]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/dmaengine.h
dmaengine: nbpfaxi: update the driver comments
[mirror_ubuntu-bionic-kernel.git] / include / linux / dmaengine.h
CommitLineData
c13c8260
CL
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
d2ebfb33
RKAL
21#ifndef LINUX_DMAENGINE_H
22#define LINUX_DMAENGINE_H
1c0f16e5 23
c13c8260 24#include <linux/device.h>
0ad7c000 25#include <linux/err.h>
c13c8260 26#include <linux/uio.h>
187f1882 27#include <linux/bug.h>
90b44f8f 28#include <linux/scatterlist.h>
a8efa9d6 29#include <linux/bitmap.h>
dcc043dc 30#include <linux/types.h>
a8efa9d6 31#include <asm/page.h>
b7f080cf 32
c13c8260 33/**
fe4ada2d 34 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
35 *
36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 */
38typedef s32 dma_cookie_t;
76bd061f 39#define DMA_MIN_COOKIE 1
c13c8260 40
71ea1483
DC
41static inline int dma_submit_error(dma_cookie_t cookie)
42{
43 return cookie < 0 ? cookie : 0;
44}
c13c8260
CL
45
46/**
47 * enum dma_status - DMA transaction status
adfedd9a 48 * @DMA_COMPLETE: transaction completed
c13c8260 49 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 50 * @DMA_PAUSED: transaction is paused
c13c8260
CL
51 * @DMA_ERROR: transaction failed
52 */
53enum dma_status {
7db5f727 54 DMA_COMPLETE,
c13c8260 55 DMA_IN_PROGRESS,
07934481 56 DMA_PAUSED,
c13c8260
CL
57 DMA_ERROR,
58};
59
7405f74b
DW
60/**
61 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
62 *
63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
64 * automatically set as dma devices are registered.
7405f74b
DW
65 */
66enum dma_transaction_type {
67 DMA_MEMCPY,
68 DMA_XOR,
b2f46fd8 69 DMA_PQ,
099f53cb
DW
70 DMA_XOR_VAL,
71 DMA_PQ_VAL,
7405f74b 72 DMA_INTERRUPT,
a86ee03c 73 DMA_SG,
59b5ec21 74 DMA_PRIVATE,
138f4c35 75 DMA_ASYNC_TX,
dc0ee643 76 DMA_SLAVE,
782bc950 77 DMA_CYCLIC,
b14dab79 78 DMA_INTERLEAVE,
7405f74b 79/* last transaction type for creation of the capabilities mask */
b14dab79
JB
80 DMA_TX_TYPE_END,
81};
dc0ee643 82
49920bc6
VK
83/**
84 * enum dma_transfer_direction - dma transfer mode and direction indicator
85 * @DMA_MEM_TO_MEM: Async/Memcpy mode
86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
89 */
90enum dma_transfer_direction {
91 DMA_MEM_TO_MEM,
92 DMA_MEM_TO_DEV,
93 DMA_DEV_TO_MEM,
94 DMA_DEV_TO_DEV,
62268ce9 95 DMA_TRANS_NONE,
49920bc6 96};
7405f74b 97
b14dab79
JB
98/**
99 * Interleaved Transfer Request
100 * ----------------------------
101 * A chunk is collection of contiguous bytes to be transfered.
102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
103 * ICGs may or maynot change between chunks.
104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
105 * that when repeated an integral number of times, specifies the transfer.
106 * A transfer template is specification of a Frame, the number of times
107 * it is to be repeated and other per-transfer attributes.
108 *
109 * Practically, a client driver would have ready a template for each
110 * type of transfer it is going to need during its lifetime and
111 * set only 'src_start' and 'dst_start' before submitting the requests.
112 *
113 *
114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
116 *
117 * == Chunk size
118 * ... ICG
119 */
120
121/**
122 * struct data_chunk - Element of scatter-gather list that makes a frame.
123 * @size: Number of bytes to read from source.
124 * size_dst := fn(op, size_src), so doesn't mean much for destination.
125 * @icg: Number of bytes to jump after last src/dst address of this
126 * chunk and before first src/dst address for next chunk.
127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
129 */
130struct data_chunk {
131 size_t size;
132 size_t icg;
133};
134
135/**
136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
137 * and attributes.
138 * @src_start: Bus address of source for the first chunk.
139 * @dst_start: Bus address of destination for the first chunk.
140 * @dir: Specifies the type of Source and Destination.
141 * @src_inc: If the source address increments after reading from it.
142 * @dst_inc: If the destination address increments after writing to it.
143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
144 * Otherwise, source is read contiguously (icg ignored).
145 * Ignored if src_inc is false.
146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
147 * Otherwise, destination is filled contiguously (icg ignored).
148 * Ignored if dst_inc is false.
149 * @numf: Number of frames in this template.
150 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
151 * @sgl: Array of {chunk,icg} pairs that make up a frame.
152 */
153struct dma_interleaved_template {
154 dma_addr_t src_start;
155 dma_addr_t dst_start;
156 enum dma_transfer_direction dir;
157 bool src_inc;
158 bool dst_inc;
159 bool src_sgl;
160 bool dst_sgl;
161 size_t numf;
162 size_t frame_size;
163 struct data_chunk sgl[0];
164};
165
d4c56f97 166/**
636bdeaa 167 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 168 * control completion, and communicate status.
d4c56f97 169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 170 * this transaction
a88f6667 171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
b2f46fd8
DW
172 * acknowledges receipt, i.e. has has a chance to establish any dependency
173 * chains
b2f46fd8
DW
174 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
175 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
176 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
177 * sources that were the result of a previous operation, in the case of a PQ
178 * operation it continues the calculation with new sources
0403e382
DW
179 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
180 * on the result of this operation
d4c56f97 181 */
636bdeaa 182enum dma_ctrl_flags {
d4c56f97 183 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 184 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
185 DMA_PREP_PQ_DISABLE_P = (1 << 2),
186 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
187 DMA_PREP_CONTINUE = (1 << 4),
188 DMA_PREP_FENCE = (1 << 5),
d4c56f97
DW
189};
190
ad283ea4
DW
191/**
192 * enum sum_check_bits - bit position of pq_check_flags
193 */
194enum sum_check_bits {
195 SUM_CHECK_P = 0,
196 SUM_CHECK_Q = 1,
197};
198
199/**
200 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
201 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
202 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
203 */
204enum sum_check_flags {
205 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
206 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
207};
208
209
7405f74b
DW
210/**
211 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
212 * See linux/cpumask.h
213 */
214typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
215
c13c8260
CL
216/**
217 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
c13c8260
CL
218 * @memcpy_count: transaction counter
219 * @bytes_transferred: byte counter
220 */
221
222struct dma_chan_percpu {
c13c8260
CL
223 /* stats */
224 unsigned long memcpy_count;
225 unsigned long bytes_transferred;
226};
227
228/**
229 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 230 * @device: ptr to the dma device who supplies this channel, always !%NULL
c13c8260 231 * @cookie: last cookie value returned to client
4d4e58de 232 * @completed_cookie: last completed cookie for this channel
fe4ada2d 233 * @chan_id: channel ID for sysfs
41d5e59c 234 * @dev: class device for sysfs
c13c8260
CL
235 * @device_node: used to add this to the device chan list
236 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 237 * @client_count: how many clients are using this channel
bec08513 238 * @table_count: number of appearances in the mem-to-mem allocation table
287d8592 239 * @private: private data for certain client-channel associations
c13c8260
CL
240 */
241struct dma_chan {
c13c8260
CL
242 struct dma_device *device;
243 dma_cookie_t cookie;
4d4e58de 244 dma_cookie_t completed_cookie;
c13c8260
CL
245
246 /* sysfs */
247 int chan_id;
41d5e59c 248 struct dma_chan_dev *dev;
c13c8260 249
c13c8260 250 struct list_head device_node;
a29d8b8e 251 struct dma_chan_percpu __percpu *local;
7cc5bf9a 252 int client_count;
bec08513 253 int table_count;
287d8592 254 void *private;
c13c8260
CL
255};
256
41d5e59c
DW
257/**
258 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
259 * @chan: driver channel device
260 * @device: sysfs device
261 * @dev_id: parent dma_device dev_id
262 * @idr_ref: reference count to gate release of dma_device dev_id
41d5e59c
DW
263 */
264struct dma_chan_dev {
265 struct dma_chan *chan;
266 struct device device;
864498aa
DW
267 int dev_id;
268 atomic_t *idr_ref;
41d5e59c
DW
269};
270
c156d0a5 271/**
ba730340 272 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
273 * device, source or target buses
274 */
275enum dma_slave_buswidth {
276 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
277 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
278 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 279 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
280 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
281 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
282};
283
284/**
285 * struct dma_slave_config - dma slave channel runtime config
286 * @direction: whether the data shall go in or out on this slave
397321f4 287 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
288 * legal values. DEPRECATED, drivers should use the direction argument
289 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
290 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
291 * @src_addr: this is the physical address where DMA slave data
292 * should be read (RX), if the source is memory this argument is
293 * ignored.
294 * @dst_addr: this is the physical address where DMA slave data
295 * should be written (TX), if the source is memory this argument
296 * is ignored.
297 * @src_addr_width: this is the width in bytes of the source (RX)
298 * register where DMA data shall be read. If the source
299 * is memory this may be ignored depending on architecture.
300 * Legal values: 1, 2, 4, 8.
301 * @dst_addr_width: same as src_addr_width but for destination
302 * target (TX) mutatis mutandis.
303 * @src_maxburst: the maximum number of words (note: words, as in
304 * units of the src_addr_width member, not bytes) that can be sent
305 * in one burst to the device. Typically something like half the
306 * FIFO depth on I/O peripherals so you don't overflow it. This
307 * may or may not be applicable on memory sources.
308 * @dst_maxburst: same as src_maxburst but for destination target
309 * mutatis mutandis.
dcc043dc
VK
310 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
311 * with 'true' if peripheral should be flow controller. Direction will be
312 * selected at Runtime.
4fd1e324
LD
313 * @slave_id: Slave requester id. Only valid for slave channels. The dma
314 * slave peripheral will have unique id as dma requester which need to be
315 * pass as slave config.
c156d0a5
LW
316 *
317 * This struct is passed in as configuration data to a DMA engine
318 * in order to set up a certain channel for DMA transport at runtime.
319 * The DMA device/engine has to provide support for an additional
2c44ad91
MR
320 * callback in the dma_device structure, device_config and this struct
321 * will then be passed in as an argument to the function.
c156d0a5 322 *
7cbccb55
LPC
323 * The rationale for adding configuration information to this struct is as
324 * follows: if it is likely that more than one DMA slave controllers in
325 * the world will support the configuration option, then make it generic.
326 * If not: if it is fixed so that it be sent in static from the platform
327 * data, then prefer to do that.
c156d0a5
LW
328 */
329struct dma_slave_config {
49920bc6 330 enum dma_transfer_direction direction;
c156d0a5
LW
331 dma_addr_t src_addr;
332 dma_addr_t dst_addr;
333 enum dma_slave_buswidth src_addr_width;
334 enum dma_slave_buswidth dst_addr_width;
335 u32 src_maxburst;
336 u32 dst_maxburst;
dcc043dc 337 bool device_fc;
4fd1e324 338 unsigned int slave_id;
c156d0a5
LW
339};
340
50720563
LPC
341/**
342 * enum dma_residue_granularity - Granularity of the reported transfer residue
343 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
344 * DMA channel is only able to tell whether a descriptor has been completed or
345 * not, which means residue reporting is not supported by this channel. The
346 * residue field of the dma_tx_state field will always be 0.
347 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
348 * completed segment of the transfer (For cyclic transfers this is after each
349 * period). This is typically implemented by having the hardware generate an
350 * interrupt after each transferred segment and then the drivers updates the
351 * outstanding residue by the size of the segment. Another possibility is if
352 * the hardware supports scatter-gather and the segment descriptor has a field
353 * which gets set after the segment has been completed. The driver then counts
354 * the number of segments without the flag set to compute the residue.
355 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
356 * burst. This is typically only supported if the hardware has a progress
357 * register of some sort (E.g. a register with the current read/write address
358 * or a register with the amount of bursts/beats/bytes that have been
359 * transferred or still need to be transferred).
360 */
361enum dma_residue_granularity {
362 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
363 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
364 DMA_RESIDUE_GRANULARITY_BURST = 2,
365};
366
221a27c7
VK
367/* struct dma_slave_caps - expose capabilities of a slave channel only
368 *
369 * @src_addr_widths: bit mask of src addr widths the channel supports
ceacbdbf 370 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
221a27c7
VK
371 * @directions: bit mask of slave direction the channel supported
372 * since the enum dma_transfer_direction is not defined as bits for each
373 * type of direction, the dma controller should fill (1 << <TYPE>) and same
374 * should be checked by controller as well
375 * @cmd_pause: true, if pause and thereby resume is supported
376 * @cmd_terminate: true, if terminate cmd is supported
50720563 377 * @residue_granularity: granularity of the reported transfer residue
221a27c7
VK
378 */
379struct dma_slave_caps {
380 u32 src_addr_widths;
ceacbdbf 381 u32 dst_addr_widths;
221a27c7
VK
382 u32 directions;
383 bool cmd_pause;
384 bool cmd_terminate;
50720563 385 enum dma_residue_granularity residue_granularity;
221a27c7
VK
386};
387
41d5e59c
DW
388static inline const char *dma_chan_name(struct dma_chan *chan)
389{
390 return dev_name(&chan->dev->device);
391}
d379b01e 392
c13c8260
CL
393void dma_chan_cleanup(struct kref *kref);
394
59b5ec21
DW
395/**
396 * typedef dma_filter_fn - callback filter for dma_request_channel
397 * @chan: channel to be reviewed
398 * @filter_param: opaque parameter passed through dma_request_channel
399 *
400 * When this optional parameter is specified in a call to dma_request_channel a
401 * suitable channel is passed to this routine for further dispositioning before
402 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
403 * satisfies the given capability mask. It returns 'true' to indicate that the
404 * channel is suitable.
59b5ec21 405 */
7dd60251 406typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 407
7405f74b 408typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62
DW
409
410struct dmaengine_unmap_data {
c1f43dd9 411 u8 map_cnt;
d38a8c62
DW
412 u8 to_cnt;
413 u8 from_cnt;
414 u8 bidi_cnt;
415 struct device *dev;
416 struct kref kref;
417 size_t len;
418 dma_addr_t addr[0];
419};
420
7405f74b
DW
421/**
422 * struct dma_async_tx_descriptor - async transaction descriptor
423 * ---dma generic offload fields---
424 * @cookie: tracking cookie for this transaction, set to -EBUSY if
425 * this tx is sitting on a dependency list
636bdeaa
DW
426 * @flags: flags to augment operation preparation, control completion, and
427 * communicate status
7405f74b 428 * @phys: physical address of the descriptor
7405f74b 429 * @chan: target channel for this operation
aba96bad
VK
430 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
431 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
432 * @callback: routine to call after this operation is complete
433 * @callback_param: general parameter to pass to the callback routine
434 * ---async_tx api specific fields---
19242d72 435 * @next: at completion submit this descriptor
7405f74b 436 * @parent: pointer to the next level up in the dependency chain
19242d72 437 * @lock: protect the parent and next pointers
7405f74b
DW
438 */
439struct dma_async_tx_descriptor {
440 dma_cookie_t cookie;
636bdeaa 441 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 442 dma_addr_t phys;
7405f74b
DW
443 struct dma_chan *chan;
444 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
7405f74b
DW
445 dma_async_tx_callback callback;
446 void *callback_param;
d38a8c62 447 struct dmaengine_unmap_data *unmap;
5fc6d897 448#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 449 struct dma_async_tx_descriptor *next;
7405f74b
DW
450 struct dma_async_tx_descriptor *parent;
451 spinlock_t lock;
caa20d97 452#endif
7405f74b
DW
453};
454
89716462 455#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
456static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
457 struct dmaengine_unmap_data *unmap)
458{
459 kref_get(&unmap->kref);
460 tx->unmap = unmap;
461}
462
89716462
DW
463struct dmaengine_unmap_data *
464dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 465void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
466#else
467static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
468 struct dmaengine_unmap_data *unmap)
469{
470}
471static inline struct dmaengine_unmap_data *
472dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
473{
474 return NULL;
475}
476static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
477{
478}
479#endif
45c463ae 480
d38a8c62
DW
481static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
482{
483 if (tx->unmap) {
45c463ae 484 dmaengine_unmap_put(tx->unmap);
d38a8c62
DW
485 tx->unmap = NULL;
486 }
487}
488
5fc6d897 489#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
490static inline void txd_lock(struct dma_async_tx_descriptor *txd)
491{
492}
493static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
494{
495}
496static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
497{
498 BUG();
499}
500static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
501{
502}
503static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
504{
505}
506static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
507{
508 return NULL;
509}
510static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
511{
512 return NULL;
513}
514
515#else
516static inline void txd_lock(struct dma_async_tx_descriptor *txd)
517{
518 spin_lock_bh(&txd->lock);
519}
520static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
521{
522 spin_unlock_bh(&txd->lock);
523}
524static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
525{
526 txd->next = next;
527 next->parent = txd;
528}
529static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
530{
531 txd->parent = NULL;
532}
533static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
534{
535 txd->next = NULL;
536}
537static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
538{
539 return txd->parent;
540}
541static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
542{
543 return txd->next;
544}
545#endif
546
07934481
LW
547/**
548 * struct dma_tx_state - filled in to report the status of
549 * a transfer.
550 * @last: last completed DMA cookie
551 * @used: last issued DMA cookie (i.e. the one in progress)
552 * @residue: the remaining number of bytes left to transmit
553 * on the selected transfer for states DMA_IN_PROGRESS and
554 * DMA_PAUSED if this is implemented in the driver, else 0
555 */
556struct dma_tx_state {
557 dma_cookie_t last;
558 dma_cookie_t used;
559 u32 residue;
560};
561
c13c8260
CL
562/**
563 * struct dma_device - info on the entity supplying DMA services
564 * @chancnt: how many DMA channels are supported
0f571515 565 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
566 * @channels: the list of struct dma_chan
567 * @global_node: list_head for global dma_device_list
7405f74b
DW
568 * @cap_mask: one or more dma_capability flags
569 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 570 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
571 * @copy_align: alignment shift for memcpy operations
572 * @xor_align: alignment shift for xor operations
573 * @pq_align: alignment shift for pq operations
574 * @fill_align: alignment shift for memset operations
fe4ada2d 575 * @dev_id: unique device ID
7405f74b 576 * @dev: struct device reference for dma mapping api
cb8cea51
MR
577 * @src_addr_widths: bit mask of src addr widths the device supports
578 * @dst_addr_widths: bit mask of dst addr widths the device supports
579 * @directions: bit mask of slave direction the device supports since
580 * the enum dma_transfer_direction is not defined as bits for
581 * each type of direction, the dma controller should fill (1 <<
582 * <TYPE>) and same should be checked by controller as well
583 * @residue_granularity: granularity of the transfer residue reported
584 * by tx_status
fe4ada2d
RD
585 * @device_alloc_chan_resources: allocate resources and return the
586 * number of allocated descriptors
587 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
588 * @device_prep_dma_memcpy: prepares a memcpy operation
589 * @device_prep_dma_xor: prepares a xor operation
099f53cb 590 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
591 * @device_prep_dma_pq: prepares a pq operation
592 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
7405f74b 593 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 594 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
595 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
596 * The function takes a buffer of size buf_len. The callback function will
597 * be called after period_len bytes have been transferred.
b14dab79 598 * @device_prep_interleaved_dma: Transfer expression in a generic way.
94a73e30
MR
599 * @device_config: Pushes a new configuration to a channel, return 0 or an error
600 * code
23a3ea2f
MR
601 * @device_pause: Pauses any transfer happening on a channel. Returns
602 * 0 or an error code
603 * @device_resume: Resumes any transfer on a channel previously
604 * paused. Returns 0 or an error code
7fa0cf46
MR
605 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
606 * or an error code
07934481
LW
607 * @device_tx_status: poll for transaction completion, the optional
608 * txstate parameter can be supplied with a pointer to get a
25985edc 609 * struct with auxiliary transfer status information, otherwise the call
07934481 610 * will just return a simple status code
7405f74b 611 * @device_issue_pending: push pending transactions to hardware
c13c8260
CL
612 */
613struct dma_device {
614
615 unsigned int chancnt;
0f571515 616 unsigned int privatecnt;
c13c8260
CL
617 struct list_head channels;
618 struct list_head global_node;
7405f74b 619 dma_cap_mask_t cap_mask;
b2f46fd8
DW
620 unsigned short max_xor;
621 unsigned short max_pq;
83544ae9
DW
622 u8 copy_align;
623 u8 xor_align;
624 u8 pq_align;
625 u8 fill_align;
b2f46fd8 626 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 627
c13c8260 628 int dev_id;
7405f74b 629 struct device *dev;
c13c8260 630
cb8cea51
MR
631 u32 src_addr_widths;
632 u32 dst_addr_widths;
633 u32 directions;
634 enum dma_residue_granularity residue_granularity;
635
aa1e6f1a 636 int (*device_alloc_chan_resources)(struct dma_chan *chan);
c13c8260 637 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
638
639 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
ceacbdbf 640 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
d4c56f97 641 size_t len, unsigned long flags);
7405f74b 642 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
ceacbdbf 643 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
d4c56f97 644 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 645 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 646 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 647 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
648 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
649 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
650 unsigned int src_cnt, const unsigned char *scf,
651 size_t len, unsigned long flags);
652 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
653 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
654 unsigned int src_cnt, const unsigned char *scf, size_t len,
655 enum sum_check_flags *pqres, unsigned long flags);
7405f74b 656 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 657 struct dma_chan *chan, unsigned long flags);
a86ee03c
IS
658 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
659 struct dma_chan *chan,
660 struct scatterlist *dst_sg, unsigned int dst_nents,
661 struct scatterlist *src_sg, unsigned int src_nents,
662 unsigned long flags);
7405f74b 663
dc0ee643
HS
664 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
665 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 666 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 667 unsigned long flags, void *context);
782bc950
SH
668 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
669 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 670 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 671 unsigned long flags);
b14dab79
JB
672 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
673 struct dma_chan *chan, struct dma_interleaved_template *xt,
674 unsigned long flags);
94a73e30
MR
675
676 int (*device_config)(struct dma_chan *chan,
677 struct dma_slave_config *config);
23a3ea2f
MR
678 int (*device_pause)(struct dma_chan *chan);
679 int (*device_resume)(struct dma_chan *chan);
7fa0cf46 680 int (*device_terminate_all)(struct dma_chan *chan);
dc0ee643 681
07934481
LW
682 enum dma_status (*device_tx_status)(struct dma_chan *chan,
683 dma_cookie_t cookie,
684 struct dma_tx_state *txstate);
7405f74b 685 void (*device_issue_pending)(struct dma_chan *chan);
c13c8260
CL
686};
687
6e3ecaf0
SH
688static inline int dmaengine_slave_config(struct dma_chan *chan,
689 struct dma_slave_config *config)
690{
94a73e30
MR
691 if (chan->device->device_config)
692 return chan->device->device_config(chan, config);
693
2c44ad91 694 return -ENOSYS;
6e3ecaf0
SH
695}
696
61cc13a5
AS
697static inline bool is_slave_direction(enum dma_transfer_direction direction)
698{
699 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
700}
701
90b44f8f 702static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 703 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 704 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
705{
706 struct scatterlist sg;
922ee08b
KM
707 sg_init_table(&sg, 1);
708 sg_dma_address(&sg) = buf;
709 sg_dma_len(&sg) = len;
90b44f8f 710
185ecb5f
AB
711 return chan->device->device_prep_slave_sg(chan, &sg, 1,
712 dir, flags, NULL);
90b44f8f
VK
713}
714
16052827
AB
715static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
716 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
717 enum dma_transfer_direction dir, unsigned long flags)
718{
719 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 720 dir, flags, NULL);
16052827
AB
721}
722
e42d98eb
AB
723#ifdef CONFIG_RAPIDIO_DMA_ENGINE
724struct rio_dma_ext;
725static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
726 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
727 enum dma_transfer_direction dir, unsigned long flags,
728 struct rio_dma_ext *rio_ext)
729{
730 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
731 dir, flags, rio_ext);
732}
733#endif
734
16052827
AB
735static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
736 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
737 size_t period_len, enum dma_transfer_direction dir,
738 unsigned long flags)
16052827
AB
739{
740 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 741 period_len, dir, flags);
a14acb4a
BS
742}
743
744static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
745 struct dma_chan *chan, struct dma_interleaved_template *xt,
746 unsigned long flags)
747{
748 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
749}
750
b65612a8
VK
751static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
752 struct dma_chan *chan,
753 struct scatterlist *dst_sg, unsigned int dst_nents,
754 struct scatterlist *src_sg, unsigned int src_nents,
755 unsigned long flags)
756{
757 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
758 src_sg, src_nents, flags);
759}
760
221a27c7
VK
761static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
762{
cb8cea51
MR
763 struct dma_device *device;
764
221a27c7
VK
765 if (!chan || !caps)
766 return -EINVAL;
767
cb8cea51
MR
768 device = chan->device;
769
221a27c7 770 /* check if the channel supports slave transactions */
cb8cea51
MR
771 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
772 return -ENXIO;
773
cb8cea51
MR
774 /*
775 * Check whether it reports it uses the generic slave
776 * capabilities, if not, that means it doesn't support any
777 * kind of slave capabilities reporting.
778 */
779 if (!device->directions)
221a27c7
VK
780 return -ENXIO;
781
cb8cea51
MR
782 caps->src_addr_widths = device->src_addr_widths;
783 caps->dst_addr_widths = device->dst_addr_widths;
784 caps->directions = device->directions;
785 caps->residue_granularity = device->residue_granularity;
786
787 caps->cmd_pause = !!device->device_pause;
788 caps->cmd_terminate = !!device->device_terminate_all;
221a27c7 789
cb8cea51 790 return 0;
221a27c7
VK
791}
792
6e3ecaf0
SH
793static inline int dmaengine_terminate_all(struct dma_chan *chan)
794{
7fa0cf46
MR
795 if (chan->device->device_terminate_all)
796 return chan->device->device_terminate_all(chan);
797
2c44ad91 798 return -ENOSYS;
6e3ecaf0
SH
799}
800
801static inline int dmaengine_pause(struct dma_chan *chan)
802{
23a3ea2f
MR
803 if (chan->device->device_pause)
804 return chan->device->device_pause(chan);
805
2c44ad91 806 return -ENOSYS;
6e3ecaf0
SH
807}
808
809static inline int dmaengine_resume(struct dma_chan *chan)
810{
23a3ea2f
MR
811 if (chan->device->device_resume)
812 return chan->device->device_resume(chan);
813
2c44ad91 814 return -ENOSYS;
6e3ecaf0
SH
815}
816
3052cc2c
LPC
817static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
818 dma_cookie_t cookie, struct dma_tx_state *state)
819{
820 return chan->device->device_tx_status(chan, cookie, state);
821}
822
98d530fe 823static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
824{
825 return desc->tx_submit(desc);
826}
827
83544ae9
DW
828static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
829{
830 size_t mask;
831
832 if (!align)
833 return true;
834 mask = (1 << align) - 1;
835 if (mask & (off1 | off2 | len))
836 return false;
837 return true;
838}
839
840static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
841 size_t off2, size_t len)
842{
843 return dmaengine_check_align(dev->copy_align, off1, off2, len);
844}
845
846static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
847 size_t off2, size_t len)
848{
849 return dmaengine_check_align(dev->xor_align, off1, off2, len);
850}
851
852static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
853 size_t off2, size_t len)
854{
855 return dmaengine_check_align(dev->pq_align, off1, off2, len);
856}
857
858static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
859 size_t off2, size_t len)
860{
861 return dmaengine_check_align(dev->fill_align, off1, off2, len);
862}
863
b2f46fd8
DW
864static inline void
865dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
866{
867 dma->max_pq = maxpq;
868 if (has_pq_continue)
869 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
870}
871
872static inline bool dmaf_continue(enum dma_ctrl_flags flags)
873{
874 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
875}
876
877static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
878{
879 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
880
881 return (flags & mask) == mask;
882}
883
884static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
885{
886 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
887}
888
d3f3cf85 889static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
890{
891 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
892}
893
894/* dma_maxpq - reduce maxpq in the face of continued operations
895 * @dma - dma device with PQ capability
896 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
897 *
898 * When an engine does not support native continuation we need 3 extra
899 * source slots to reuse P and Q with the following coefficients:
900 * 1/ {00} * P : remove P from Q', but use it as a source for P'
901 * 2/ {01} * Q : use Q to continue Q' calculation
902 * 3/ {00} * Q : subtract Q from P' to cancel (2)
903 *
904 * In the case where P is disabled we only need 1 extra source:
905 * 1/ {01} * Q : use Q to continue Q' calculation
906 */
907static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
908{
909 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
910 return dma_dev_to_maxpq(dma);
911 else if (dmaf_p_disabled_continue(flags))
912 return dma_dev_to_maxpq(dma) - 1;
913 else if (dmaf_continue(flags))
914 return dma_dev_to_maxpq(dma) - 3;
915 BUG();
916}
917
c13c8260
CL
918/* --- public DMA engine API --- */
919
649274d9 920#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
921void dmaengine_get(void);
922void dmaengine_put(void);
649274d9
DW
923#else
924static inline void dmaengine_get(void)
925{
926}
927static inline void dmaengine_put(void)
928{
929}
930#endif
931
729b5d1b
DW
932#ifdef CONFIG_ASYNC_TX_DMA
933#define async_dmaengine_get() dmaengine_get()
934#define async_dmaengine_put() dmaengine_put()
5fc6d897 935#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
936#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
937#else
729b5d1b 938#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 939#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
940#else
941static inline void async_dmaengine_get(void)
942{
943}
944static inline void async_dmaengine_put(void)
945{
946}
947static inline struct dma_chan *
948async_dma_find_channel(enum dma_transaction_type type)
949{
950 return NULL;
951}
138f4c35 952#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 953void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 954 struct dma_chan *chan);
c13c8260 955
0839875e 956static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 957{
636bdeaa
DW
958 tx->flags |= DMA_CTRL_ACK;
959}
960
ef560682
GL
961static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
962{
963 tx->flags &= ~DMA_CTRL_ACK;
964}
965
0839875e 966static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 967{
0839875e 968 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
969}
970
7405f74b
DW
971#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
972static inline void
973__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 974{
7405f74b
DW
975 set_bit(tx_type, dstp->bits);
976}
c13c8260 977
0f571515
AN
978#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
979static inline void
980__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
981{
982 clear_bit(tx_type, dstp->bits);
983}
984
33df8ca0
DW
985#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
986static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
987{
988 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
989}
990
7405f74b
DW
991#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
992static inline int
993__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
994{
995 return test_bit(tx_type, srcp->bits);
c13c8260
CL
996}
997
7405f74b 998#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 999 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 1000
c13c8260 1001/**
7405f74b 1002 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 1003 * @chan: target DMA channel
c13c8260
CL
1004 *
1005 * This allows drivers to push copies to HW in batches,
1006 * reducing MMIO writes where possible.
1007 */
7405f74b 1008static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1009{
ec8670f1 1010 chan->device->device_issue_pending(chan);
c13c8260
CL
1011}
1012
1013/**
7405f74b 1014 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1015 * @chan: DMA channel
1016 * @cookie: transaction identifier to check status of
1017 * @last: returns last completed cookie, can be NULL
1018 * @used: returns last issued cookie, can be NULL
1019 *
1020 * If @last and @used are passed in, upon return they reflect the driver
1021 * internal state and can be used with dma_async_is_complete() to check
1022 * the status of multiple cookies without re-checking hardware state.
1023 */
7405f74b 1024static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1025 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1026{
07934481
LW
1027 struct dma_tx_state state;
1028 enum dma_status status;
1029
1030 status = chan->device->device_tx_status(chan, cookie, &state);
1031 if (last)
1032 *last = state.last;
1033 if (used)
1034 *used = state.used;
1035 return status;
c13c8260
CL
1036}
1037
1038/**
1039 * dma_async_is_complete - test a cookie against chan state
1040 * @cookie: transaction identifier to test status of
1041 * @last_complete: last know completed transaction
1042 * @last_used: last cookie value handed out
1043 *
e239345f 1044 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1045 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1046 */
1047static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1048 dma_cookie_t last_complete, dma_cookie_t last_used)
1049{
1050 if (last_complete <= last_used) {
1051 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1052 return DMA_COMPLETE;
c13c8260
CL
1053 } else {
1054 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1055 return DMA_COMPLETE;
c13c8260
CL
1056 }
1057 return DMA_IN_PROGRESS;
1058}
1059
bca34692
DW
1060static inline void
1061dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1062{
1063 if (st) {
1064 st->last = last;
1065 st->used = used;
1066 st->residue = residue;
1067 }
1068}
1069
07f2211e 1070#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1071struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1072enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1073enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1074void dma_issue_pending_all(void);
a53e28da
LPC
1075struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1076 dma_filter_fn fn, void *fn_param);
0ad7c000
SW
1077struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1078 const char *name);
bef29ec5 1079struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
8f33d527 1080void dma_release_channel(struct dma_chan *chan);
07f2211e 1081#else
4a43f394
JM
1082static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1083{
1084 return NULL;
1085}
1086static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1087{
adfedd9a 1088 return DMA_COMPLETE;
4a43f394 1089}
07f2211e
DW
1090static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1091{
adfedd9a 1092 return DMA_COMPLETE;
07f2211e 1093}
c50331e8
DW
1094static inline void dma_issue_pending_all(void)
1095{
8f33d527 1096}
a53e28da 1097static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
8f33d527
GL
1098 dma_filter_fn fn, void *fn_param)
1099{
1100 return NULL;
1101}
0ad7c000
SW
1102static inline struct dma_chan *dma_request_slave_channel_reason(
1103 struct device *dev, const char *name)
1104{
1105 return ERR_PTR(-ENODEV);
1106}
9a6cecc8 1107static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
bef29ec5 1108 const char *name)
9a6cecc8 1109{
d18d5f59 1110 return NULL;
9a6cecc8 1111}
8f33d527
GL
1112static inline void dma_release_channel(struct dma_chan *chan)
1113{
c50331e8 1114}
07f2211e 1115#endif
c13c8260
CL
1116
1117/* --- DMA device --- */
1118
1119int dma_async_device_register(struct dma_device *device);
1120void dma_async_device_unregister(struct dma_device *device);
07f2211e 1121void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
7bb587f4 1122struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
8010dad5 1123struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
a2bd1140 1124struct dma_chan *net_dma_find_channel(void);
59b5ec21 1125#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
864ef69b
MP
1126#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1127 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1128
1129static inline struct dma_chan
a53e28da
LPC
1130*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1131 dma_filter_fn fn, void *fn_param,
1132 struct device *dev, char *name)
864ef69b
MP
1133{
1134 struct dma_chan *chan;
1135
1136 chan = dma_request_slave_channel(dev, name);
1137 if (chan)
1138 return chan;
1139
1140 return __dma_request_channel(mask, fn, fn_param);
1141}
c13c8260 1142
de5506e1
CL
1143/* --- Helper iov-locking functions --- */
1144
1145struct dma_page_list {
b2ddb901 1146 char __user *base_address;
de5506e1
CL
1147 int nr_pages;
1148 struct page **pages;
1149};
1150
1151struct dma_pinned_list {
1152 int nr_iovecs;
1153 struct dma_page_list page_list[0];
1154};
1155
1156struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1157void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1158
1159dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1160 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1161dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1162 struct dma_pinned_list *pinned_list, struct page *page,
1163 unsigned int offset, size_t len);
1164
c13c8260 1165#endif /* DMAENGINE_H */