2f46fd8
DW
864 unsigned short max_xor;
865 unsigned short max_pq;
77a68e56
MR
866 enum dmaengine_alignment copy_align;
867 enum dmaengine_alignment xor_align;
868 enum dmaengine_alignment pq_align;
869 enum dmaengine_alignment fill_align;
b2f46fd8 870 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 871
c13c8260 872 int dev_id;
7405f74b 873 struct device *dev;
dae7a589 874 struct module *owner;
08210094
DJ
875 struct ida chan_ida;
876 struct mutex chan_mutex; /* to protect chan_ida */
c13c8260 877
cb8cea51
MR
878 u32 src_addr_widths;
879 u32 dst_addr_widths;
880 u32 directions;
d97758e0 881 u32 min_burst;
6d5bbed3 882 u32 max_burst;
b1b40b8f 883 u32 max_sg_burst;
9eeacd3a 884 bool descriptor_reuse;
cb8cea51
MR
885 enum dma_residue_granularity residue_granularity;
886
aa1e6f1a 887 int (*device_alloc_chan_resources)(struct dma_chan *chan);
4f910c03 888 int (*device_router_config)(struct dma_chan *chan);
c13c8260 889 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
890
891 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
ceacbdbf 892 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
d4c56f97 893 size_t len, unsigned long flags);
7405f74b 894 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
ceacbdbf 895 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
d4c56f97 896 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 897 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 898 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 899 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
900 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
901 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
902 unsigned int src_cnt, const unsigned char *scf,
903 size_t len, unsigned long flags);
904 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
905 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
906 unsigned int src_cnt, const unsigned char *scf, size_t len,
907 enum sum_check_flags *pqres, unsigned long flags);
4983a501
MR
908 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
909 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
910 unsigned long flags);
50c7cd2b
MR
911 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
912 struct dma_chan *chan, struct scatterlist *sg,
913 unsigned int nents, int value, unsigned long flags);
7405f74b 914 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 915 struct dma_chan *chan, unsigned long flags);
7405f74b 916
dc0ee643
HS
917 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
918 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 919 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 920 unsigned long flags, void *context);
782bc950
SH
921 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
922 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 923 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 924 unsigned long flags);
b14dab79
JB
925 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
926 struct dma_chan *chan, struct dma_interleaved_template *xt,
927 unsigned long flags);
ff39988a
SY
928 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
929 struct dma_chan *chan, dma_addr_t dst, u64 data,
930 unsigned long flags);
94a73e30 931
3b6d694e
SS
932 void (*device_caps)(struct dma_chan *chan,
933 struct dma_slave_caps *caps);
94a73e30
MR
934 int (*device_config)(struct dma_chan *chan,
935 struct dma_slave_config *config);
23a3ea2f
MR
936 int (*device_pause)(struct dma_chan *chan);
937 int (*device_resume)(struct dma_chan *chan);
7fa0cf46 938 int (*device_terminate_all)(struct dma_chan *chan);
b36f09c3 939 void (*device_synchronize)(struct dma_chan *chan);
dc0ee643 940
07934481
LW
941 enum dma_status (*device_tx_status)(struct dma_chan *chan,
942 dma_cookie_t cookie,
943 struct dma_tx_state *txstate);
7405f74b 944 void (*device_issue_pending)(struct dma_chan *chan);
8ad342a8 945 void (*device_release)(struct dma_device *dev);
e937cc1d
PU
946 /* debugfs support */
947#ifdef CONFIG_DEBUG_FS
948 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
26cf132d 949 struct dentry *dbg_dev_root;
e937cc1d 950#endif
c13c8260
CL
951};
952
6e3ecaf0
SH
953static inline int dmaengine_slave_config(struct dma_chan *chan,
954 struct dma_slave_config *config)
955{
94a73e30
MR
956 if (chan->device->device_config)
957 return chan->device->device_config(chan, config);
958
2c44ad91 959 return -ENOSYS;
6e3ecaf0
SH
960}
961
61cc13a5
AS
962static inline bool is_slave_direction(enum dma_transfer_direction direction)
963{
964 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
965}
966
90b44f8f 967static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 968 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 969 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
970{
971 struct scatterlist sg;
922ee08b
KM
972 sg_init_table(&sg, 1);
973 sg_dma_address(&sg) = buf;
974 sg_dma_len(&sg) = len;
90b44f8f 975
757d12e5
VK
976 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
977 return NULL;
978
185ecb5f
AB
979 return chan->device->device_prep_slave_sg(chan, &sg, 1,
980 dir, flags, NULL);
90b44f8f
VK
981}
982
16052827
AB
983static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
984 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
985 enum dma_transfer_direction dir, unsigned long flags)
986{
757d12e5
VK
987 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
988 return NULL;
989
16052827 990 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 991 dir, flags, NULL);
16052827
AB
992}
993
e42d98eb
AB
994#ifdef CONFIG_RAPIDIO_DMA_ENGINE
995struct rio_dma_ext;
996static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
997 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
998 enum dma_transfer_direction dir, unsigned long flags,
999 struct rio_dma_ext *rio_ext)
1000{
757d12e5
VK
1001 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1002 return NULL;
1003
e42d98eb
AB
1004 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1005 dir, flags, rio_ext);
1006}
1007#endif
1008
16052827
AB
1009static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1010 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
1011 size_t period_len, enum dma_transfer_direction dir,
1012 unsigned long flags)
16052827 1013{
757d12e5
VK
1014 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1015 return NULL;
1016
16052827 1017 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 1018 period_len, dir, flags);
a14acb4a
BS
1019}
1020
1021static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1022 struct dma_chan *chan, struct dma_interleaved_template *xt,
1023 unsigned long flags)
1024{
757d12e5
VK
1025 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1026 return NULL;
9c8ebd8b
LP
1027 if (flags & DMA_PREP_REPEAT &&
1028 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1029 return NULL;
757d12e5 1030
a14acb4a 1031 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
1032}
1033
4983a501
MR
1034static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1035 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1036 unsigned long flags)
1037{
757d12e5 1038 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
4983a501
MR
1039 return NULL;
1040
1041 return chan->device->device_prep_dma_memset(chan, dest, value,
1042 len, flags);
1043}
1044
77d65d6f
BB
1045static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1046 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1047 size_t len, unsigned long flags)
1048{
1049 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1050 return NULL;
1051
1052 return chan->device->device_prep_dma_memcpy(chan, dest, src,
1053 len, flags);
1054}
1055
4db8fd32
PU
1056static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1057 enum dma_desc_metadata_mode mode)
1058{
1059 if (!chan)
1060 return false;
1061
1062 return !!(chan->device->desc_metadata_modes & mode);
1063}
1064
1065#ifdef CONFIG_DMA_ENGINE
1066int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1067 void *data, size_t len);
1068void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1069 size_t *payload_len, size_t *max_len);
1070int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1071 size_t payload_len);
1072#else /* CONFIG_DMA_ENGINE */
1073static inline int dmaengine_desc_attach_metadata(
1074 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1075{
1076 return -EINVAL;
1077}
1078static inline void *dmaengine_desc_get_metadata_ptr(
1079 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1080 size_t *max_len)
1081{
1082 return NULL;
1083}
1084static inline int dmaengine_desc_set_metadata_len(
1085 struct dma_async_tx_descriptor *desc, size_t payload_len)
1086{
1087 return -EINVAL;
1088}
1089#endif /* CONFIG_DMA_ENGINE */
1090
b36f09c3
LPC
1091/**
1092 * dmaengine_terminate_all() - Terminate all active DMA transfers
1093 * @chan: The channel for which to terminate the transfers
1094 *
1095 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1096 * dmaengine_terminate_async() instead.
1097 */
6e3ecaf0
SH
1098static inline int dmaengine_terminate_all(struct dma_chan *chan)
1099{
7fa0cf46
MR
1100 if (chan->device->device_terminate_all)
1101 return chan->device->device_terminate_all(chan);
1102
2c44ad91 1103 return -ENOSYS;
6e3ecaf0
SH
1104}
1105
b36f09c3
LPC
1106/**
1107 * dmaengine_terminate_async() - Terminate all active DMA transfers
1108 * @chan: The channel for which to terminate the transfers
1109 *
1110 * Calling this function will terminate all active and pending descriptors
1111 * that have previously been submitted to the channel. It is not guaranteed
1112 * though that the transfer for the active descriptor has stopped when the
1113 * function returns. Furthermore it is possible the complete callback of a
1114 * submitted transfer is still running when this function returns.
1115 *
1116 * dmaengine_synchronize() needs to be called before it is safe to free
1117 * any memory that is accessed by previously submitted descriptors or before
1118 * freeing any resources accessed from within the completion callback of any
20d60f63 1119 * previously submitted descriptors.
b36f09c3
LPC
1120 *
1121 * This function can be called from atomic context as well as from within a
1122 * complete callback of a descriptor submitted on the same channel.
1123 *
1124 * If none of the two conditions above apply consider using
1125 * dmaengine_terminate_sync() instead.
1126 */
1127static inline int dmaengine_terminate_async(struct dma_chan *chan)
1128{
1129 if (chan->device->device_terminate_all)
1130 return chan->device->device_terminate_all(chan);
1131
1132 return -EINVAL;
1133}
1134
1135/**
1136 * dmaengine_synchronize() - Synchronize DMA channel termination
1137 * @chan: The channel to synchronize
1138 *
1139 * Synchronizes to the DMA channel termination to the current context. When this
1140 * function returns it is guaranteed that all transfers for previously issued
20d60f63 1141 * descriptors have stopped and it is safe to free the memory associated
b36f09c3
LPC
1142 * with them. Furthermore it is guaranteed that all complete callback functions
1143 * for a previously submitted descriptor have finished running and it is safe to
1144 * free resources accessed from within the complete callbacks.
1145 *
1146 * The behavior of this function is undefined if dma_async_issue_pending() has
1147 * been called between dmaengine_terminate_async() and this function.
1148 *
1149 * This function must only be called from non-atomic context and must not be
1150 * called from within a complete callback of a descriptor submitted on the same
1151 * channel.
1152 */
1153static inline void dmaengine_synchronize(struct dma_chan *chan)
1154{
b1d6ab1a
LPC
1155 might_sleep();
1156
b36f09c3
LPC
1157 if (chan->device->device_synchronize)
1158 chan->device->device_synchronize(chan);
1159}
1160
1161/**
1162 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1163 * @chan: The channel for which to terminate the transfers
1164 *
1165 * Calling this function will terminate all active and pending transfers
1166 * that have previously been submitted to the channel. It is similar to
1167 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1168 * stopped and that all complete callbacks have finished running when the
1169 * function returns.
1170 *
1171 * This function must only be called from non-atomic context and must not be
1172 * called from within a complete callback of a descriptor submitted on the same
1173 * channel.
1174 */
1175static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1176{
1177 int ret;
1178
1179 ret = dmaengine_terminate_async(chan);
1180 if (ret)
1181 return ret;
1182
1183 dmaengine_synchronize(chan);
1184
1185 return 0;
1186}
1187
6e3ecaf0
SH
1188static inline int dmaengine_pause(struct dma_chan *chan)
1189{
23a3ea2f
MR
1190 if (chan->device->device_pause)
1191 return chan->device->device_pause(chan);
1192
2c44ad91 1193 return -ENOSYS;
6e3ecaf0
SH
1194}
1195
1196static inline int dmaengine_resume(struct dma_chan *chan)
1197{
23a3ea2f
MR
1198 if (chan->device->device_resume)
1199 return chan->device->device_resume(chan);
1200
2c44ad91 1201 return -ENOSYS;
6e3ecaf0
SH
1202}
1203
3052cc2c
LPC
1204static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1205 dma_cookie_t cookie, struct dma_tx_state *state)
1206{
1207 return chan->device->device_tx_status(chan, cookie, state);
1208}
1209
98d530fe 1210static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
1211{
1212 return desc->tx_submit(desc);
1213}
1214
77a68e56
MR
1215static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1216 size_t off1, size_t off2, size_t len)
83544ae9 1217{
88ac039c 1218 return !(((1 << align) - 1) & (off1 | off2 | len));
83544ae9
DW
1219}
1220
1221static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1222 size_t off2, size_t len)
1223{
1224 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1225}
1226
1227static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1228 size_t off2, size_t len)
1229{
1230 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1231}
1232
1233static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1234 size_t off2, size_t len)
1235{
1236 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1237}
1238
4983a501
MR
1239static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1240 size_t off2, size_t len)
1241{
1242 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1243}
1244
b2f46fd8
DW
1245static inline void
1246dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1247{
1248 dma->max_pq = maxpq;
1249 if (has_pq_continue)
1250 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1251}
1252
1253static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1254{
1255 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1256}
1257
1258static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1259{
1260 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1261
1262 return (flags & mask) == mask;
1263}
1264
1265static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1266{
1267 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1268}
1269
d3f3cf85 1270static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
1271{
1272 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1273}
1274
1275/* dma_maxpq - reduce maxpq in the face of continued operations
1276 * @dma - dma device with PQ capability
1277 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1278 *
1279 * When an engine does not support native continuation we need 3 extra
1280 * source slots to reuse P and Q with the following coefficients:
1281 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1282 * 2/ {01} * Q : use Q to continue Q' calculation
1283 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1284 *
1285 * In the case where P is disabled we only need 1 extra source:
1286 * 1/ {01} * Q : use Q to continue Q' calculation
1287 */
1288static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1289{
1290 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1291 return dma_dev_to_maxpq(dma);
5f77dd85 1292 if (dmaf_p_disabled_continue(flags))
b2f46fd8 1293 return dma_dev_to_maxpq(dma) - 1;
5f77dd85 1294 if (dmaf_continue(flags))
b2f46fd8
DW
1295 return dma_dev_to_maxpq(dma) - 3;
1296 BUG();
1297}
1298
87d001ef
MR
1299static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1300 size_t dir_icg)
1301{
1302 if (inc) {
1303 if (dir_icg)
1304 return dir_icg;
5f77dd85 1305 if (sgl)
87d001ef
MR
1306 return icg;
1307 }
1308
1309 return 0;
1310}
1311
1312static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1313 struct data_chunk *chunk)
1314{
1315 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1316 chunk->icg, chunk->dst_icg);
1317}
1318
1319static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1320 struct data_chunk *chunk)
1321{
1322 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1323 chunk->icg, chunk->src_icg);
1324}
1325
c13c8260
CL
1326/* --- public DMA engine API --- */
1327
649274d9 1328#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
1329void dmaengine_get(void);
1330void dmaengine_put(void);
649274d9
DW
1331#else
1332static inline void dmaengine_get(void)
1333{
1334}
1335static inline void dmaengine_put(void)
1336{
1337}
1338#endif
1339
729b5d1b
DW
1340#ifdef CONFIG_ASYNC_TX_DMA
1341#define async_dmaengine_get() dmaengine_get()
1342#define async_dmaengine_put() dmaengine_put()
5fc6d897 1343#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
1344#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1345#else
729b5d1b 1346#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 1347#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
1348#else
1349static inline void async_dmaengine_get(void)
1350{
1351}
1352static inline void async_dmaengine_put(void)
1353{
1354}
1355static inline struct dma_chan *
1356async_dma_find_channel(enum dma_transaction_type type)
1357{
1358 return NULL;
1359}
138f4c35 1360#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 1361void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 1362 struct dma_chan *chan);
c13c8260 1363
0839875e 1364static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 1365{
636bdeaa
DW
1366 tx->flags |= DMA_CTRL_ACK;
1367}
1368
ef560682
GL
1369static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1370{
1371 tx->flags &= ~DMA_CTRL_ACK;
1372}
1373
0839875e 1374static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 1375{
0839875e 1376 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
1377}
1378
7405f74b
DW
1379#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1380static inline void
1381__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 1382{
7405f74b
DW
1383 set_bit(tx_type, dstp->bits);
1384}
c13c8260 1385
0f571515
AN
1386#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1387static inline void
1388__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1389{
1390 clear_bit(tx_type, dstp->bits);
1391}
1392
33df8ca0
DW
1393#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1394static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1395{
1396 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1397}
1398
7405f74b
DW
1399#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1400static inline int
1401__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1402{
1403 return test_bit(tx_type, srcp->bits);
c13c8260
CL
1404}
1405
7405f74b 1406#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 1407 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 1408
c13c8260 1409/**
7405f74b 1410 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 1411 * @chan: target DMA channel
c13c8260
CL
1412 *
1413 * This allows drivers to push copies to HW in batches,
1414 * reducing MMIO writes where possible.
1415 */
7405f74b 1416static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1417{
ec8670f1 1418 chan->device->device_issue_pending(chan);
c13c8260
CL
1419}
1420
1421/**
7405f74b 1422 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1423 * @chan: DMA channel
1424 * @cookie: transaction identifier to check status of
1425 * @last: returns last completed cookie, can be NULL
1426 * @used: returns last issued cookie, can be NULL
1427 *
1428 * If @last and @used are passed in, upon return they reflect the driver
1429 * internal state and can be used with dma_async_is_complete() to check
1430 * the status of multiple cookies without re-checking hardware state.
1431 */
7405f74b 1432static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1433 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1434{
07934481
LW
1435 struct dma_tx_state state;
1436 enum dma_status status;
1437
1438 status = chan->device->device_tx_status(chan, cookie, &state);
1439 if (last)
1440 *last = state.last;
1441 if (used)
1442 *used = state.used;
1443 return status;
c13c8260
CL
1444}
1445
1446/**
1447 * dma_async_is_complete - test a cookie against chan state
1448 * @cookie: transaction identifier to test status of
1449 * @last_complete: last know completed transaction
1450 * @last_used: last cookie value handed out
1451 *
e239345f 1452 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1453 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1454 */
1455static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1456 dma_cookie_t last_complete, dma_cookie_t last_used)
1457{
1458 if (last_complete <= last_used) {
1459 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1460 return DMA_COMPLETE;
c13c8260
CL
1461 } else {
1462 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1463 return DMA_COMPLETE;
c13c8260
CL
1464 }
1465 return DMA_IN_PROGRESS;
1466}
1467
bca34692
DW
1468static inline void
1469dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1470{
3a92063b
AS
1471 if (!st)
1472 return;
1473
1474 st->last = last;
1475 st->used = used;
1476 st->residue = residue;
bca34692
DW
1477}
1478
07f2211e 1479#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1480struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1481enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1482enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1483void dma_issue_pending_all(void);
a53e28da 1484struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
f5151311
BW
1485 dma_filter_fn fn, void *fn_param,
1486 struct device_node *np);
a8135d0d
PU
1487
1488struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1489struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1490
8f33d527 1491void dma_release_channel(struct dma_chan *chan);
fdb8df99 1492int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
07f2211e 1493#else
4a43f394
JM
1494static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1495{
1496 return NULL;
1497}
1498static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1499{
adfedd9a 1500 return DMA_COMPLETE;
4a43f394 1501}
07f2211e
DW
1502static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1503{
adfedd9a 1504 return DMA_COMPLETE;
07f2211e 1505}
c50331e8
DW
1506static inline void dma_issue_pending_all(void)
1507{
8f33d527 1508}
a53e28da 1509static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
f5151311
BW
1510 dma_filter_fn fn,
1511 void *fn_param,
1512 struct device_node *np)
8f33d527
GL
1513{
1514 return NULL;
1515}
a8135d0d
PU
1516static inline struct dma_chan *dma_request_chan(struct device *dev,
1517 const char *name)
1518{
1519 return ERR_PTR(-ENODEV);
1520}
1521static inline struct dma_chan *dma_request_chan_by_mask(
1522 const dma_cap_mask_t *mask)
1523{
1524 return ERR_PTR(-ENODEV);
1525}
8f33d527
GL
1526static inline void dma_release_channel(struct dma_chan *chan)
1527{
c50331e8 1528}
fdb8df99
LP
1529static inline int dma_get_slave_caps(struct dma_chan *chan,
1530 struct dma_slave_caps *caps)
1531{
1532 return -ENXIO;
1533}
07f2211e 1534#endif
c13c8260 1535
27242021
VK
1536static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1537{
1538 struct dma_slave_caps caps;
53a256a9 1539 int ret;
27242021 1540
53a256a9
LW
1541 ret = dma_get_slave_caps(tx->chan, &caps);
1542 if (ret)
1543 return ret;
27242021 1544
3a92063b 1545 if (!caps.descriptor_reuse)
27242021 1546 return -EPERM;
3a92063b
AS
1547
1548 tx->flags |= DMA_CTRL_REUSE;
1549 return 0;
27242021
VK
1550}
1551
1552static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1553{
1554 tx->flags &= ~DMA_CTRL_REUSE;
1555}
1556
1557static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1558{
1559 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1560}
1561
1562static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1563{
1564 /* this is supported for reusable desc, so check that */
3a92063b 1565 if (!dmaengine_desc_test_reuse(desc))
27242021 1566 return -EPERM;
3a92063b
AS
1567
1568 return desc->desc_free(desc);
27242021
VK
1569}
1570
c13c8260
CL
1571/* --- DMA device --- */
1572
1573int dma_async_device_register(struct dma_device *device);
f39b948d 1574int dmaenginem_async_device_register(struct dma_device *device);
c13c8260 1575void dma_async_device_unregister(struct dma_device *device);
e81274cd
DJ
1576int dma_async_device_channel_register(struct dma_device *device,
1577 struct dma_chan *chan);
1578void dma_async_device_channel_unregister(struct dma_device *device,
1579 struct dma_chan *chan);
07f2211e 1580void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
f5151311
BW
1581#define dma_request_channel(mask, x, y) \
1582 __dma_request_channel(&(mask), x, y, NULL)
864ef69b 1583
7547dbd3
PU
1584/* Deprecated, please use dma_request_chan() directly */
1585static inline struct dma_chan * __deprecated
1586dma_request_slave_channel(struct device *dev, const char *name)
1587{
1588 struct dma_chan *ch = dma_request_chan(dev, name);
1589
1590 return IS_ERR(ch) ? NULL : ch;
1591}
1592
864ef69b 1593static inline struct dma_chan
71ca5b78 1594*dma_request_slave_channel_compat(const dma_cap_mask_t mask,
a53e28da 1595 dma_filter_fn fn, void *fn_param,
1dc04288 1596 struct device *dev, const char *name)
864ef69b
MP
1597{
1598 struct dma_chan *chan;
1599
1600 chan = dma_request_slave_channel(dev, name);
1601 if (chan)
1602 return chan;
1603
7dfffb95
GU
1604 if (!fn || !fn_param)
1605 return NULL;
1606
71ca5b78 1607 return __dma_request_channel(&mask, fn, fn_param, NULL);
864ef69b 1608}
816ebf48
PU
1609
1610static inline char *
1611dmaengine_get_direction_text(enum dma_transfer_direction dir)
1612{
1613 switch (dir) {
1614 case DMA_DEV_TO_MEM:
1615 return "DEV_TO_MEM";
1616 case DMA_MEM_TO_DEV:
1617 return "MEM_TO_DEV";
1618 case DMA_MEM_TO_MEM:
1619 return "MEM_TO_MEM";
1620 case DMA_DEV_TO_DEV:
1621 return "DEV_TO_DEV";
1622 default:
1873300a 1623 return "invalid";
816ebf48 1624 }
864ef69b 1625}
ab650ef6
PU
1626
1627static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1628{
1629 if (chan->dev->chan_dma_dev)
1630 return &chan->dev->device;
1631
1632 return chan->device->dev;
1633}
1634
c13c8260 1635#endif /* DMAENGINE_H */