]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/jiffies.h
jiffies: Kill unused TICK_USEC_TO_NSEC
[mirror_ubuntu-eoan-kernel.git] / include / linux / jiffies.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_JIFFIES_H
2#define _LINUX_JIFFIES_H
3
f8bd2258 4#include <linux/math64.h>
1da177e4
LT
5#include <linux/kernel.h>
6#include <linux/types.h>
7#include <linux/time.h>
8#include <linux/timex.h>
9#include <asm/param.h> /* for HZ */
1da177e4
LT
10
11/*
12 * The following defines establish the engineering parameters of the PLL
13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
16 * nearest power of two in order to avoid hardware multiply operations.
17 */
18#if HZ >= 12 && HZ < 24
19# define SHIFT_HZ 4
20#elif HZ >= 24 && HZ < 48
21# define SHIFT_HZ 5
22#elif HZ >= 48 && HZ < 96
23# define SHIFT_HZ 6
24#elif HZ >= 96 && HZ < 192
25# define SHIFT_HZ 7
26#elif HZ >= 192 && HZ < 384
27# define SHIFT_HZ 8
28#elif HZ >= 384 && HZ < 768
29# define SHIFT_HZ 9
30#elif HZ >= 768 && HZ < 1536
31# define SHIFT_HZ 10
e118adef
PM
32#elif HZ >= 1536 && HZ < 3072
33# define SHIFT_HZ 11
34#elif HZ >= 3072 && HZ < 6144
35# define SHIFT_HZ 12
36#elif HZ >= 6144 && HZ < 12288
37# define SHIFT_HZ 13
1da177e4 38#else
37679011 39# error Invalid value of HZ.
1da177e4
LT
40#endif
41
25985edc 42/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
1da177e4
LT
43 * improve accuracy by shifting LSH bits, hence calculating:
44 * (NOM << LSH) / DEN
45 * This however means trouble for large NOM, because (NOM << LSH) may no
46 * longer fit in 32 bits. The following way of calculating this gives us
47 * some slack, under the following conditions:
48 * - (NOM / DEN) fits in (32 - LSH) bits.
49 * - (NOM % DEN) fits in (32 - LSH) bits.
50 */
0d94df56
UZ
51#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
52 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
1da177e4 53
a7ea3bbf
CM
54#ifdef CLOCK_TICK_RATE
55/* LATCH is used in the interval timer and ftape setup. */
56# define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
57
02ab20ae
JS
58/*
59 * HZ is the requested value. However the CLOCK_TICK_RATE may not allow
60 * for exactly HZ. So SHIFTED_HZ is high res HZ ("<< 8" is for accuracy)
61 */
62# define SHIFTED_HZ (SH_DIV(CLOCK_TICK_RATE, LATCH, 8))
a7ea3bbf 63#else
02ab20ae 64# define SHIFTED_HZ (HZ << 8)
a7ea3bbf 65#endif
1da177e4 66
02ab20ae
JS
67/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
68#define TICK_NSEC (SH_DIV(1000000UL * 1000, SHIFTED_HZ, 8))
1da177e4
LT
69
70/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
71#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
72
1da177e4
LT
73/* some arch's have a small-data section that can be accessed register-relative
74 * but that can only take up to, say, 4-byte variables. jiffies being part of
75 * an 8-byte variable may not be correctly accessed unless we force the issue
76 */
77#define __jiffy_data __attribute__((section(".data")))
78
79/*
98c4f0c3 80 * The 64-bit value is not atomic - you MUST NOT read it
1da177e4
LT
81 * without sampling the sequence number in xtime_lock.
82 * get_jiffies_64() will do this for you as appropriate.
83 */
84extern u64 __jiffy_data jiffies_64;
85extern unsigned long volatile __jiffy_data jiffies;
86
87#if (BITS_PER_LONG < 64)
88u64 get_jiffies_64(void);
89#else
90static inline u64 get_jiffies_64(void)
91{
92 return (u64)jiffies;
93}
94#endif
95
96/*
97 * These inlines deal with timer wrapping correctly. You are
98 * strongly encouraged to use them
99 * 1. Because people otherwise forget
100 * 2. Because if the timer wrap changes in future you won't have to
101 * alter your driver code.
102 *
103 * time_after(a,b) returns true if the time a is after time b.
104 *
105 * Do this with "<0" and ">=0" to only test the sign of the result. A
106 * good compiler would generate better code (and a really good compiler
107 * wouldn't care). Gcc is currently neither.
108 */
109#define time_after(a,b) \
110 (typecheck(unsigned long, a) && \
111 typecheck(unsigned long, b) && \
112 ((long)(b) - (long)(a) < 0))
113#define time_before(a,b) time_after(b,a)
114
115#define time_after_eq(a,b) \
116 (typecheck(unsigned long, a) && \
117 typecheck(unsigned long, b) && \
118 ((long)(a) - (long)(b) >= 0))
119#define time_before_eq(a,b) time_after_eq(b,a)
120
64672d55
PS
121/*
122 * Calculate whether a is in the range of [b, c].
123 */
c7e15961
FOL
124#define time_in_range(a,b,c) \
125 (time_after_eq(a,b) && \
126 time_before_eq(a,c))
127
64672d55
PS
128/*
129 * Calculate whether a is in the range of [b, c).
130 */
131#define time_in_range_open(a,b,c) \
132 (time_after_eq(a,b) && \
133 time_before(a,c))
134
3b171672
DZ
135/* Same as above, but does so with platform independent 64bit types.
136 * These must be used when utilizing jiffies_64 (i.e. return value of
137 * get_jiffies_64() */
138#define time_after64(a,b) \
139 (typecheck(__u64, a) && \
140 typecheck(__u64, b) && \
141 ((__s64)(b) - (__s64)(a) < 0))
142#define time_before64(a,b) time_after64(b,a)
143
144#define time_after_eq64(a,b) \
145 (typecheck(__u64, a) && \
146 typecheck(__u64, b) && \
147 ((__s64)(a) - (__s64)(b) >= 0))
148#define time_before_eq64(a,b) time_after_eq64(b,a)
149
3f34d024
DY
150/*
151 * These four macros compare jiffies and 'a' for convenience.
152 */
153
154/* time_is_before_jiffies(a) return true if a is before jiffies */
155#define time_is_before_jiffies(a) time_after(jiffies, a)
156
157/* time_is_after_jiffies(a) return true if a is after jiffies */
158#define time_is_after_jiffies(a) time_before(jiffies, a)
159
160/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
161#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
162
163/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
164#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
165
1da177e4
LT
166/*
167 * Have the 32 bit jiffies value wrap 5 minutes after boot
168 * so jiffies wrap bugs show up earlier.
169 */
170#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
171
172/*
173 * Change timeval to jiffies, trying to avoid the
174 * most obvious overflows..
175 *
176 * And some not so obvious.
177 *
9f907c01 178 * Note that we don't want to return LONG_MAX, because
1da177e4
LT
179 * for various timeout reasons we often end up having
180 * to wait "jiffies+1" in order to guarantee that we wait
181 * at _least_ "jiffies" - so "jiffies+1" had better still
182 * be positive.
183 */
9f907c01 184#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
1da177e4 185
bfe8df3d
RD
186extern unsigned long preset_lpj;
187
1da177e4
LT
188/*
189 * We want to do realistic conversions of time so we need to use the same
190 * values the update wall clock code uses as the jiffies size. This value
191 * is: TICK_NSEC (which is defined in timex.h). This
3eb05676 192 * is a constant and is in nanoseconds. We will use scaled math
1da177e4
LT
193 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
194 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
195 * constants and so are computed at compile time. SHIFT_HZ (computed in
196 * timex.h) adjusts the scaling for different HZ values.
197
198 * Scaled math??? What is that?
199 *
200 * Scaled math is a way to do integer math on values that would,
201 * otherwise, either overflow, underflow, or cause undesired div
202 * instructions to appear in the execution path. In short, we "scale"
203 * up the operands so they take more bits (more precision, less
204 * underflow), do the desired operation and then "scale" the result back
205 * by the same amount. If we do the scaling by shifting we avoid the
206 * costly mpy and the dastardly div instructions.
207
208 * Suppose, for example, we want to convert from seconds to jiffies
209 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
210 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
211 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
212 * might calculate at compile time, however, the result will only have
213 * about 3-4 bits of precision (less for smaller values of HZ).
214 *
215 * So, we scale as follows:
216 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
217 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
218 * Then we make SCALE a power of two so:
219 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
220 * Now we define:
221 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
222 * jiff = (sec * SEC_CONV) >> SCALE;
223 *
224 * Often the math we use will expand beyond 32-bits so we tell C how to
225 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
226 * which should take the result back to 32-bits. We want this expansion
227 * to capture as much precision as possible. At the same time we don't
228 * want to overflow so we pick the SCALE to avoid this. In this file,
229 * that means using a different scale for each range of HZ values (as
230 * defined in timex.h).
231 *
232 * For those who want to know, gcc will give a 64-bit result from a "*"
233 * operator if the result is a long long AND at least one of the
234 * operands is cast to long long (usually just prior to the "*" so as
235 * not to confuse it into thinking it really has a 64-bit operand,
3eb05676 236 * which, buy the way, it can do, but it takes more code and at least 2
1da177e4
LT
237 * mpys).
238
239 * We also need to be aware that one second in nanoseconds is only a
240 * couple of bits away from overflowing a 32-bit word, so we MUST use
241 * 64-bits to get the full range time in nanoseconds.
242
243 */
244
245/*
246 * Here are the scales we will use. One for seconds, nanoseconds and
247 * microseconds.
248 *
249 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
250 * check if the sign bit is set. If not, we bump the shift count by 1.
251 * (Gets an extra bit of precision where we can use it.)
252 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
253 * Haven't tested others.
254
255 * Limits of cpp (for #if expressions) only long (no long long), but
256 * then we only need the most signicant bit.
257 */
258
259#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
260#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
261#undef SEC_JIFFIE_SC
262#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
263#endif
264#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
265#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
266#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
267 TICK_NSEC -1) / (u64)TICK_NSEC))
268
269#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
270 TICK_NSEC -1) / (u64)TICK_NSEC))
271#define USEC_CONVERSION \
272 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
273 TICK_NSEC -1) / (u64)TICK_NSEC))
274/*
275 * USEC_ROUND is used in the timeval to jiffie conversion. See there
276 * for more details. It is the scaled resolution rounding value. Note
277 * that it is a 64-bit value. Since, when it is applied, we are already
278 * in jiffies (albit scaled), it is nothing but the bits we will shift
279 * off.
280 */
281#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
282/*
283 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
284 * into seconds. The 64-bit case will overflow if we are not careful,
285 * so use the messy SH_DIV macro to do it. Still all constants.
286 */
287#if BITS_PER_LONG < 64
288# define MAX_SEC_IN_JIFFIES \
289 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
290#else /* take care of overflow on 64 bits machines */
291# define MAX_SEC_IN_JIFFIES \
292 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
293
294#endif
295
296/*
8b9365d7 297 * Convert various time units to each other:
1da177e4 298 */
8b9365d7
IM
299extern unsigned int jiffies_to_msecs(const unsigned long j);
300extern unsigned int jiffies_to_usecs(const unsigned long j);
301extern unsigned long msecs_to_jiffies(const unsigned int m);
302extern unsigned long usecs_to_jiffies(const unsigned int u);
303extern unsigned long timespec_to_jiffies(const struct timespec *value);
304extern void jiffies_to_timespec(const unsigned long jiffies,
305 struct timespec *value);
306extern unsigned long timeval_to_jiffies(const struct timeval *value);
307extern void jiffies_to_timeval(const unsigned long jiffies,
308 struct timeval *value);
cbbc719f 309extern clock_t jiffies_to_clock_t(unsigned long x);
8b9365d7
IM
310extern unsigned long clock_t_to_jiffies(unsigned long x);
311extern u64 jiffies_64_to_clock_t(u64 x);
312extern u64 nsec_to_clock_t(u64 x);
a1dabb6b 313extern u64 nsecs_to_jiffies64(u64 n);
b7b20df9 314extern unsigned long nsecs_to_jiffies(u64 n);
8b9365d7
IM
315
316#define TIMESTAMP_SIZE 30
1da177e4
LT
317
318#endif