]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/jiffies.h
seccomp: Move speculation migitation control to arch code
[mirror_ubuntu-artful-kernel.git] / include / linux / jiffies.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_JIFFIES_H
2#define _LINUX_JIFFIES_H
3
7c30f352 4#include <linux/cache.h>
f8bd2258 5#include <linux/math64.h>
1da177e4
LT
6#include <linux/kernel.h>
7#include <linux/types.h>
8#include <linux/time.h>
9#include <linux/timex.h>
10#include <asm/param.h> /* for HZ */
ca42aaf0 11#include <generated/timeconst.h>
1da177e4
LT
12
13/*
14 * The following defines establish the engineering parameters of the PLL
15 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
16 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
17 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
18 * nearest power of two in order to avoid hardware multiply operations.
19 */
20#if HZ >= 12 && HZ < 24
21# define SHIFT_HZ 4
22#elif HZ >= 24 && HZ < 48
23# define SHIFT_HZ 5
24#elif HZ >= 48 && HZ < 96
25# define SHIFT_HZ 6
26#elif HZ >= 96 && HZ < 192
27# define SHIFT_HZ 7
28#elif HZ >= 192 && HZ < 384
29# define SHIFT_HZ 8
30#elif HZ >= 384 && HZ < 768
31# define SHIFT_HZ 9
32#elif HZ >= 768 && HZ < 1536
33# define SHIFT_HZ 10
e118adef
PM
34#elif HZ >= 1536 && HZ < 3072
35# define SHIFT_HZ 11
36#elif HZ >= 3072 && HZ < 6144
37# define SHIFT_HZ 12
38#elif HZ >= 6144 && HZ < 12288
39# define SHIFT_HZ 13
1da177e4 40#else
37679011 41# error Invalid value of HZ.
1da177e4
LT
42#endif
43
25985edc 44/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
1da177e4
LT
45 * improve accuracy by shifting LSH bits, hence calculating:
46 * (NOM << LSH) / DEN
47 * This however means trouble for large NOM, because (NOM << LSH) may no
48 * longer fit in 32 bits. The following way of calculating this gives us
49 * some slack, under the following conditions:
50 * - (NOM / DEN) fits in (32 - LSH) bits.
51 * - (NOM % DEN) fits in (32 - LSH) bits.
52 */
0d94df56
UZ
53#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
54 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
1da177e4 55
a7ea3bbf 56/* LATCH is used in the interval timer and ftape setup. */
015a830d 57#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
a7ea3bbf 58
b3c869d3 59extern int register_refined_jiffies(long clock_tick_rate);
1da177e4 60
02ab20ae 61/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
b3c869d3 62#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
1da177e4
LT
63
64/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
65#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
66
60b0a8c3
MK
67#ifndef __jiffy_arch_data
68#define __jiffy_arch_data
69#endif
70
1da177e4 71/*
98c4f0c3 72 * The 64-bit value is not atomic - you MUST NOT read it
d6ad4187 73 * without sampling the sequence number in jiffies_lock.
1da177e4
LT
74 * get_jiffies_64() will do this for you as appropriate.
75 */
7c30f352 76extern u64 __cacheline_aligned_in_smp jiffies_64;
60b0a8c3 77extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
1da177e4
LT
78
79#if (BITS_PER_LONG < 64)
80u64 get_jiffies_64(void);
81#else
82static inline u64 get_jiffies_64(void)
83{
84 return (u64)jiffies;
85}
86#endif
87
88/*
89 * These inlines deal with timer wrapping correctly. You are
90 * strongly encouraged to use them
91 * 1. Because people otherwise forget
92 * 2. Because if the timer wrap changes in future you won't have to
93 * alter your driver code.
94 *
95 * time_after(a,b) returns true if the time a is after time b.
96 *
97 * Do this with "<0" and ">=0" to only test the sign of the result. A
98 * good compiler would generate better code (and a really good compiler
99 * wouldn't care). Gcc is currently neither.
100 */
101#define time_after(a,b) \
102 (typecheck(unsigned long, a) && \
103 typecheck(unsigned long, b) && \
5a581b36 104 ((long)((b) - (a)) < 0))
1da177e4
LT
105#define time_before(a,b) time_after(b,a)
106
107#define time_after_eq(a,b) \
108 (typecheck(unsigned long, a) && \
109 typecheck(unsigned long, b) && \
5a581b36 110 ((long)((a) - (b)) >= 0))
1da177e4
LT
111#define time_before_eq(a,b) time_after_eq(b,a)
112
64672d55
PS
113/*
114 * Calculate whether a is in the range of [b, c].
115 */
c7e15961
FOL
116#define time_in_range(a,b,c) \
117 (time_after_eq(a,b) && \
118 time_before_eq(a,c))
119
64672d55
PS
120/*
121 * Calculate whether a is in the range of [b, c).
122 */
123#define time_in_range_open(a,b,c) \
124 (time_after_eq(a,b) && \
125 time_before(a,c))
126
3b171672
DZ
127/* Same as above, but does so with platform independent 64bit types.
128 * These must be used when utilizing jiffies_64 (i.e. return value of
129 * get_jiffies_64() */
130#define time_after64(a,b) \
131 (typecheck(__u64, a) && \
132 typecheck(__u64, b) && \
5a581b36 133 ((__s64)((b) - (a)) < 0))
3b171672
DZ
134#define time_before64(a,b) time_after64(b,a)
135
136#define time_after_eq64(a,b) \
137 (typecheck(__u64, a) && \
138 typecheck(__u64, b) && \
5a581b36 139 ((__s64)((a) - (b)) >= 0))
3b171672
DZ
140#define time_before_eq64(a,b) time_after_eq64(b,a)
141
1bc2774d
ET
142#define time_in_range64(a, b, c) \
143 (time_after_eq64(a, b) && \
144 time_before_eq64(a, c))
145
3f34d024
DY
146/*
147 * These four macros compare jiffies and 'a' for convenience.
148 */
149
150/* time_is_before_jiffies(a) return true if a is before jiffies */
151#define time_is_before_jiffies(a) time_after(jiffies, a)
3740dcdf 152#define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
3f34d024
DY
153
154/* time_is_after_jiffies(a) return true if a is after jiffies */
155#define time_is_after_jiffies(a) time_before(jiffies, a)
3740dcdf 156#define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
3f34d024
DY
157
158/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
159#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
3740dcdf 160#define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
3f34d024
DY
161
162/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
163#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
3740dcdf 164#define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
3f34d024 165
1da177e4
LT
166/*
167 * Have the 32 bit jiffies value wrap 5 minutes after boot
168 * so jiffies wrap bugs show up earlier.
169 */
170#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
171
172/*
173 * Change timeval to jiffies, trying to avoid the
174 * most obvious overflows..
175 *
176 * And some not so obvious.
177 *
9f907c01 178 * Note that we don't want to return LONG_MAX, because
1da177e4
LT
179 * for various timeout reasons we often end up having
180 * to wait "jiffies+1" in order to guarantee that we wait
181 * at _least_ "jiffies" - so "jiffies+1" had better still
182 * be positive.
183 */
9f907c01 184#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
1da177e4 185
bfe8df3d
RD
186extern unsigned long preset_lpj;
187
1da177e4
LT
188/*
189 * We want to do realistic conversions of time so we need to use the same
190 * values the update wall clock code uses as the jiffies size. This value
191 * is: TICK_NSEC (which is defined in timex.h). This
3eb05676 192 * is a constant and is in nanoseconds. We will use scaled math
1da177e4
LT
193 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
194 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
195 * constants and so are computed at compile time. SHIFT_HZ (computed in
196 * timex.h) adjusts the scaling for different HZ values.
197
198 * Scaled math??? What is that?
199 *
200 * Scaled math is a way to do integer math on values that would,
201 * otherwise, either overflow, underflow, or cause undesired div
202 * instructions to appear in the execution path. In short, we "scale"
203 * up the operands so they take more bits (more precision, less
204 * underflow), do the desired operation and then "scale" the result back
205 * by the same amount. If we do the scaling by shifting we avoid the
206 * costly mpy and the dastardly div instructions.
207
208 * Suppose, for example, we want to convert from seconds to jiffies
209 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
210 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
211 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
212 * might calculate at compile time, however, the result will only have
213 * about 3-4 bits of precision (less for smaller values of HZ).
214 *
215 * So, we scale as follows:
216 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
217 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
218 * Then we make SCALE a power of two so:
219 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
220 * Now we define:
221 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
222 * jiff = (sec * SEC_CONV) >> SCALE;
223 *
224 * Often the math we use will expand beyond 32-bits so we tell C how to
225 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
226 * which should take the result back to 32-bits. We want this expansion
227 * to capture as much precision as possible. At the same time we don't
228 * want to overflow so we pick the SCALE to avoid this. In this file,
229 * that means using a different scale for each range of HZ values (as
230 * defined in timex.h).
231 *
232 * For those who want to know, gcc will give a 64-bit result from a "*"
233 * operator if the result is a long long AND at least one of the
234 * operands is cast to long long (usually just prior to the "*" so as
235 * not to confuse it into thinking it really has a 64-bit operand,
3eb05676 236 * which, buy the way, it can do, but it takes more code and at least 2
1da177e4
LT
237 * mpys).
238
239 * We also need to be aware that one second in nanoseconds is only a
240 * couple of bits away from overflowing a 32-bit word, so we MUST use
241 * 64-bits to get the full range time in nanoseconds.
242
243 */
244
245/*
246 * Here are the scales we will use. One for seconds, nanoseconds and
247 * microseconds.
248 *
249 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
250 * check if the sign bit is set. If not, we bump the shift count by 1.
251 * (Gets an extra bit of precision where we can use it.)
252 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
253 * Haven't tested others.
254
255 * Limits of cpp (for #if expressions) only long (no long long), but
256 * then we only need the most signicant bit.
257 */
258
259#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
260#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
261#undef SEC_JIFFIE_SC
262#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
263#endif
264#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
1da177e4
LT
265#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
266 TICK_NSEC -1) / (u64)TICK_NSEC))
267
268#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
269 TICK_NSEC -1) / (u64)TICK_NSEC))
1da177e4
LT
270/*
271 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
272 * into seconds. The 64-bit case will overflow if we are not careful,
273 * so use the messy SH_DIV macro to do it. Still all constants.
274 */
275#if BITS_PER_LONG < 64
276# define MAX_SEC_IN_JIFFIES \
277 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
278#else /* take care of overflow on 64 bits machines */
279# define MAX_SEC_IN_JIFFIES \
280 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
281
282#endif
283
284/*
8b9365d7 285 * Convert various time units to each other:
1da177e4 286 */
8b9365d7
IM
287extern unsigned int jiffies_to_msecs(const unsigned long j);
288extern unsigned int jiffies_to_usecs(const unsigned long j);
8fe8ff09
KH
289
290static inline u64 jiffies_to_nsecs(const unsigned long j)
291{
292 return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
293}
294
07e5f5e3
FW
295extern u64 jiffies64_to_nsecs(u64 j);
296
ca42aaf0
NMG
297extern unsigned long __msecs_to_jiffies(const unsigned int m);
298#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
299/*
300 * HZ is equal to or smaller than 1000, and 1000 is a nice round
301 * multiple of HZ, divide with the factor between them, but round
302 * upwards:
303 */
304static inline unsigned long _msecs_to_jiffies(const unsigned int m)
305{
4e3d9cb0 306 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
ca42aaf0
NMG
307}
308#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
309/*
310 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
311 * simply multiply with the factor between them.
312 *
313 * But first make sure the multiplication result cannot overflow:
314 */
315static inline unsigned long _msecs_to_jiffies(const unsigned int m)
316{
4e3d9cb0
TG
317 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
318 return MAX_JIFFY_OFFSET;
319 return m * (HZ / MSEC_PER_SEC);
ca42aaf0
NMG
320}
321#else
322/*
323 * Generic case - multiply, round and divide. But first check that if
324 * we are doing a net multiplication, that we wouldn't overflow:
325 */
326static inline unsigned long _msecs_to_jiffies(const unsigned int m)
327{
4e3d9cb0
TG
328 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
329 return MAX_JIFFY_OFFSET;
ca42aaf0 330
4e3d9cb0 331 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
ca42aaf0
NMG
332}
333#endif
334/**
335 * msecs_to_jiffies: - convert milliseconds to jiffies
336 * @m: time in milliseconds
337 *
338 * conversion is done as follows:
339 *
340 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
341 *
342 * - 'too large' values [that would result in larger than
343 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
344 *
345 * - all other values are converted to jiffies by either multiplying
346 * the input value by a factor or dividing it with a factor and
347 * handling any 32-bit overflows.
348 * for the details see __msecs_to_jiffies()
349 *
daa67b4b
NMG
350 * msecs_to_jiffies() checks for the passed in value being a constant
351 * via __builtin_constant_p() allowing gcc to eliminate most of the
352 * code, __msecs_to_jiffies() is called if the value passed does not
353 * allow constant folding and the actual conversion must be done at
354 * runtime.
355 * the HZ range specific helpers _msecs_to_jiffies() are called both
356 * directly here and from __msecs_to_jiffies() in the case where
357 * constant folding is not possible.
ca42aaf0 358 */
accd0b9e 359static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
ca42aaf0 360{
daa67b4b
NMG
361 if (__builtin_constant_p(m)) {
362 if ((int)m < 0)
363 return MAX_JIFFY_OFFSET;
364 return _msecs_to_jiffies(m);
365 } else {
366 return __msecs_to_jiffies(m);
367 }
ca42aaf0
NMG
368}
369
ae60d6a0 370extern unsigned long __usecs_to_jiffies(const unsigned int u);
e0758676 371#if !(USEC_PER_SEC % HZ)
ae60d6a0
NMG
372static inline unsigned long _usecs_to_jiffies(const unsigned int u)
373{
374 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
375}
ae60d6a0
NMG
376#else
377static inline unsigned long _usecs_to_jiffies(const unsigned int u)
378{
379 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
380 >> USEC_TO_HZ_SHR32;
381}
382#endif
383
c569a23d
NMG
384/**
385 * usecs_to_jiffies: - convert microseconds to jiffies
386 * @u: time in microseconds
387 *
388 * conversion is done as follows:
389 *
390 * - 'too large' values [that would result in larger than
391 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
392 *
393 * - all other values are converted to jiffies by either multiplying
394 * the input value by a factor or dividing it with a factor and
395 * handling any 32-bit overflows as for msecs_to_jiffies.
396 *
397 * usecs_to_jiffies() checks for the passed in value being a constant
398 * via __builtin_constant_p() allowing gcc to eliminate most of the
399 * code, __usecs_to_jiffies() is called if the value passed does not
400 * allow constant folding and the actual conversion must be done at
401 * runtime.
402 * the HZ range specific helpers _usecs_to_jiffies() are called both
403 * directly here and from __msecs_to_jiffies() in the case where
404 * constant folding is not possible.
405 */
accd0b9e 406static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
ae60d6a0 407{
c569a23d
NMG
408 if (__builtin_constant_p(u)) {
409 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
410 return MAX_JIFFY_OFFSET;
411 return _usecs_to_jiffies(u);
412 } else {
413 return __usecs_to_jiffies(u);
414 }
ae60d6a0
NMG
415}
416
9ca30850
BW
417extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
418extern void jiffies_to_timespec64(const unsigned long jiffies,
419 struct timespec64 *value);
420static inline unsigned long timespec_to_jiffies(const struct timespec *value)
421{
422 struct timespec64 ts = timespec_to_timespec64(*value);
423
424 return timespec64_to_jiffies(&ts);
425}
426
427static inline void jiffies_to_timespec(const unsigned long jiffies,
428 struct timespec *value)
429{
430 struct timespec64 ts;
431
432 jiffies_to_timespec64(jiffies, &ts);
433 *value = timespec64_to_timespec(ts);
434}
435
8b9365d7
IM
436extern unsigned long timeval_to_jiffies(const struct timeval *value);
437extern void jiffies_to_timeval(const unsigned long jiffies,
438 struct timeval *value);
a399a805 439
cbbc719f 440extern clock_t jiffies_to_clock_t(unsigned long x);
a399a805
ED
441static inline clock_t jiffies_delta_to_clock_t(long delta)
442{
443 return jiffies_to_clock_t(max(0L, delta));
444}
445
8b9365d7
IM
446extern unsigned long clock_t_to_jiffies(unsigned long x);
447extern u64 jiffies_64_to_clock_t(u64 x);
448extern u64 nsec_to_clock_t(u64 x);
a1dabb6b 449extern u64 nsecs_to_jiffies64(u64 n);
b7b20df9 450extern unsigned long nsecs_to_jiffies(u64 n);
8b9365d7
IM
451
452#define TIMESTAMP_SIZE 30
1da177e4
LT
453
454#endif