]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/hyperv.h
binder: Add support for file-descriptor arrays
[mirror_ubuntu-bionic-kernel.git] / include / linux / hyperv.h
CommitLineData
5c473400
S
1/*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
3f335ea2
S
24
25#ifndef _HYPERV_H
26#define _HYPERV_H
27
5267cf02 28#include <uapi/linux/hyperv.h>
c75efa97 29#include <uapi/asm/hyperv.h>
2939437c 30
5267cf02 31#include <linux/types.h>
8ff3e6fc
S
32#include <linux/scatterlist.h>
33#include <linux/list.h>
34#include <linux/timer.h>
35#include <linux/workqueue.h>
36#include <linux/completion.h>
37#include <linux/device.h>
2e2c1d17 38#include <linux/mod_devicetable.h>
8ff3e6fc
S
39
40
7e5ec368 41#define MAX_PAGE_BUFFER_COUNT 32
a363bf7b
S
42#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
43
44#pragma pack(push, 1)
45
46/* Single-page buffer */
47struct hv_page_buffer {
48 u32 len;
49 u32 offset;
50 u64 pfn;
51};
52
53/* Multiple-page buffer */
54struct hv_multipage_buffer {
55 /* Length and Offset determines the # of pfns in the array */
56 u32 len;
57 u32 offset;
58 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
59};
60
d61031ee
S
61/*
62 * Multiple-page buffer array; the pfn array is variable size:
63 * The number of entries in the PFN array is determined by
64 * "len" and "offset".
65 */
66struct hv_mpb_array {
67 /* Length and Offset determines the # of pfns in the array */
68 u32 len;
69 u32 offset;
70 u64 pfn_array[];
71};
72
a363bf7b
S
73/* 0x18 includes the proprietary packet header */
74#define MAX_PAGE_BUFFER_PACKET (0x18 + \
75 (sizeof(struct hv_page_buffer) * \
76 MAX_PAGE_BUFFER_COUNT))
77#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
78 sizeof(struct hv_multipage_buffer))
79
80
81#pragma pack(pop)
82
7effffb7
S
83struct hv_ring_buffer {
84 /* Offset in bytes from the start of ring data below */
85 u32 write_index;
86
87 /* Offset in bytes from the start of ring data below */
88 u32 read_index;
89
90 u32 interrupt_mask;
91
2416603e
S
92 /*
93 * Win8 uses some of the reserved bits to implement
94 * interrupt driven flow management. On the send side
95 * we can request that the receiver interrupt the sender
96 * when the ring transitions from being full to being able
97 * to handle a message of size "pending_send_sz".
98 *
99 * Add necessary state for this enhancement.
7effffb7 100 */
2416603e
S
101 u32 pending_send_sz;
102
103 u32 reserved1[12];
104
105 union {
106 struct {
107 u32 feat_pending_send_sz:1;
108 };
109 u32 value;
110 } feature_bits;
111
112 /* Pad it to PAGE_SIZE so that data starts on page boundary */
113 u8 reserved2[4028];
7effffb7
S
114
115 /*
116 * Ring data starts here + RingDataStartOffset
117 * !!! DO NOT place any fields below this !!!
118 */
119 u8 buffer[0];
120} __packed;
121
122struct hv_ring_buffer_info {
123 struct hv_ring_buffer *ring_buffer;
124 u32 ring_size; /* Include the shared header */
125 spinlock_t ring_lock;
126
127 u32 ring_datasize; /* < ring_size */
128 u32 ring_data_startoffset;
ab028db4
S
129 u32 priv_write_index;
130 u32 priv_read_index;
433e19cf 131 u32 cached_read_index;
7effffb7
S
132};
133
33be96e4
HZ
134/*
135 *
136 * hv_get_ringbuffer_availbytes()
137 *
138 * Get number of bytes available to read and to write to
139 * for the specified ring buffer
140 */
141static inline void
142hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
143 u32 *read, u32 *write)
144{
145 u32 read_loc, write_loc, dsize;
146
33be96e4
HZ
147 /* Capture the read/write indices before they changed */
148 read_loc = rbi->ring_buffer->read_index;
149 write_loc = rbi->ring_buffer->write_index;
150 dsize = rbi->ring_datasize;
151
152 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
153 read_loc - write_loc;
154 *read = dsize - *write;
155}
156
a6341f00
S
157static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi)
158{
159 u32 read_loc, write_loc, dsize, read;
160
161 dsize = rbi->ring_datasize;
162 read_loc = rbi->ring_buffer->read_index;
163 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
164
165 read = write_loc >= read_loc ? (write_loc - read_loc) :
166 (dsize - read_loc) + write_loc;
167
168 return read;
169}
170
171static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi)
172{
173 u32 read_loc, write_loc, dsize, write;
174
175 dsize = rbi->ring_datasize;
176 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
177 write_loc = rbi->ring_buffer->write_index;
178
179 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
180 read_loc - write_loc;
181 return write;
182}
183
433e19cf
DC
184static inline u32 hv_get_cached_bytes_to_write(
185 const struct hv_ring_buffer_info *rbi)
186{
187 u32 read_loc, write_loc, dsize, write;
188
189 dsize = rbi->ring_datasize;
190 read_loc = rbi->cached_read_index;
191 write_loc = rbi->ring_buffer->write_index;
192
193 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
194 read_loc - write_loc;
195 return write;
196}
eafa7072
S
197/*
198 * VMBUS version is 32 bit entity broken up into
199 * two 16 bit quantities: major_number. minor_number.
200 *
201 * 0 . 13 (Windows Server 2008)
202 * 1 . 1 (Windows 7)
203 * 2 . 4 (Windows 8)
03367ef5 204 * 3 . 0 (Windows 8 R2)
6c4e5f9c 205 * 4 . 0 (Windows 10)
eafa7072
S
206 */
207
208#define VERSION_WS2008 ((0 << 16) | (13))
209#define VERSION_WIN7 ((1 << 16) | (1))
210#define VERSION_WIN8 ((2 << 16) | (4))
03367ef5 211#define VERSION_WIN8_1 ((3 << 16) | (0))
6c4e5f9c 212#define VERSION_WIN10 ((4 << 16) | (0))
eafa7072
S
213
214#define VERSION_INVAL -1
215
6c4e5f9c 216#define VERSION_CURRENT VERSION_WIN10
f7c6dfda 217
517d8dc6
S
218/* Make maximum size of pipe payload of 16K */
219#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
220
221/* Define PipeMode values. */
222#define VMBUS_PIPE_TYPE_BYTE 0x00000000
223#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
224
225/* The size of the user defined data buffer for non-pipe offers. */
226#define MAX_USER_DEFINED_BYTES 120
227
228/* The size of the user defined data buffer for pipe offers. */
229#define MAX_PIPE_USER_DEFINED_BYTES 116
230
231/*
232 * At the center of the Channel Management library is the Channel Offer. This
233 * struct contains the fundamental information about an offer.
234 */
235struct vmbus_channel_offer {
358d2ee2
S
236 uuid_le if_type;
237 uuid_le if_instance;
29423b7e
S
238
239 /*
240 * These two fields are not currently used.
241 */
242 u64 reserved1;
243 u64 reserved2;
244
517d8dc6
S
245 u16 chn_flags;
246 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
247
248 union {
249 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
250 struct {
251 unsigned char user_def[MAX_USER_DEFINED_BYTES];
252 } std;
253
254 /*
255 * Pipes:
256 * The following sructure is an integrated pipe protocol, which
257 * is implemented on top of standard user-defined data. Pipe
258 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
259 * use.
260 */
261 struct {
262 u32 pipe_mode;
263 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
264 } pipe;
265 } u;
29423b7e
S
266 /*
267 * The sub_channel_index is defined in win8.
268 */
269 u16 sub_channel_index;
270 u16 reserved3;
517d8dc6
S
271} __packed;
272
273/* Server Flags */
274#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
275#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
276#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
277#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
278#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
279#define VMBUS_CHANNEL_PARENT_OFFER 0x200
280#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
e8d6ca02 281#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
517d8dc6 282
50ed40e0
S
283struct vmpacket_descriptor {
284 u16 type;
285 u16 offset8;
286 u16 len8;
287 u16 flags;
288 u64 trans_id;
289} __packed;
290
291struct vmpacket_header {
292 u32 prev_pkt_start_offset;
293 struct vmpacket_descriptor descriptor;
294} __packed;
295
296struct vmtransfer_page_range {
297 u32 byte_count;
298 u32 byte_offset;
299} __packed;
300
301struct vmtransfer_page_packet_header {
302 struct vmpacket_descriptor d;
303 u16 xfer_pageset_id;
1508d811 304 u8 sender_owns_set;
50ed40e0
S
305 u8 reserved;
306 u32 range_cnt;
307 struct vmtransfer_page_range ranges[1];
308} __packed;
309
310struct vmgpadl_packet_header {
311 struct vmpacket_descriptor d;
312 u32 gpadl;
313 u32 reserved;
314} __packed;
315
316struct vmadd_remove_transfer_page_set {
317 struct vmpacket_descriptor d;
318 u32 gpadl;
319 u16 xfer_pageset_id;
320 u16 reserved;
321} __packed;
322
323/*
324 * This structure defines a range in guest physical space that can be made to
325 * look virtually contiguous.
326 */
327struct gpa_range {
328 u32 byte_count;
329 u32 byte_offset;
330 u64 pfn_array[0];
331};
332
333/*
334 * This is the format for an Establish Gpadl packet, which contains a handle by
335 * which this GPADL will be known and a set of GPA ranges associated with it.
336 * This can be converted to a MDL by the guest OS. If there are multiple GPA
337 * ranges, then the resulting MDL will be "chained," representing multiple VA
338 * ranges.
339 */
340struct vmestablish_gpadl {
341 struct vmpacket_descriptor d;
342 u32 gpadl;
343 u32 range_cnt;
344 struct gpa_range range[1];
345} __packed;
346
347/*
348 * This is the format for a Teardown Gpadl packet, which indicates that the
349 * GPADL handle in the Establish Gpadl packet will never be referenced again.
350 */
351struct vmteardown_gpadl {
352 struct vmpacket_descriptor d;
353 u32 gpadl;
354 u32 reserved; /* for alignment to a 8-byte boundary */
355} __packed;
356
357/*
358 * This is the format for a GPA-Direct packet, which contains a set of GPA
359 * ranges, in addition to commands and/or data.
360 */
361struct vmdata_gpa_direct {
362 struct vmpacket_descriptor d;
363 u32 reserved;
364 u32 range_cnt;
365 struct gpa_range range[1];
366} __packed;
367
368/* This is the format for a Additional Data Packet. */
369struct vmadditional_data {
370 struct vmpacket_descriptor d;
371 u64 total_bytes;
372 u32 offset;
373 u32 byte_cnt;
374 unsigned char data[1];
375} __packed;
376
377union vmpacket_largest_possible_header {
378 struct vmpacket_descriptor simple_hdr;
379 struct vmtransfer_page_packet_header xfer_page_hdr;
380 struct vmgpadl_packet_header gpadl_hdr;
381 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
382 struct vmestablish_gpadl establish_gpadl_hdr;
383 struct vmteardown_gpadl teardown_gpadl_hdr;
384 struct vmdata_gpa_direct data_gpa_direct_hdr;
385};
386
387#define VMPACKET_DATA_START_ADDRESS(__packet) \
388 (void *)(((unsigned char *)__packet) + \
389 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
390
391#define VMPACKET_DATA_LENGTH(__packet) \
392 ((((struct vmpacket_descriptor)__packet)->len8 - \
393 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
394
395#define VMPACKET_TRANSFER_MODE(__packet) \
396 (((struct IMPACT)__packet)->type)
397
398enum vmbus_packet_type {
399 VM_PKT_INVALID = 0x0,
400 VM_PKT_SYNCH = 0x1,
401 VM_PKT_ADD_XFER_PAGESET = 0x2,
402 VM_PKT_RM_XFER_PAGESET = 0x3,
403 VM_PKT_ESTABLISH_GPADL = 0x4,
404 VM_PKT_TEARDOWN_GPADL = 0x5,
405 VM_PKT_DATA_INBAND = 0x6,
406 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
407 VM_PKT_DATA_USING_GPADL = 0x8,
408 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
409 VM_PKT_CANCEL_REQUEST = 0xa,
410 VM_PKT_COMP = 0xb,
411 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
412 VM_PKT_ADDITIONAL_DATA = 0xd
413};
414
415#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
517d8dc6 416
b56dda06 417
b56dda06
S
418/* Version 1 messages */
419enum vmbus_channel_message_type {
420 CHANNELMSG_INVALID = 0,
421 CHANNELMSG_OFFERCHANNEL = 1,
422 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
423 CHANNELMSG_REQUESTOFFERS = 3,
424 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
425 CHANNELMSG_OPENCHANNEL = 5,
426 CHANNELMSG_OPENCHANNEL_RESULT = 6,
427 CHANNELMSG_CLOSECHANNEL = 7,
428 CHANNELMSG_GPADL_HEADER = 8,
429 CHANNELMSG_GPADL_BODY = 9,
430 CHANNELMSG_GPADL_CREATED = 10,
431 CHANNELMSG_GPADL_TEARDOWN = 11,
432 CHANNELMSG_GPADL_TORNDOWN = 12,
433 CHANNELMSG_RELID_RELEASED = 13,
434 CHANNELMSG_INITIATE_CONTACT = 14,
435 CHANNELMSG_VERSION_RESPONSE = 15,
436 CHANNELMSG_UNLOAD = 16,
2db84eff 437 CHANNELMSG_UNLOAD_RESPONSE = 17,
5c23a1a5
DC
438 CHANNELMSG_18 = 18,
439 CHANNELMSG_19 = 19,
440 CHANNELMSG_20 = 20,
441 CHANNELMSG_TL_CONNECT_REQUEST = 21,
b56dda06
S
442 CHANNELMSG_COUNT
443};
444
445struct vmbus_channel_message_header {
446 enum vmbus_channel_message_type msgtype;
447 u32 padding;
448} __packed;
449
450/* Query VMBus Version parameters */
451struct vmbus_channel_query_vmbus_version {
452 struct vmbus_channel_message_header header;
453 u32 version;
454} __packed;
455
456/* VMBus Version Supported parameters */
457struct vmbus_channel_version_supported {
458 struct vmbus_channel_message_header header;
1508d811 459 u8 version_supported;
b56dda06
S
460} __packed;
461
462/* Offer Channel parameters */
463struct vmbus_channel_offer_channel {
464 struct vmbus_channel_message_header header;
465 struct vmbus_channel_offer offer;
466 u32 child_relid;
467 u8 monitorid;
29423b7e
S
468 /*
469 * win7 and beyond splits this field into a bit field.
470 */
471 u8 monitor_allocated:1;
472 u8 reserved:7;
473 /*
474 * These are new fields added in win7 and later.
475 * Do not access these fields without checking the
476 * negotiated protocol.
477 *
478 * If "is_dedicated_interrupt" is set, we must not set the
479 * associated bit in the channel bitmap while sending the
480 * interrupt to the host.
481 *
482 * connection_id is to be used in signaling the host.
483 */
484 u16 is_dedicated_interrupt:1;
485 u16 reserved1:15;
486 u32 connection_id;
b56dda06
S
487} __packed;
488
489/* Rescind Offer parameters */
490struct vmbus_channel_rescind_offer {
491 struct vmbus_channel_message_header header;
492 u32 child_relid;
493} __packed;
494
495/*
496 * Request Offer -- no parameters, SynIC message contains the partition ID
497 * Set Snoop -- no parameters, SynIC message contains the partition ID
498 * Clear Snoop -- no parameters, SynIC message contains the partition ID
499 * All Offers Delivered -- no parameters, SynIC message contains the partition
500 * ID
501 * Flush Client -- no parameters, SynIC message contains the partition ID
502 */
503
504/* Open Channel parameters */
505struct vmbus_channel_open_channel {
506 struct vmbus_channel_message_header header;
507
508 /* Identifies the specific VMBus channel that is being opened. */
509 u32 child_relid;
510
511 /* ID making a particular open request at a channel offer unique. */
512 u32 openid;
513
514 /* GPADL for the channel's ring buffer. */
515 u32 ringbuffer_gpadlhandle;
516
abbf3b2a
S
517 /*
518 * Starting with win8, this field will be used to specify
519 * the target virtual processor on which to deliver the interrupt for
520 * the host to guest communication.
521 * Prior to win8, incoming channel interrupts would only
522 * be delivered on cpu 0. Setting this value to 0 would
523 * preserve the earlier behavior.
524 */
525 u32 target_vp;
b56dda06
S
526
527 /*
528 * The upstream ring buffer begins at offset zero in the memory
529 * described by RingBufferGpadlHandle. The downstream ring buffer
530 * follows it at this offset (in pages).
531 */
532 u32 downstream_ringbuffer_pageoffset;
533
534 /* User-specific data to be passed along to the server endpoint. */
535 unsigned char userdata[MAX_USER_DEFINED_BYTES];
536} __packed;
537
538/* Open Channel Result parameters */
539struct vmbus_channel_open_result {
540 struct vmbus_channel_message_header header;
541 u32 child_relid;
542 u32 openid;
543 u32 status;
544} __packed;
545
546/* Close channel parameters; */
547struct vmbus_channel_close_channel {
548 struct vmbus_channel_message_header header;
549 u32 child_relid;
550} __packed;
551
552/* Channel Message GPADL */
553#define GPADL_TYPE_RING_BUFFER 1
554#define GPADL_TYPE_SERVER_SAVE_AREA 2
555#define GPADL_TYPE_TRANSACTION 8
556
557/*
558 * The number of PFNs in a GPADL message is defined by the number of
559 * pages that would be spanned by ByteCount and ByteOffset. If the
560 * implied number of PFNs won't fit in this packet, there will be a
561 * follow-up packet that contains more.
562 */
563struct vmbus_channel_gpadl_header {
564 struct vmbus_channel_message_header header;
565 u32 child_relid;
566 u32 gpadl;
567 u16 range_buflen;
568 u16 rangecount;
569 struct gpa_range range[0];
570} __packed;
571
572/* This is the followup packet that contains more PFNs. */
573struct vmbus_channel_gpadl_body {
574 struct vmbus_channel_message_header header;
575 u32 msgnumber;
576 u32 gpadl;
577 u64 pfn[0];
578} __packed;
579
580struct vmbus_channel_gpadl_created {
581 struct vmbus_channel_message_header header;
582 u32 child_relid;
583 u32 gpadl;
584 u32 creation_status;
585} __packed;
586
587struct vmbus_channel_gpadl_teardown {
588 struct vmbus_channel_message_header header;
589 u32 child_relid;
590 u32 gpadl;
591} __packed;
592
593struct vmbus_channel_gpadl_torndown {
594 struct vmbus_channel_message_header header;
595 u32 gpadl;
596} __packed;
597
b56dda06
S
598struct vmbus_channel_relid_released {
599 struct vmbus_channel_message_header header;
600 u32 child_relid;
601} __packed;
602
603struct vmbus_channel_initiate_contact {
604 struct vmbus_channel_message_header header;
605 u32 vmbus_version_requested;
e28bab48 606 u32 target_vcpu; /* The VCPU the host should respond to */
b56dda06
S
607 u64 interrupt_page;
608 u64 monitor_page1;
609 u64 monitor_page2;
610} __packed;
611
5c23a1a5
DC
612/* Hyper-V socket: guest's connect()-ing to host */
613struct vmbus_channel_tl_connect_request {
614 struct vmbus_channel_message_header header;
615 uuid_le guest_endpoint_id;
616 uuid_le host_service_id;
617} __packed;
618
b56dda06
S
619struct vmbus_channel_version_response {
620 struct vmbus_channel_message_header header;
1508d811 621 u8 version_supported;
b56dda06
S
622} __packed;
623
624enum vmbus_channel_state {
625 CHANNEL_OFFER_STATE,
626 CHANNEL_OPENING_STATE,
627 CHANNEL_OPEN_STATE,
e68d2971 628 CHANNEL_OPENED_STATE,
b56dda06
S
629};
630
b56dda06
S
631/*
632 * Represents each channel msg on the vmbus connection This is a
633 * variable-size data structure depending on the msg type itself
634 */
635struct vmbus_channel_msginfo {
636 /* Bookkeeping stuff */
637 struct list_head msglistentry;
638
639 /* So far, this is only used to handle gpadl body message */
640 struct list_head submsglist;
641
642 /* Synchronize the request/response if needed */
643 struct completion waitevent;
ccb61f8a 644 struct vmbus_channel *waiting_channel;
b56dda06
S
645 union {
646 struct vmbus_channel_version_supported version_supported;
647 struct vmbus_channel_open_result open_result;
648 struct vmbus_channel_gpadl_torndown gpadl_torndown;
649 struct vmbus_channel_gpadl_created gpadl_created;
650 struct vmbus_channel_version_response version_response;
651 } response;
652
653 u32 msgsize;
654 /*
655 * The channel message that goes out on the "wire".
656 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
657 */
658 unsigned char msg[0];
659};
660
f9f1db83
S
661struct vmbus_close_msg {
662 struct vmbus_channel_msginfo info;
663 struct vmbus_channel_close_channel msg;
664};
665
b3bf60c7
S
666/* Define connection identifier type. */
667union hv_connection_id {
668 u32 asu32;
669 struct {
670 u32 id:24;
671 u32 reserved:8;
672 } u;
673};
674
675/* Definition of the hv_signal_event hypercall input structure. */
676struct hv_input_signal_event {
677 union hv_connection_id connectionid;
678 u16 flag_number;
679 u16 rsvdz;
680};
681
682struct hv_input_signal_event_buffer {
683 u64 align8;
684 struct hv_input_signal_event event;
685};
686
509879bd
S
687enum hv_numa_policy {
688 HV_BALANCED = 0,
689 HV_LOCALIZED,
690};
691
7047f17d
S
692enum vmbus_device_type {
693 HV_IDE = 0,
694 HV_SCSI,
695 HV_FC,
696 HV_NIC,
697 HV_ND,
698 HV_PCIE,
699 HV_FB,
700 HV_KBD,
701 HV_MOUSE,
702 HV_KVP,
703 HV_TS,
704 HV_HB,
705 HV_SHUTDOWN,
706 HV_FCOPY,
707 HV_BACKUP,
708 HV_DM,
f45be72c 709 HV_UNKNOWN,
7047f17d
S
710};
711
712struct vmbus_device {
713 u16 dev_type;
714 uuid_le guid;
715 bool perf_device;
716};
717
7d7c75cd
S
718struct vmbus_channel {
719 struct list_head listentry;
720
721 struct hv_device *device_obj;
722
7d7c75cd 723 enum vmbus_channel_state state;
7d7c75cd
S
724
725 struct vmbus_channel_offer_channel offermsg;
726 /*
727 * These are based on the OfferMsg.MonitorId.
728 * Save it here for easy access.
729 */
730 u8 monitor_grp;
731 u8 monitor_bit;
732
c3582a2c
HZ
733 bool rescind; /* got rescind msg */
734
7d7c75cd
S
735 u32 ringbuffer_gpadlhandle;
736
737 /* Allocated memory for ring buffer */
738 void *ringbuffer_pages;
739 u32 ringbuffer_pagecount;
740 struct hv_ring_buffer_info outbound; /* send to parent */
741 struct hv_ring_buffer_info inbound; /* receive from parent */
742 spinlock_t inbound_lock;
7d7c75cd 743
f9f1db83
S
744 struct vmbus_close_msg close_msg;
745
7d7c75cd
S
746 /* Channel callback are invoked in this workqueue context */
747 /* HANDLE dataWorkQueue; */
748
749 void (*onchannel_callback)(void *context);
750 void *channel_callback_context;
132368bd
S
751
752 /*
753 * A channel can be marked for efficient (batched)
754 * reading:
755 * If batched_reading is set to "true", we read until the
756 * channel is empty and hold off interrupts from the host
757 * during the entire read process.
758 * If batched_reading is set to "false", the client is not
759 * going to perform batched reading.
760 *
761 * By default we will enable batched reading; specific
762 * drivers that don't want this behavior can turn it off.
763 */
764
765 bool batched_reading;
b3bf60c7
S
766
767 bool is_dedicated_interrupt;
768 struct hv_input_signal_event_buffer sig_buf;
769 struct hv_input_signal_event *sig_event;
abbf3b2a
S
770
771 /*
772 * Starting with win8, this field will be used to specify
773 * the target virtual processor on which to deliver the interrupt for
774 * the host to guest communication.
775 * Prior to win8, incoming channel interrupts would only
776 * be delivered on cpu 0. Setting this value to 0 would
777 * preserve the earlier behavior.
778 */
779 u32 target_vp;
d3ba720d
S
780 /* The corresponding CPUID in the guest */
781 u32 target_cpu;
1f656ff3
S
782 /*
783 * State to manage the CPU affiliation of channels.
784 */
3b71107d 785 struct cpumask alloced_cpus_in_node;
1f656ff3 786 int numa_node;
e68d2971
S
787 /*
788 * Support for sub-channels. For high performance devices,
789 * it will be useful to have multiple sub-channels to support
790 * a scalable communication infrastructure with the host.
791 * The support for sub-channels is implemented as an extention
792 * to the current infrastructure.
793 * The initial offer is considered the primary channel and this
794 * offer message will indicate if the host supports sub-channels.
795 * The guest is free to ask for sub-channels to be offerred and can
796 * open these sub-channels as a normal "primary" channel. However,
797 * all sub-channels will have the same type and instance guids as the
798 * primary channel. Requests sent on a given channel will result in a
799 * response on the same channel.
800 */
801
802 /*
803 * Sub-channel creation callback. This callback will be called in
804 * process context when a sub-channel offer is received from the host.
805 * The guest can open the sub-channel in the context of this callback.
806 */
807 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
808
499e8401
DC
809 /*
810 * Channel rescind callback. Some channels (the hvsock ones), need to
811 * register a callback which is invoked in vmbus_onoffer_rescind().
812 */
813 void (*chn_rescind_callback)(struct vmbus_channel *channel);
814
67fae053
VK
815 /*
816 * The spinlock to protect the structure. It is being used to protect
817 * test-and-set access to various attributes of the structure as well
818 * as all sc_list operations.
819 */
820 spinlock_t lock;
e68d2971
S
821 /*
822 * All Sub-channels of a primary channel are linked here.
823 */
824 struct list_head sc_list;
fea844a2
VK
825 /*
826 * Current number of sub-channels.
827 */
828 int num_sc;
829 /*
830 * Number of a sub-channel (position within sc_list) which is supposed
831 * to be used as the next outgoing channel.
832 */
833 int next_oc;
e68d2971
S
834 /*
835 * The primary channel this sub-channel belongs to.
836 * This will be NULL for the primary channel.
837 */
838 struct vmbus_channel *primary_channel;
8a7206a8
S
839 /*
840 * Support per-channel state for use by vmbus drivers.
841 */
842 void *per_channel_state;
3a28fa35
S
843 /*
844 * To support per-cpu lookup mapping of relid to channel,
845 * link up channels based on their CPU affinity.
846 */
847 struct list_head percpu_list;
fe760e4d
S
848 /*
849 * On the channel send side, many of the VMBUS
850 * device drivers explicity serialize access to the
851 * outgoing ring buffer. Give more control to the
852 * VMBUS device drivers in terms how to serialize
853 * accesss to the outgoing ring buffer.
854 * The default behavior will be to aquire the
855 * ring lock to preserve the current behavior.
856 */
857 bool acquire_ring_lock;
3724287c
S
858 /*
859 * For performance critical channels (storage, networking
860 * etc,), Hyper-V has a mechanism to enhance the throughput
861 * at the expense of latency:
862 * When the host is to be signaled, we just set a bit in a shared page
863 * and this bit will be inspected by the hypervisor within a certain
864 * window and if the bit is set, the host will be signaled. The window
865 * of time is the monitor latency - currently around 100 usecs. This
866 * mechanism improves throughput by:
867 *
868 * A) Making the host more efficient - each time it wakes up,
869 * potentially it will process morev number of packets. The
870 * monitor latency allows a batch to build up.
871 * B) By deferring the hypercall to signal, we will also minimize
872 * the interrupts.
873 *
874 * Clearly, these optimizations improve throughput at the expense of
875 * latency. Furthermore, since the channel is shared for both
876 * control and data messages, control messages currently suffer
877 * unnecessary latency adversley impacting performance and boot
878 * time. To fix this issue, permit tagging the channel as being
879 * in "low latency" mode. In this mode, we will bypass the monitor
880 * mechanism.
881 */
882 bool low_latency;
fe760e4d 883
509879bd
S
884 /*
885 * NUMA distribution policy:
886 * We support teo policies:
887 * 1) Balanced: Here all performance critical channels are
888 * distributed evenly amongst all the NUMA nodes.
889 * This policy will be the default policy.
890 * 2) Localized: All channels of a given instance of a
891 * performance critical service will be assigned CPUs
892 * within a selected NUMA node.
893 */
894 enum hv_numa_policy affinity_policy;
895
7d7c75cd 896};
b56dda06 897
fe760e4d
S
898static inline void set_channel_lock_state(struct vmbus_channel *c, bool state)
899{
900 c->acquire_ring_lock = state;
901}
902
e8d6ca02
DC
903static inline bool is_hvsock_channel(const struct vmbus_channel *c)
904{
905 return !!(c->offermsg.offer.chn_flags &
906 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
907}
908
509879bd
S
909static inline void set_channel_affinity_state(struct vmbus_channel *c,
910 enum hv_numa_policy policy)
911{
912 c->affinity_policy = policy;
913}
914
132368bd
S
915static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
916{
917 c->batched_reading = state;
918}
919
8a7206a8
S
920static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
921{
922 c->per_channel_state = s;
923}
924
925static inline void *get_per_channel_state(struct vmbus_channel *c)
926{
927 return c->per_channel_state;
928}
929
3c75354d
DC
930static inline void set_channel_pending_send_size(struct vmbus_channel *c,
931 u32 size)
932{
933 c->outbound.ring_buffer->pending_send_sz = size;
934}
935
3724287c
S
936static inline void set_low_latency_mode(struct vmbus_channel *c)
937{
938 c->low_latency = true;
939}
940
941static inline void clear_low_latency_mode(struct vmbus_channel *c)
942{
943 c->low_latency = false;
944}
945
b56dda06
S
946void vmbus_onmessage(void *context);
947
948int vmbus_request_offers(void);
949
e68d2971
S
950/*
951 * APIs for managing sub-channels.
952 */
953
954void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
955 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
956
499e8401
DC
957void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
958 void (*chn_rescind_cb)(struct vmbus_channel *));
959
e68d2971
S
960/*
961 * Retrieve the (sub) channel on which to send an outgoing request.
962 * When a primary channel has multiple sub-channels, we choose a
963 * channel whose VCPU binding is closest to the VCPU on which
964 * this call is being made.
965 */
966struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
967
968/*
969 * Check if sub-channels have already been offerred. This API will be useful
970 * when the driver is unloaded after establishing sub-channels. In this case,
971 * when the driver is re-loaded, the driver would have to check if the
972 * subchannels have already been established before attempting to request
973 * the creation of sub-channels.
974 * This function returns TRUE to indicate that subchannels have already been
975 * created.
976 * This function should be invoked after setting the callback function for
977 * sub-channel creation.
978 */
979bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
980
c35470b2
S
981/* The format must be the same as struct vmdata_gpa_direct */
982struct vmbus_channel_packet_page_buffer {
983 u16 type;
984 u16 dataoffset8;
985 u16 length8;
986 u16 flags;
987 u64 transactionid;
988 u32 reserved;
989 u32 rangecount;
990 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
991} __packed;
992
993/* The format must be the same as struct vmdata_gpa_direct */
994struct vmbus_channel_packet_multipage_buffer {
995 u16 type;
996 u16 dataoffset8;
997 u16 length8;
998 u16 flags;
999 u64 transactionid;
1000 u32 reserved;
1001 u32 rangecount; /* Always 1 in this case */
1002 struct hv_multipage_buffer range;
1003} __packed;
1004
d61031ee
S
1005/* The format must be the same as struct vmdata_gpa_direct */
1006struct vmbus_packet_mpb_array {
1007 u16 type;
1008 u16 dataoffset8;
1009 u16 length8;
1010 u16 flags;
1011 u64 transactionid;
1012 u32 reserved;
1013 u32 rangecount; /* Always 1 in this case */
1014 struct hv_mpb_array range;
1015} __packed;
1016
c35470b2
S
1017
1018extern int vmbus_open(struct vmbus_channel *channel,
1019 u32 send_ringbuffersize,
1020 u32 recv_ringbuffersize,
1021 void *userdata,
1022 u32 userdatalen,
1023 void(*onchannel_callback)(void *context),
1024 void *context);
1025
1026extern void vmbus_close(struct vmbus_channel *channel);
1027
1028extern int vmbus_sendpacket(struct vmbus_channel *channel,
011a7c3c 1029 void *buffer,
c35470b2
S
1030 u32 bufferLen,
1031 u64 requestid,
1032 enum vmbus_packet_type type,
1033 u32 flags);
1034
e9395e3f
S
1035extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1036 void *buffer,
1037 u32 bufferLen,
1038 u64 requestid,
1039 enum vmbus_packet_type type,
3454323c 1040 u32 flags);
e9395e3f 1041
c35470b2
S
1042extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1043 struct hv_page_buffer pagebuffers[],
1044 u32 pagecount,
1045 void *buffer,
1046 u32 bufferlen,
1047 u64 requestid);
1048
87e93d61
S
1049extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1050 struct hv_page_buffer pagebuffers[],
1051 u32 pagecount,
1052 void *buffer,
1053 u32 bufferlen,
1054 u64 requestid,
3454323c 1055 u32 flags);
87e93d61 1056
c35470b2
S
1057extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1058 struct hv_multipage_buffer *mpb,
1059 void *buffer,
1060 u32 bufferlen,
1061 u64 requestid);
1062
d61031ee
S
1063extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1064 struct vmbus_packet_mpb_array *mpb,
1065 u32 desc_size,
1066 void *buffer,
1067 u32 bufferlen,
1068 u64 requestid);
1069
c35470b2
S
1070extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1071 void *kbuffer,
1072 u32 size,
1073 u32 *gpadl_handle);
1074
1075extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1076 u32 gpadl_handle);
1077
1078extern int vmbus_recvpacket(struct vmbus_channel *channel,
1079 void *buffer,
1080 u32 bufferlen,
1081 u32 *buffer_actual_len,
1082 u64 *requestid);
1083
1084extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1085 void *buffer,
1086 u32 bufferlen,
1087 u32 *buffer_actual_len,
1088 u64 *requestid);
1089
c35470b2 1090
c35470b2
S
1091extern void vmbus_ontimer(unsigned long data);
1092
35ea09c3
S
1093/* Base driver object */
1094struct hv_driver {
1095 const char *name;
1096
8981da32
DC
1097 /*
1098 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1099 * channel flag, actually doesn't mean a synthetic device because the
1100 * offer's if_type/if_instance can change for every new hvsock
1101 * connection.
1102 *
1103 * However, to facilitate the notification of new-offer/rescind-offer
1104 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1105 * a special vmbus device, and hence we need the below flag to
1106 * indicate if the driver is the hvsock driver or not: we need to
1107 * specially treat the hvosck offer & driver in vmbus_match().
1108 */
1109 bool hvsock;
1110
35ea09c3 1111 /* the device type supported by this driver */
358d2ee2 1112 uuid_le dev_type;
2e2c1d17 1113 const struct hv_vmbus_device_id *id_table;
35ea09c3
S
1114
1115 struct device_driver driver;
1116
fc76936d
SH
1117 /* dynamic device GUID's */
1118 struct {
1119 spinlock_t lock;
1120 struct list_head list;
1121 } dynids;
1122
84946899 1123 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
35ea09c3
S
1124 int (*remove)(struct hv_device *);
1125 void (*shutdown)(struct hv_device *);
1126
1127};
1128
1129/* Base device object */
1130struct hv_device {
1131 /* the device type id of this device */
358d2ee2 1132 uuid_le dev_type;
35ea09c3
S
1133
1134 /* the device instance id of this device */
358d2ee2 1135 uuid_le dev_instance;
7047f17d
S
1136 u16 vendor_id;
1137 u16 device_id;
35ea09c3
S
1138
1139 struct device device;
1140
1141 struct vmbus_channel *channel;
35ea09c3
S
1142};
1143
27b5b3ca
S
1144
1145static inline struct hv_device *device_to_hv_device(struct device *d)
1146{
1147 return container_of(d, struct hv_device, device);
1148}
1149
1150static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1151{
1152 return container_of(d, struct hv_driver, driver);
1153}
1154
ab101e86
S
1155static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1156{
1157 dev_set_drvdata(&dev->device, data);
1158}
1159
1160static inline void *hv_get_drvdata(struct hv_device *dev)
1161{
1162 return dev_get_drvdata(&dev->device);
1163}
27b5b3ca
S
1164
1165/* Vmbus interface */
768fa219
GKH
1166#define vmbus_driver_register(driver) \
1167 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1168int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1169 struct module *owner,
1170 const char *mod_name);
1171void vmbus_driver_unregister(struct hv_driver *hv_driver);
27b5b3ca 1172
85d9aa70
DC
1173void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1174
35464483
JO
1175int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1176 resource_size_t min, resource_size_t max,
1177 resource_size_t size, resource_size_t align,
1178 bool fb_overlap_ok);
97fb77dc 1179void vmbus_free_mmio(resource_size_t start, resource_size_t size);
619848bd 1180int vmbus_cpu_number_to_vp_number(int cpu_number);
a108393d 1181u64 hv_do_hypercall(u64 control, void *input, void *output);
619848bd 1182
7fb96565
S
1183/*
1184 * GUID definitions of various offer types - services offered to the guest.
1185 */
1186
1187/*
1188 * Network GUID
1189 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1190 */
1191#define HV_NIC_GUID \
af3ff643
S
1192 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1193 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
7fb96565
S
1194
1195/*
1196 * IDE GUID
1197 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1198 */
1199#define HV_IDE_GUID \
af3ff643
S
1200 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1201 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
7fb96565
S
1202
1203/*
1204 * SCSI GUID
1205 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1206 */
1207#define HV_SCSI_GUID \
af3ff643
S
1208 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1209 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
7fb96565
S
1210
1211/*
1212 * Shutdown GUID
1213 * {0e0b6031-5213-4934-818b-38d90ced39db}
1214 */
1215#define HV_SHUTDOWN_GUID \
af3ff643
S
1216 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1217 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
7fb96565
S
1218
1219/*
1220 * Time Synch GUID
1221 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1222 */
1223#define HV_TS_GUID \
af3ff643
S
1224 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1225 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
7fb96565
S
1226
1227/*
1228 * Heartbeat GUID
1229 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1230 */
1231#define HV_HEART_BEAT_GUID \
af3ff643
S
1232 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1233 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
7fb96565
S
1234
1235/*
1236 * KVP GUID
1237 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1238 */
1239#define HV_KVP_GUID \
af3ff643
S
1240 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1241 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
7fb96565
S
1242
1243/*
1244 * Dynamic memory GUID
1245 * {525074dc-8985-46e2-8057-a307dc18a502}
1246 */
1247#define HV_DM_GUID \
af3ff643
S
1248 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1249 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
7fb96565
S
1250
1251/*
1252 * Mouse GUID
1253 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1254 */
1255#define HV_MOUSE_GUID \
af3ff643
S
1256 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1257 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
7fb96565 1258
2048157a
DC
1259/*
1260 * Keyboard GUID
1261 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1262 */
1263#define HV_KBD_GUID \
1264 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1265 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1266
96dd86fa
S
1267/*
1268 * VSS (Backup/Restore) GUID
1269 */
1270#define HV_VSS_GUID \
af3ff643
S
1271 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1272 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
68a2d20b
HZ
1273/*
1274 * Synthetic Video GUID
1275 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1276 */
1277#define HV_SYNTHVID_GUID \
af3ff643
S
1278 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1279 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
68a2d20b 1280
98b80d89
S
1281/*
1282 * Synthetic FC GUID
1283 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1284 */
1285#define HV_SYNTHFC_GUID \
af3ff643
S
1286 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1287 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
98b80d89 1288
01325476
S
1289/*
1290 * Guest File Copy Service
1291 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1292 */
1293
1294#define HV_FCOPY_GUID \
af3ff643
S
1295 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1296 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
01325476 1297
04653a00
S
1298/*
1299 * NetworkDirect. This is the guest RDMA service.
1300 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1301 */
1302#define HV_ND_GUID \
af3ff643
S
1303 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1304 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
04653a00 1305
3053c762
JO
1306/*
1307 * PCI Express Pass Through
1308 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1309 */
1310
1311#define HV_PCIE_GUID \
af3ff643
S
1312 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1313 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
3053c762 1314
0f98829a
DC
1315/*
1316 * Linux doesn't support the 3 devices: the first two are for
1317 * Automatic Virtual Machine Activation, and the third is for
1318 * Remote Desktop Virtualization.
1319 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1320 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1321 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1322 */
1323
1324#define HV_AVMA1_GUID \
1325 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1326 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1327
1328#define HV_AVMA2_GUID \
1329 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1330 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1331
1332#define HV_RDV_GUID \
1333 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1334 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1335
b189702d
S
1336/*
1337 * Common header for Hyper-V ICs
1338 */
1339
1340#define ICMSGTYPE_NEGOTIATE 0
1341#define ICMSGTYPE_HEARTBEAT 1
1342#define ICMSGTYPE_KVPEXCHANGE 2
1343#define ICMSGTYPE_SHUTDOWN 3
1344#define ICMSGTYPE_TIMESYNC 4
1345#define ICMSGTYPE_VSS 5
1346
1347#define ICMSGHDRFLAG_TRANSACTION 1
1348#define ICMSGHDRFLAG_REQUEST 2
1349#define ICMSGHDRFLAG_RESPONSE 4
1350
b189702d 1351
a29b643c
S
1352/*
1353 * While we want to handle util services as regular devices,
1354 * there is only one instance of each of these services; so
1355 * we statically allocate the service specific state.
1356 */
1357
1358struct hv_util_service {
1359 u8 *recv_buffer;
b9830d12 1360 void *channel;
a29b643c
S
1361 void (*util_cb)(void *);
1362 int (*util_init)(struct hv_util_service *);
1363 void (*util_deinit)(void);
1364};
1365
b189702d
S
1366struct vmbuspipe_hdr {
1367 u32 flags;
1368 u32 msgsize;
1369} __packed;
1370
1371struct ic_version {
1372 u16 major;
1373 u16 minor;
1374} __packed;
1375
1376struct icmsg_hdr {
1377 struct ic_version icverframe;
1378 u16 icmsgtype;
1379 struct ic_version icvermsg;
1380 u16 icmsgsize;
1381 u32 status;
1382 u8 ictransaction_id;
1383 u8 icflags;
1384 u8 reserved[2];
1385} __packed;
1386
1387struct icmsg_negotiate {
1388 u16 icframe_vercnt;
1389 u16 icmsg_vercnt;
1390 u32 reserved;
1391 struct ic_version icversion_data[1]; /* any size array */
1392} __packed;
1393
1394struct shutdown_msg_data {
1395 u32 reason_code;
1396 u32 timeout_seconds;
1397 u32 flags;
1398 u8 display_message[2048];
1399} __packed;
1400
1401struct heartbeat_msg_data {
1402 u64 seq_num;
1403 u32 reserved[8];
1404} __packed;
1405
1406/* Time Sync IC defs */
1407#define ICTIMESYNCFLAG_PROBE 0
1408#define ICTIMESYNCFLAG_SYNC 1
1409#define ICTIMESYNCFLAG_SAMPLE 2
1410
1411#ifdef __x86_64__
1412#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1413#else
1414#define WLTIMEDELTA 116444736000000000LL
1415#endif
1416
1417struct ictimesync_data {
1418 u64 parenttime;
1419 u64 childtime;
1420 u64 roundtriptime;
1421 u8 flags;
1422} __packed;
1423
8e1d2607
AN
1424struct ictimesync_ref_data {
1425 u64 parenttime;
1426 u64 vmreferencetime;
1427 u8 flags;
1428 char leapflags;
1429 char stratum;
1430 u8 reserved[3];
1431} __packed;
1432
b189702d
S
1433struct hyperv_service_callback {
1434 u8 msg_type;
1435 char *log_msg;
358d2ee2 1436 uuid_le data;
b189702d
S
1437 struct vmbus_channel *channel;
1438 void (*callback) (void *context);
1439};
1440
c836d0ab 1441#define MAX_SRV_VER 0x7ffffff
a1656454
AN
1442extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1443 const int *fw_version, int fw_vercnt,
1444 const int *srv_version, int srv_vercnt,
1445 int *nego_fw_version, int *nego_srv_version);
b189702d 1446
638fea33
DC
1447void hv_event_tasklet_disable(struct vmbus_channel *channel);
1448void hv_event_tasklet_enable(struct vmbus_channel *channel);
1449
ed6cfcc5 1450void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
96dd86fa 1451
1f6ee4e7 1452void vmbus_setevent(struct vmbus_channel *channel);
37f7278b
S
1453/*
1454 * Negotiated version with the Host.
1455 */
1456
1457extern __u32 vmbus_proto_version;
1458
5c23a1a5
DC
1459int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1460 const uuid_le *shv_host_servie_id);
5cc47247 1461void vmbus_set_event(struct vmbus_channel *channel);
687f32e6
S
1462
1463/* Get the start of the ring buffer. */
1464static inline void *
1465hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
1466{
1467 return (void *)ring_info->ring_buffer->buffer;
1468}
1469
1470/*
1471 * To optimize the flow management on the send-side,
1472 * when the sender is blocked because of lack of
1473 * sufficient space in the ring buffer, potential the
1474 * consumer of the ring buffer can signal the producer.
1475 * This is controlled by the following parameters:
1476 *
1477 * 1. pending_send_sz: This is the size in bytes that the
1478 * producer is trying to send.
1479 * 2. The feature bit feat_pending_send_sz set to indicate if
1480 * the consumer of the ring will signal when the ring
1481 * state transitions from being full to a state where
1482 * there is room for the producer to send the pending packet.
1483 */
1484
3372592a 1485static inline void hv_signal_on_read(struct vmbus_channel *channel)
687f32e6 1486{
433e19cf 1487 u32 cur_write_sz, cached_write_sz;
687f32e6 1488 u32 pending_sz;
3372592a 1489 struct hv_ring_buffer_info *rbi = &channel->inbound;
687f32e6
S
1490
1491 /*
1492 * Issue a full memory barrier before making the signaling decision.
1493 * Here is the reason for having this barrier:
1494 * If the reading of the pend_sz (in this function)
1495 * were to be reordered and read before we commit the new read
1496 * index (in the calling function) we could
1497 * have a problem. If the host were to set the pending_sz after we
1498 * have sampled pending_sz and go to sleep before we commit the
1499 * read index, we could miss sending the interrupt. Issue a full
1500 * memory barrier to address this.
1501 */
1502 virt_mb();
1503
1504 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1505 /* If the other end is not blocked on write don't bother. */
1506 if (pending_sz == 0)
3372592a 1507 return;
687f32e6
S
1508
1509 cur_write_sz = hv_get_bytes_to_write(rbi);
1510
433e19cf
DC
1511 if (cur_write_sz < pending_sz)
1512 return;
1513
1514 cached_write_sz = hv_get_cached_bytes_to_write(rbi);
1515 if (cached_write_sz < pending_sz)
3372592a 1516 vmbus_setevent(channel);
687f32e6 1517
3372592a 1518 return;
687f32e6
S
1519}
1520
433e19cf
DC
1521static inline void
1522init_cached_read_index(struct vmbus_channel *channel)
1523{
1524 struct hv_ring_buffer_info *rbi = &channel->inbound;
1525
1526 rbi->cached_read_index = rbi->ring_buffer->read_index;
1527}
1528
ab028db4
S
1529/*
1530 * An API to support in-place processing of incoming VMBUS packets.
1531 */
1532#define VMBUS_PKT_TRAILER 8
1533
1534static inline struct vmpacket_descriptor *
1535get_next_pkt_raw(struct vmbus_channel *channel)
1536{
1537 struct hv_ring_buffer_info *ring_info = &channel->inbound;
fa32ff65 1538 u32 priv_read_loc = ring_info->priv_read_index;
ab028db4 1539 void *ring_buffer = hv_get_ring_buffer(ring_info);
ab028db4 1540 u32 dsize = ring_info->ring_datasize;
fa32ff65
VK
1541 /*
1542 * delta is the difference between what is available to read and
1543 * what was already consumed in place. We commit read index after
1544 * the whole batch is processed.
1545 */
1546 u32 delta = priv_read_loc >= ring_info->ring_buffer->read_index ?
1547 priv_read_loc - ring_info->ring_buffer->read_index :
1548 (dsize - ring_info->ring_buffer->read_index) + priv_read_loc;
ab028db4
S
1549 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta);
1550
1551 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor))
1552 return NULL;
1553
fa32ff65 1554 return ring_buffer + priv_read_loc;
ab028db4
S
1555}
1556
1557/*
1558 * A helper function to step through packets "in-place"
1559 * This API is to be called after each successful call
1560 * get_next_pkt_raw().
1561 */
1562static inline void put_pkt_raw(struct vmbus_channel *channel,
1563 struct vmpacket_descriptor *desc)
1564{
1565 struct hv_ring_buffer_info *ring_info = &channel->inbound;
ab028db4
S
1566 u32 packetlen = desc->len8 << 3;
1567 u32 dsize = ring_info->ring_datasize;
1568
ab028db4
S
1569 /*
1570 * Include the packet trailer.
1571 */
1572 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
fa32ff65 1573 ring_info->priv_read_index %= dsize;
ab028db4
S
1574}
1575
1576/*
1577 * This call commits the read index and potentially signals the host.
1578 * Here is the pattern for using the "in-place" consumption APIs:
1579 *
433e19cf
DC
1580 * init_cached_read_index();
1581 *
ab028db4
S
1582 * while (get_next_pkt_raw() {
1583 * process the packet "in-place";
1584 * put_pkt_raw();
1585 * }
1586 * if (packets processed in place)
1587 * commit_rd_index();
1588 */
1589static inline void commit_rd_index(struct vmbus_channel *channel)
1590{
1591 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1592 /*
1593 * Make sure all reads are done before we update the read index since
1594 * the writer may start writing to the read area once the read index
1595 * is updated.
1596 */
1597 virt_rmb();
1598 ring_info->ring_buffer->read_index = ring_info->priv_read_index;
1599
3372592a 1600 hv_signal_on_read(channel);
ab028db4
S
1601}
1602
1603
3f335ea2 1604#endif /* _HYPERV_H */