]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/dmaengine.h
crypto: ux500: Use dmaengine_terminate_all API
[mirror_ubuntu-bionic-kernel.git] / include / linux / dmaengine.h
CommitLineData
c13c8260
CL
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
d2ebfb33
RKAL
21#ifndef LINUX_DMAENGINE_H
22#define LINUX_DMAENGINE_H
1c0f16e5 23
c13c8260 24#include <linux/device.h>
0ad7c000 25#include <linux/err.h>
c13c8260 26#include <linux/uio.h>
187f1882 27#include <linux/bug.h>
90b44f8f 28#include <linux/scatterlist.h>
a8efa9d6 29#include <linux/bitmap.h>
dcc043dc 30#include <linux/types.h>
a8efa9d6 31#include <asm/page.h>
b7f080cf 32
c13c8260 33/**
fe4ada2d 34 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
35 *
36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 */
38typedef s32 dma_cookie_t;
76bd061f 39#define DMA_MIN_COOKIE 1
c13c8260 40
71ea1483
DC
41static inline int dma_submit_error(dma_cookie_t cookie)
42{
43 return cookie < 0 ? cookie : 0;
44}
c13c8260
CL
45
46/**
47 * enum dma_status - DMA transaction status
adfedd9a 48 * @DMA_COMPLETE: transaction completed
c13c8260 49 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 50 * @DMA_PAUSED: transaction is paused
c13c8260
CL
51 * @DMA_ERROR: transaction failed
52 */
53enum dma_status {
7db5f727 54 DMA_COMPLETE,
c13c8260 55 DMA_IN_PROGRESS,
07934481 56 DMA_PAUSED,
c13c8260
CL
57 DMA_ERROR,
58};
59
7405f74b
DW
60/**
61 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
62 *
63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
64 * automatically set as dma devices are registered.
7405f74b
DW
65 */
66enum dma_transaction_type {
67 DMA_MEMCPY,
68 DMA_XOR,
b2f46fd8 69 DMA_PQ,
099f53cb
DW
70 DMA_XOR_VAL,
71 DMA_PQ_VAL,
7405f74b 72 DMA_INTERRUPT,
a86ee03c 73 DMA_SG,
59b5ec21 74 DMA_PRIVATE,
138f4c35 75 DMA_ASYNC_TX,
dc0ee643 76 DMA_SLAVE,
782bc950 77 DMA_CYCLIC,
b14dab79 78 DMA_INTERLEAVE,
7405f74b 79/* last transaction type for creation of the capabilities mask */
b14dab79
JB
80 DMA_TX_TYPE_END,
81};
dc0ee643 82
49920bc6
VK
83/**
84 * enum dma_transfer_direction - dma transfer mode and direction indicator
85 * @DMA_MEM_TO_MEM: Async/Memcpy mode
86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
89 */
90enum dma_transfer_direction {
91 DMA_MEM_TO_MEM,
92 DMA_MEM_TO_DEV,
93 DMA_DEV_TO_MEM,
94 DMA_DEV_TO_DEV,
62268ce9 95 DMA_TRANS_NONE,
49920bc6 96};
7405f74b 97
b14dab79
JB
98/**
99 * Interleaved Transfer Request
100 * ----------------------------
101 * A chunk is collection of contiguous bytes to be transfered.
102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
103 * ICGs may or maynot change between chunks.
104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
105 * that when repeated an integral number of times, specifies the transfer.
106 * A transfer template is specification of a Frame, the number of times
107 * it is to be repeated and other per-transfer attributes.
108 *
109 * Practically, a client driver would have ready a template for each
110 * type of transfer it is going to need during its lifetime and
111 * set only 'src_start' and 'dst_start' before submitting the requests.
112 *
113 *
114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
116 *
117 * == Chunk size
118 * ... ICG
119 */
120
121/**
122 * struct data_chunk - Element of scatter-gather list that makes a frame.
123 * @size: Number of bytes to read from source.
124 * size_dst := fn(op, size_src), so doesn't mean much for destination.
125 * @icg: Number of bytes to jump after last src/dst address of this
126 * chunk and before first src/dst address for next chunk.
127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
129 */
130struct data_chunk {
131 size_t size;
132 size_t icg;
133};
134
135/**
136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
137 * and attributes.
138 * @src_start: Bus address of source for the first chunk.
139 * @dst_start: Bus address of destination for the first chunk.
140 * @dir: Specifies the type of Source and Destination.
141 * @src_inc: If the source address increments after reading from it.
142 * @dst_inc: If the destination address increments after writing to it.
143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
144 * Otherwise, source is read contiguously (icg ignored).
145 * Ignored if src_inc is false.
146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
147 * Otherwise, destination is filled contiguously (icg ignored).
148 * Ignored if dst_inc is false.
149 * @numf: Number of frames in this template.
150 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
151 * @sgl: Array of {chunk,icg} pairs that make up a frame.
152 */
153struct dma_interleaved_template {
154 dma_addr_t src_start;
155 dma_addr_t dst_start;
156 enum dma_transfer_direction dir;
157 bool src_inc;
158 bool dst_inc;
159 bool src_sgl;
160 bool dst_sgl;
161 size_t numf;
162 size_t frame_size;
163 struct data_chunk sgl[0];
164};
165
d4c56f97 166/**
636bdeaa 167 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 168 * control completion, and communicate status.
d4c56f97 169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 170 * this transaction
a88f6667 171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
b2f46fd8
DW
172 * acknowledges receipt, i.e. has has a chance to establish any dependency
173 * chains
b2f46fd8
DW
174 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
175 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
176 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
177 * sources that were the result of a previous operation, in the case of a PQ
178 * operation it continues the calculation with new sources
0403e382
DW
179 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
180 * on the result of this operation
d4c56f97 181 */
636bdeaa 182enum dma_ctrl_flags {
d4c56f97 183 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 184 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
185 DMA_PREP_PQ_DISABLE_P = (1 << 2),
186 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
187 DMA_PREP_CONTINUE = (1 << 4),
188 DMA_PREP_FENCE = (1 << 5),
d4c56f97
DW
189};
190
c3635c78
LW
191/**
192 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
193 * on a running channel.
194 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
195 * @DMA_PAUSE: pause ongoing transfers
196 * @DMA_RESUME: resume paused transfer
c156d0a5
LW
197 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
198 * that need to runtime reconfigure the slave channels (as opposed to passing
199 * configuration data in statically from the platform). An additional
200 * argument of struct dma_slave_config must be passed in with this
201 * command.
c3635c78
LW
202 */
203enum dma_ctrl_cmd {
204 DMA_TERMINATE_ALL,
205 DMA_PAUSE,
206 DMA_RESUME,
c156d0a5 207 DMA_SLAVE_CONFIG,
c3635c78
LW
208};
209
ad283ea4
DW
210/**
211 * enum sum_check_bits - bit position of pq_check_flags
212 */
213enum sum_check_bits {
214 SUM_CHECK_P = 0,
215 SUM_CHECK_Q = 1,
216};
217
218/**
219 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
220 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
221 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
222 */
223enum sum_check_flags {
224 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
225 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
226};
227
228
7405f74b
DW
229/**
230 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
231 * See linux/cpumask.h
232 */
233typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
234
c13c8260
CL
235/**
236 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
c13c8260
CL
237 * @memcpy_count: transaction counter
238 * @bytes_transferred: byte counter
239 */
240
241struct dma_chan_percpu {
c13c8260
CL
242 /* stats */
243 unsigned long memcpy_count;
244 unsigned long bytes_transferred;
245};
246
247/**
248 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 249 * @device: ptr to the dma device who supplies this channel, always !%NULL
c13c8260 250 * @cookie: last cookie value returned to client
4d4e58de 251 * @completed_cookie: last completed cookie for this channel
fe4ada2d 252 * @chan_id: channel ID for sysfs
41d5e59c 253 * @dev: class device for sysfs
c13c8260
CL
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 256 * @client_count: how many clients are using this channel
bec08513 257 * @table_count: number of appearances in the mem-to-mem allocation table
287d8592 258 * @private: private data for certain client-channel associations
c13c8260
CL
259 */
260struct dma_chan {
c13c8260
CL
261 struct dma_device *device;
262 dma_cookie_t cookie;
4d4e58de 263 dma_cookie_t completed_cookie;
c13c8260
CL
264
265 /* sysfs */
266 int chan_id;
41d5e59c 267 struct dma_chan_dev *dev;
c13c8260 268
c13c8260 269 struct list_head device_node;
a29d8b8e 270 struct dma_chan_percpu __percpu *local;
7cc5bf9a 271 int client_count;
bec08513 272 int table_count;
287d8592 273 void *private;
c13c8260
CL
274};
275
41d5e59c
DW
276/**
277 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
278 * @chan: driver channel device
279 * @device: sysfs device
280 * @dev_id: parent dma_device dev_id
281 * @idr_ref: reference count to gate release of dma_device dev_id
41d5e59c
DW
282 */
283struct dma_chan_dev {
284 struct dma_chan *chan;
285 struct device device;
864498aa
DW
286 int dev_id;
287 atomic_t *idr_ref;
41d5e59c
DW
288};
289
c156d0a5 290/**
ba730340 291 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
292 * device, source or target buses
293 */
294enum dma_slave_buswidth {
295 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
296 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
297 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 298 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
299 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
300 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
301};
302
303/**
304 * struct dma_slave_config - dma slave channel runtime config
305 * @direction: whether the data shall go in or out on this slave
397321f4 306 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
307 * legal values. DEPRECATED, drivers should use the direction argument
308 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
309 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
310 * @src_addr: this is the physical address where DMA slave data
311 * should be read (RX), if the source is memory this argument is
312 * ignored.
313 * @dst_addr: this is the physical address where DMA slave data
314 * should be written (TX), if the source is memory this argument
315 * is ignored.
316 * @src_addr_width: this is the width in bytes of the source (RX)
317 * register where DMA data shall be read. If the source
318 * is memory this may be ignored depending on architecture.
319 * Legal values: 1, 2, 4, 8.
320 * @dst_addr_width: same as src_addr_width but for destination
321 * target (TX) mutatis mutandis.
322 * @src_maxburst: the maximum number of words (note: words, as in
323 * units of the src_addr_width member, not bytes) that can be sent
324 * in one burst to the device. Typically something like half the
325 * FIFO depth on I/O peripherals so you don't overflow it. This
326 * may or may not be applicable on memory sources.
327 * @dst_maxburst: same as src_maxburst but for destination target
328 * mutatis mutandis.
dcc043dc
VK
329 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
330 * with 'true' if peripheral should be flow controller. Direction will be
331 * selected at Runtime.
4fd1e324
LD
332 * @slave_id: Slave requester id. Only valid for slave channels. The dma
333 * slave peripheral will have unique id as dma requester which need to be
334 * pass as slave config.
c156d0a5
LW
335 *
336 * This struct is passed in as configuration data to a DMA engine
337 * in order to set up a certain channel for DMA transport at runtime.
338 * The DMA device/engine has to provide support for an additional
339 * command in the channel config interface, DMA_SLAVE_CONFIG
340 * and this struct will then be passed in as an argument to the
341 * DMA engine device_control() function.
342 *
7cbccb55
LPC
343 * The rationale for adding configuration information to this struct is as
344 * follows: if it is likely that more than one DMA slave controllers in
345 * the world will support the configuration option, then make it generic.
346 * If not: if it is fixed so that it be sent in static from the platform
347 * data, then prefer to do that.
c156d0a5
LW
348 */
349struct dma_slave_config {
49920bc6 350 enum dma_transfer_direction direction;
c156d0a5
LW
351 dma_addr_t src_addr;
352 dma_addr_t dst_addr;
353 enum dma_slave_buswidth src_addr_width;
354 enum dma_slave_buswidth dst_addr_width;
355 u32 src_maxburst;
356 u32 dst_maxburst;
dcc043dc 357 bool device_fc;
4fd1e324 358 unsigned int slave_id;
c156d0a5
LW
359};
360
50720563
LPC
361/**
362 * enum dma_residue_granularity - Granularity of the reported transfer residue
363 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
364 * DMA channel is only able to tell whether a descriptor has been completed or
365 * not, which means residue reporting is not supported by this channel. The
366 * residue field of the dma_tx_state field will always be 0.
367 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
368 * completed segment of the transfer (For cyclic transfers this is after each
369 * period). This is typically implemented by having the hardware generate an
370 * interrupt after each transferred segment and then the drivers updates the
371 * outstanding residue by the size of the segment. Another possibility is if
372 * the hardware supports scatter-gather and the segment descriptor has a field
373 * which gets set after the segment has been completed. The driver then counts
374 * the number of segments without the flag set to compute the residue.
375 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
376 * burst. This is typically only supported if the hardware has a progress
377 * register of some sort (E.g. a register with the current read/write address
378 * or a register with the amount of bursts/beats/bytes that have been
379 * transferred or still need to be transferred).
380 */
381enum dma_residue_granularity {
382 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
383 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
384 DMA_RESIDUE_GRANULARITY_BURST = 2,
385};
386
221a27c7
VK
387/* struct dma_slave_caps - expose capabilities of a slave channel only
388 *
389 * @src_addr_widths: bit mask of src addr widths the channel supports
390 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
391 * @directions: bit mask of slave direction the channel supported
392 * since the enum dma_transfer_direction is not defined as bits for each
393 * type of direction, the dma controller should fill (1 << <TYPE>) and same
394 * should be checked by controller as well
395 * @cmd_pause: true, if pause and thereby resume is supported
396 * @cmd_terminate: true, if terminate cmd is supported
50720563 397 * @residue_granularity: granularity of the reported transfer residue
221a27c7
VK
398 */
399struct dma_slave_caps {
400 u32 src_addr_widths;
401 u32 dstn_addr_widths;
402 u32 directions;
403 bool cmd_pause;
404 bool cmd_terminate;
50720563 405 enum dma_residue_granularity residue_granularity;
221a27c7
VK
406};
407
41d5e59c
DW
408static inline const char *dma_chan_name(struct dma_chan *chan)
409{
410 return dev_name(&chan->dev->device);
411}
d379b01e 412
c13c8260
CL
413void dma_chan_cleanup(struct kref *kref);
414
59b5ec21
DW
415/**
416 * typedef dma_filter_fn - callback filter for dma_request_channel
417 * @chan: channel to be reviewed
418 * @filter_param: opaque parameter passed through dma_request_channel
419 *
420 * When this optional parameter is specified in a call to dma_request_channel a
421 * suitable channel is passed to this routine for further dispositioning before
422 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
423 * satisfies the given capability mask. It returns 'true' to indicate that the
424 * channel is suitable.
59b5ec21 425 */
7dd60251 426typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 427
7405f74b 428typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62
DW
429
430struct dmaengine_unmap_data {
c1f43dd9 431 u8 map_cnt;
d38a8c62
DW
432 u8 to_cnt;
433 u8 from_cnt;
434 u8 bidi_cnt;
435 struct device *dev;
436 struct kref kref;
437 size_t len;
438 dma_addr_t addr[0];
439};
440
7405f74b
DW
441/**
442 * struct dma_async_tx_descriptor - async transaction descriptor
443 * ---dma generic offload fields---
444 * @cookie: tracking cookie for this transaction, set to -EBUSY if
445 * this tx is sitting on a dependency list
636bdeaa
DW
446 * @flags: flags to augment operation preparation, control completion, and
447 * communicate status
7405f74b 448 * @phys: physical address of the descriptor
7405f74b 449 * @chan: target channel for this operation
aba96bad
VK
450 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
451 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
452 * @callback: routine to call after this operation is complete
453 * @callback_param: general parameter to pass to the callback routine
454 * ---async_tx api specific fields---
19242d72 455 * @next: at completion submit this descriptor
7405f74b 456 * @parent: pointer to the next level up in the dependency chain
19242d72 457 * @lock: protect the parent and next pointers
7405f74b
DW
458 */
459struct dma_async_tx_descriptor {
460 dma_cookie_t cookie;
636bdeaa 461 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 462 dma_addr_t phys;
7405f74b
DW
463 struct dma_chan *chan;
464 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
7405f74b
DW
465 dma_async_tx_callback callback;
466 void *callback_param;
d38a8c62 467 struct dmaengine_unmap_data *unmap;
5fc6d897 468#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 469 struct dma_async_tx_descriptor *next;
7405f74b
DW
470 struct dma_async_tx_descriptor *parent;
471 spinlock_t lock;
caa20d97 472#endif
7405f74b
DW
473};
474
89716462 475#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
476static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
477 struct dmaengine_unmap_data *unmap)
478{
479 kref_get(&unmap->kref);
480 tx->unmap = unmap;
481}
482
89716462
DW
483struct dmaengine_unmap_data *
484dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 485void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
486#else
487static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
488 struct dmaengine_unmap_data *unmap)
489{
490}
491static inline struct dmaengine_unmap_data *
492dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
493{
494 return NULL;
495}
496static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
497{
498}
499#endif
45c463ae 500
d38a8c62
DW
501static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
502{
503 if (tx->unmap) {
45c463ae 504 dmaengine_unmap_put(tx->unmap);
d38a8c62
DW
505 tx->unmap = NULL;
506 }
507}
508
5fc6d897 509#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
510static inline void txd_lock(struct dma_async_tx_descriptor *txd)
511{
512}
513static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
514{
515}
516static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
517{
518 BUG();
519}
520static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
521{
522}
523static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
524{
525}
526static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
527{
528 return NULL;
529}
530static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
531{
532 return NULL;
533}
534
535#else
536static inline void txd_lock(struct dma_async_tx_descriptor *txd)
537{
538 spin_lock_bh(&txd->lock);
539}
540static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
541{
542 spin_unlock_bh(&txd->lock);
543}
544static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
545{
546 txd->next = next;
547 next->parent = txd;
548}
549static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
550{
551 txd->parent = NULL;
552}
553static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
554{
555 txd->next = NULL;
556}
557static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
558{
559 return txd->parent;
560}
561static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
562{
563 return txd->next;
564}
565#endif
566
07934481
LW
567/**
568 * struct dma_tx_state - filled in to report the status of
569 * a transfer.
570 * @last: last completed DMA cookie
571 * @used: last issued DMA cookie (i.e. the one in progress)
572 * @residue: the remaining number of bytes left to transmit
573 * on the selected transfer for states DMA_IN_PROGRESS and
574 * DMA_PAUSED if this is implemented in the driver, else 0
575 */
576struct dma_tx_state {
577 dma_cookie_t last;
578 dma_cookie_t used;
579 u32 residue;
580};
581
c13c8260
CL
582/**
583 * struct dma_device - info on the entity supplying DMA services
584 * @chancnt: how many DMA channels are supported
0f571515 585 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
586 * @channels: the list of struct dma_chan
587 * @global_node: list_head for global dma_device_list
7405f74b
DW
588 * @cap_mask: one or more dma_capability flags
589 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 590 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
591 * @copy_align: alignment shift for memcpy operations
592 * @xor_align: alignment shift for xor operations
593 * @pq_align: alignment shift for pq operations
594 * @fill_align: alignment shift for memset operations
fe4ada2d 595 * @dev_id: unique device ID
7405f74b 596 * @dev: struct device reference for dma mapping api
fe4ada2d
RD
597 * @device_alloc_chan_resources: allocate resources and return the
598 * number of allocated descriptors
599 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
600 * @device_prep_dma_memcpy: prepares a memcpy operation
601 * @device_prep_dma_xor: prepares a xor operation
099f53cb 602 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
603 * @device_prep_dma_pq: prepares a pq operation
604 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
7405f74b 605 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 606 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
607 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
608 * The function takes a buffer of size buf_len. The callback function will
609 * be called after period_len bytes have been transferred.
b14dab79 610 * @device_prep_interleaved_dma: Transfer expression in a generic way.
c3635c78
LW
611 * @device_control: manipulate all pending operations on a channel, returns
612 * zero or error code
07934481
LW
613 * @device_tx_status: poll for transaction completion, the optional
614 * txstate parameter can be supplied with a pointer to get a
25985edc 615 * struct with auxiliary transfer status information, otherwise the call
07934481 616 * will just return a simple status code
7405f74b 617 * @device_issue_pending: push pending transactions to hardware
221a27c7 618 * @device_slave_caps: return the slave channel capabilities
c13c8260
CL
619 */
620struct dma_device {
621
622 unsigned int chancnt;
0f571515 623 unsigned int privatecnt;
c13c8260
CL
624 struct list_head channels;
625 struct list_head global_node;
7405f74b 626 dma_cap_mask_t cap_mask;
b2f46fd8
DW
627 unsigned short max_xor;
628 unsigned short max_pq;
83544ae9
DW
629 u8 copy_align;
630 u8 xor_align;
631 u8 pq_align;
632 u8 fill_align;
b2f46fd8 633 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 634
c13c8260 635 int dev_id;
7405f74b 636 struct device *dev;
c13c8260 637
aa1e6f1a 638 int (*device_alloc_chan_resources)(struct dma_chan *chan);
c13c8260 639 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
640
641 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
0036731c 642 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
d4c56f97 643 size_t len, unsigned long flags);
7405f74b 644 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
0036731c 645 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
d4c56f97 646 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 647 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 648 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 649 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
650 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
651 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
652 unsigned int src_cnt, const unsigned char *scf,
653 size_t len, unsigned long flags);
654 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
655 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
656 unsigned int src_cnt, const unsigned char *scf, size_t len,
657 enum sum_check_flags *pqres, unsigned long flags);
7405f74b 658 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 659 struct dma_chan *chan, unsigned long flags);
a86ee03c
IS
660 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
661 struct dma_chan *chan,
662 struct scatterlist *dst_sg, unsigned int dst_nents,
663 struct scatterlist *src_sg, unsigned int src_nents,
664 unsigned long flags);
7405f74b 665
dc0ee643
HS
666 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
667 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 668 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 669 unsigned long flags, void *context);
782bc950
SH
670 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
671 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 672 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 673 unsigned long flags);
b14dab79
JB
674 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
675 struct dma_chan *chan, struct dma_interleaved_template *xt,
676 unsigned long flags);
05827630
LW
677 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
678 unsigned long arg);
dc0ee643 679
07934481
LW
680 enum dma_status (*device_tx_status)(struct dma_chan *chan,
681 dma_cookie_t cookie,
682 struct dma_tx_state *txstate);
7405f74b 683 void (*device_issue_pending)(struct dma_chan *chan);
221a27c7 684 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
c13c8260
CL
685};
686
6e3ecaf0
SH
687static inline int dmaengine_device_control(struct dma_chan *chan,
688 enum dma_ctrl_cmd cmd,
689 unsigned long arg)
690{
944ea4dd
JM
691 if (chan->device->device_control)
692 return chan->device->device_control(chan, cmd, arg);
978c4172
AS
693
694 return -ENOSYS;
6e3ecaf0
SH
695}
696
697static inline int dmaengine_slave_config(struct dma_chan *chan,
698 struct dma_slave_config *config)
699{
700 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
701 (unsigned long)config);
702}
703
61cc13a5
AS
704static inline bool is_slave_direction(enum dma_transfer_direction direction)
705{
706 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
707}
708
90b44f8f 709static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 710 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 711 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
712{
713 struct scatterlist sg;
922ee08b
KM
714 sg_init_table(&sg, 1);
715 sg_dma_address(&sg) = buf;
716 sg_dma_len(&sg) = len;
90b44f8f 717
185ecb5f
AB
718 return chan->device->device_prep_slave_sg(chan, &sg, 1,
719 dir, flags, NULL);
90b44f8f
VK
720}
721
16052827
AB
722static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
723 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
724 enum dma_transfer_direction dir, unsigned long flags)
725{
726 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 727 dir, flags, NULL);
16052827
AB
728}
729
e42d98eb
AB
730#ifdef CONFIG_RAPIDIO_DMA_ENGINE
731struct rio_dma_ext;
732static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
733 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
734 enum dma_transfer_direction dir, unsigned long flags,
735 struct rio_dma_ext *rio_ext)
736{
737 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
738 dir, flags, rio_ext);
739}
740#endif
741
16052827
AB
742static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
743 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
744 size_t period_len, enum dma_transfer_direction dir,
745 unsigned long flags)
16052827
AB
746{
747 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 748 period_len, dir, flags);
a14acb4a
BS
749}
750
751static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
752 struct dma_chan *chan, struct dma_interleaved_template *xt,
753 unsigned long flags)
754{
755 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
756}
757
b65612a8
VK
758static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
759 struct dma_chan *chan,
760 struct scatterlist *dst_sg, unsigned int dst_nents,
761 struct scatterlist *src_sg, unsigned int src_nents,
762 unsigned long flags)
763{
764 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
765 src_sg, src_nents, flags);
766}
767
221a27c7
VK
768static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
769{
770 if (!chan || !caps)
771 return -EINVAL;
772
773 /* check if the channel supports slave transactions */
774 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
775 return -ENXIO;
776
777 if (chan->device->device_slave_caps)
778 return chan->device->device_slave_caps(chan, caps);
779
780 return -ENXIO;
781}
782
6e3ecaf0
SH
783static inline int dmaengine_terminate_all(struct dma_chan *chan)
784{
785 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
786}
787
788static inline int dmaengine_pause(struct dma_chan *chan)
789{
790 return dmaengine_device_control(chan, DMA_PAUSE, 0);
791}
792
793static inline int dmaengine_resume(struct dma_chan *chan)
794{
795 return dmaengine_device_control(chan, DMA_RESUME, 0);
796}
797
3052cc2c
LPC
798static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
799 dma_cookie_t cookie, struct dma_tx_state *state)
800{
801 return chan->device->device_tx_status(chan, cookie, state);
802}
803
98d530fe 804static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
805{
806 return desc->tx_submit(desc);
807}
808
83544ae9
DW
809static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
810{
811 size_t mask;
812
813 if (!align)
814 return true;
815 mask = (1 << align) - 1;
816 if (mask & (off1 | off2 | len))
817 return false;
818 return true;
819}
820
821static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
822 size_t off2, size_t len)
823{
824 return dmaengine_check_align(dev->copy_align, off1, off2, len);
825}
826
827static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
828 size_t off2, size_t len)
829{
830 return dmaengine_check_align(dev->xor_align, off1, off2, len);
831}
832
833static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
834 size_t off2, size_t len)
835{
836 return dmaengine_check_align(dev->pq_align, off1, off2, len);
837}
838
839static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
840 size_t off2, size_t len)
841{
842 return dmaengine_check_align(dev->fill_align, off1, off2, len);
843}
844
b2f46fd8
DW
845static inline void
846dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
847{
848 dma->max_pq = maxpq;
849 if (has_pq_continue)
850 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
851}
852
853static inline bool dmaf_continue(enum dma_ctrl_flags flags)
854{
855 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
856}
857
858static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
859{
860 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
861
862 return (flags & mask) == mask;
863}
864
865static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
866{
867 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
868}
869
d3f3cf85 870static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
871{
872 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
873}
874
875/* dma_maxpq - reduce maxpq in the face of continued operations
876 * @dma - dma device with PQ capability
877 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
878 *
879 * When an engine does not support native continuation we need 3 extra
880 * source slots to reuse P and Q with the following coefficients:
881 * 1/ {00} * P : remove P from Q', but use it as a source for P'
882 * 2/ {01} * Q : use Q to continue Q' calculation
883 * 3/ {00} * Q : subtract Q from P' to cancel (2)
884 *
885 * In the case where P is disabled we only need 1 extra source:
886 * 1/ {01} * Q : use Q to continue Q' calculation
887 */
888static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
889{
890 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
891 return dma_dev_to_maxpq(dma);
892 else if (dmaf_p_disabled_continue(flags))
893 return dma_dev_to_maxpq(dma) - 1;
894 else if (dmaf_continue(flags))
895 return dma_dev_to_maxpq(dma) - 3;
896 BUG();
897}
898
c13c8260
CL
899/* --- public DMA engine API --- */
900
649274d9 901#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
902void dmaengine_get(void);
903void dmaengine_put(void);
649274d9
DW
904#else
905static inline void dmaengine_get(void)
906{
907}
908static inline void dmaengine_put(void)
909{
910}
911#endif
912
729b5d1b
DW
913#ifdef CONFIG_ASYNC_TX_DMA
914#define async_dmaengine_get() dmaengine_get()
915#define async_dmaengine_put() dmaengine_put()
5fc6d897 916#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
917#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
918#else
729b5d1b 919#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 920#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
921#else
922static inline void async_dmaengine_get(void)
923{
924}
925static inline void async_dmaengine_put(void)
926{
927}
928static inline struct dma_chan *
929async_dma_find_channel(enum dma_transaction_type type)
930{
931 return NULL;
932}
138f4c35 933#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 934void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 935 struct dma_chan *chan);
c13c8260 936
0839875e 937static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 938{
636bdeaa
DW
939 tx->flags |= DMA_CTRL_ACK;
940}
941
ef560682
GL
942static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
943{
944 tx->flags &= ~DMA_CTRL_ACK;
945}
946
0839875e 947static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 948{
0839875e 949 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
950}
951
7405f74b
DW
952#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
953static inline void
954__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 955{
7405f74b
DW
956 set_bit(tx_type, dstp->bits);
957}
c13c8260 958
0f571515
AN
959#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
960static inline void
961__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
962{
963 clear_bit(tx_type, dstp->bits);
964}
965
33df8ca0
DW
966#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
967static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
968{
969 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
970}
971
7405f74b
DW
972#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
973static inline int
974__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
975{
976 return test_bit(tx_type, srcp->bits);
c13c8260
CL
977}
978
7405f74b 979#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 980 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 981
c13c8260 982/**
7405f74b 983 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 984 * @chan: target DMA channel
c13c8260
CL
985 *
986 * This allows drivers to push copies to HW in batches,
987 * reducing MMIO writes where possible.
988 */
7405f74b 989static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 990{
ec8670f1 991 chan->device->device_issue_pending(chan);
c13c8260
CL
992}
993
994/**
7405f74b 995 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
996 * @chan: DMA channel
997 * @cookie: transaction identifier to check status of
998 * @last: returns last completed cookie, can be NULL
999 * @used: returns last issued cookie, can be NULL
1000 *
1001 * If @last and @used are passed in, upon return they reflect the driver
1002 * internal state and can be used with dma_async_is_complete() to check
1003 * the status of multiple cookies without re-checking hardware state.
1004 */
7405f74b 1005static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1006 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1007{
07934481
LW
1008 struct dma_tx_state state;
1009 enum dma_status status;
1010
1011 status = chan->device->device_tx_status(chan, cookie, &state);
1012 if (last)
1013 *last = state.last;
1014 if (used)
1015 *used = state.used;
1016 return status;
c13c8260
CL
1017}
1018
1019/**
1020 * dma_async_is_complete - test a cookie against chan state
1021 * @cookie: transaction identifier to test status of
1022 * @last_complete: last know completed transaction
1023 * @last_used: last cookie value handed out
1024 *
e239345f 1025 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1026 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1027 */
1028static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1029 dma_cookie_t last_complete, dma_cookie_t last_used)
1030{
1031 if (last_complete <= last_used) {
1032 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1033 return DMA_COMPLETE;
c13c8260
CL
1034 } else {
1035 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1036 return DMA_COMPLETE;
c13c8260
CL
1037 }
1038 return DMA_IN_PROGRESS;
1039}
1040
bca34692
DW
1041static inline void
1042dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1043{
1044 if (st) {
1045 st->last = last;
1046 st->used = used;
1047 st->residue = residue;
1048 }
1049}
1050
07f2211e 1051#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1052struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1053enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1054enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1055void dma_issue_pending_all(void);
a53e28da
LPC
1056struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1057 dma_filter_fn fn, void *fn_param);
0ad7c000
SW
1058struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1059 const char *name);
bef29ec5 1060struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
8f33d527 1061void dma_release_channel(struct dma_chan *chan);
07f2211e 1062#else
4a43f394
JM
1063static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1064{
1065 return NULL;
1066}
1067static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1068{
adfedd9a 1069 return DMA_COMPLETE;
4a43f394 1070}
07f2211e
DW
1071static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1072{
adfedd9a 1073 return DMA_COMPLETE;
07f2211e 1074}
c50331e8
DW
1075static inline void dma_issue_pending_all(void)
1076{
8f33d527 1077}
a53e28da 1078static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
8f33d527
GL
1079 dma_filter_fn fn, void *fn_param)
1080{
1081 return NULL;
1082}
0ad7c000
SW
1083static inline struct dma_chan *dma_request_slave_channel_reason(
1084 struct device *dev, const char *name)
1085{
1086 return ERR_PTR(-ENODEV);
1087}
9a6cecc8 1088static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
bef29ec5 1089 const char *name)
9a6cecc8 1090{
d18d5f59 1091 return NULL;
9a6cecc8 1092}
8f33d527
GL
1093static inline void dma_release_channel(struct dma_chan *chan)
1094{
c50331e8 1095}
07f2211e 1096#endif
c13c8260
CL
1097
1098/* --- DMA device --- */
1099
1100int dma_async_device_register(struct dma_device *device);
1101void dma_async_device_unregister(struct dma_device *device);
07f2211e 1102void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
7bb587f4 1103struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
8010dad5 1104struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
a2bd1140 1105struct dma_chan *net_dma_find_channel(void);
59b5ec21 1106#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
864ef69b
MP
1107#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1108 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1109
1110static inline struct dma_chan
a53e28da
LPC
1111*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1112 dma_filter_fn fn, void *fn_param,
1113 struct device *dev, char *name)
864ef69b
MP
1114{
1115 struct dma_chan *chan;
1116
1117 chan = dma_request_slave_channel(dev, name);
1118 if (chan)
1119 return chan;
1120
1121 return __dma_request_channel(mask, fn, fn_param);
1122}
c13c8260 1123
de5506e1
CL
1124/* --- Helper iov-locking functions --- */
1125
1126struct dma_page_list {
b2ddb901 1127 char __user *base_address;
de5506e1
CL
1128 int nr_pages;
1129 struct page **pages;
1130};
1131
1132struct dma_pinned_list {
1133 int nr_iovecs;
1134 struct dma_page_list page_list[0];
1135};
1136
1137struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1138void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1139
1140dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1141 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1142dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1143 struct dma_pinned_list *pinned_list, struct page *page,
1144 unsigned int offset, size_t len);
1145
c13c8260 1146#endif /* DMAENGINE_H */