]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/jiffies.h
time/jiffies: Allow CLOCK_TICK_RATE to be undefined
[mirror_ubuntu-bionic-kernel.git] / include / linux / jiffies.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_JIFFIES_H
2#define _LINUX_JIFFIES_H
3
f8bd2258 4#include <linux/math64.h>
1da177e4
LT
5#include <linux/kernel.h>
6#include <linux/types.h>
7#include <linux/time.h>
8#include <linux/timex.h>
9#include <asm/param.h> /* for HZ */
1da177e4
LT
10
11/*
12 * The following defines establish the engineering parameters of the PLL
13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
16 * nearest power of two in order to avoid hardware multiply operations.
17 */
18#if HZ >= 12 && HZ < 24
19# define SHIFT_HZ 4
20#elif HZ >= 24 && HZ < 48
21# define SHIFT_HZ 5
22#elif HZ >= 48 && HZ < 96
23# define SHIFT_HZ 6
24#elif HZ >= 96 && HZ < 192
25# define SHIFT_HZ 7
26#elif HZ >= 192 && HZ < 384
27# define SHIFT_HZ 8
28#elif HZ >= 384 && HZ < 768
29# define SHIFT_HZ 9
30#elif HZ >= 768 && HZ < 1536
31# define SHIFT_HZ 10
e118adef
PM
32#elif HZ >= 1536 && HZ < 3072
33# define SHIFT_HZ 11
34#elif HZ >= 3072 && HZ < 6144
35# define SHIFT_HZ 12
36#elif HZ >= 6144 && HZ < 12288
37# define SHIFT_HZ 13
1da177e4 38#else
37679011 39# error Invalid value of HZ.
1da177e4
LT
40#endif
41
25985edc 42/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
1da177e4
LT
43 * improve accuracy by shifting LSH bits, hence calculating:
44 * (NOM << LSH) / DEN
45 * This however means trouble for large NOM, because (NOM << LSH) may no
46 * longer fit in 32 bits. The following way of calculating this gives us
47 * some slack, under the following conditions:
48 * - (NOM / DEN) fits in (32 - LSH) bits.
49 * - (NOM % DEN) fits in (32 - LSH) bits.
50 */
0d94df56
UZ
51#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
52 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
1da177e4 53
a7ea3bbf
CM
54#ifdef CLOCK_TICK_RATE
55/* LATCH is used in the interval timer and ftape setup. */
56# define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
57
1da177e4 58/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
a7ea3bbf
CM
59# define ACTHZ (SH_DIV(CLOCK_TICK_RATE, LATCH, 8))
60#else
61# define ACTHZ (HZ << 8)
62#endif
1da177e4
LT
63
64/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
65#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
66
67/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
68#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
69
70/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */
71/* a value TUSEC for TICK_USEC (can be set bij adjtimex) */
72#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
73
74/* some arch's have a small-data section that can be accessed register-relative
75 * but that can only take up to, say, 4-byte variables. jiffies being part of
76 * an 8-byte variable may not be correctly accessed unless we force the issue
77 */
78#define __jiffy_data __attribute__((section(".data")))
79
80/*
98c4f0c3 81 * The 64-bit value is not atomic - you MUST NOT read it
1da177e4
LT
82 * without sampling the sequence number in xtime_lock.
83 * get_jiffies_64() will do this for you as appropriate.
84 */
85extern u64 __jiffy_data jiffies_64;
86extern unsigned long volatile __jiffy_data jiffies;
87
88#if (BITS_PER_LONG < 64)
89u64 get_jiffies_64(void);
90#else
91static inline u64 get_jiffies_64(void)
92{
93 return (u64)jiffies;
94}
95#endif
96
97/*
98 * These inlines deal with timer wrapping correctly. You are
99 * strongly encouraged to use them
100 * 1. Because people otherwise forget
101 * 2. Because if the timer wrap changes in future you won't have to
102 * alter your driver code.
103 *
104 * time_after(a,b) returns true if the time a is after time b.
105 *
106 * Do this with "<0" and ">=0" to only test the sign of the result. A
107 * good compiler would generate better code (and a really good compiler
108 * wouldn't care). Gcc is currently neither.
109 */
110#define time_after(a,b) \
111 (typecheck(unsigned long, a) && \
112 typecheck(unsigned long, b) && \
113 ((long)(b) - (long)(a) < 0))
114#define time_before(a,b) time_after(b,a)
115
116#define time_after_eq(a,b) \
117 (typecheck(unsigned long, a) && \
118 typecheck(unsigned long, b) && \
119 ((long)(a) - (long)(b) >= 0))
120#define time_before_eq(a,b) time_after_eq(b,a)
121
64672d55
PS
122/*
123 * Calculate whether a is in the range of [b, c].
124 */
c7e15961
FOL
125#define time_in_range(a,b,c) \
126 (time_after_eq(a,b) && \
127 time_before_eq(a,c))
128
64672d55
PS
129/*
130 * Calculate whether a is in the range of [b, c).
131 */
132#define time_in_range_open(a,b,c) \
133 (time_after_eq(a,b) && \
134 time_before(a,c))
135
3b171672
DZ
136/* Same as above, but does so with platform independent 64bit types.
137 * These must be used when utilizing jiffies_64 (i.e. return value of
138 * get_jiffies_64() */
139#define time_after64(a,b) \
140 (typecheck(__u64, a) && \
141 typecheck(__u64, b) && \
142 ((__s64)(b) - (__s64)(a) < 0))
143#define time_before64(a,b) time_after64(b,a)
144
145#define time_after_eq64(a,b) \
146 (typecheck(__u64, a) && \
147 typecheck(__u64, b) && \
148 ((__s64)(a) - (__s64)(b) >= 0))
149#define time_before_eq64(a,b) time_after_eq64(b,a)
150
3f34d024
DY
151/*
152 * These four macros compare jiffies and 'a' for convenience.
153 */
154
155/* time_is_before_jiffies(a) return true if a is before jiffies */
156#define time_is_before_jiffies(a) time_after(jiffies, a)
157
158/* time_is_after_jiffies(a) return true if a is after jiffies */
159#define time_is_after_jiffies(a) time_before(jiffies, a)
160
161/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
162#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
163
164/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
165#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
166
1da177e4
LT
167/*
168 * Have the 32 bit jiffies value wrap 5 minutes after boot
169 * so jiffies wrap bugs show up earlier.
170 */
171#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
172
173/*
174 * Change timeval to jiffies, trying to avoid the
175 * most obvious overflows..
176 *
177 * And some not so obvious.
178 *
9f907c01 179 * Note that we don't want to return LONG_MAX, because
1da177e4
LT
180 * for various timeout reasons we often end up having
181 * to wait "jiffies+1" in order to guarantee that we wait
182 * at _least_ "jiffies" - so "jiffies+1" had better still
183 * be positive.
184 */
9f907c01 185#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
1da177e4 186
bfe8df3d
RD
187extern unsigned long preset_lpj;
188
1da177e4
LT
189/*
190 * We want to do realistic conversions of time so we need to use the same
191 * values the update wall clock code uses as the jiffies size. This value
192 * is: TICK_NSEC (which is defined in timex.h). This
3eb05676 193 * is a constant and is in nanoseconds. We will use scaled math
1da177e4
LT
194 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
195 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
196 * constants and so are computed at compile time. SHIFT_HZ (computed in
197 * timex.h) adjusts the scaling for different HZ values.
198
199 * Scaled math??? What is that?
200 *
201 * Scaled math is a way to do integer math on values that would,
202 * otherwise, either overflow, underflow, or cause undesired div
203 * instructions to appear in the execution path. In short, we "scale"
204 * up the operands so they take more bits (more precision, less
205 * underflow), do the desired operation and then "scale" the result back
206 * by the same amount. If we do the scaling by shifting we avoid the
207 * costly mpy and the dastardly div instructions.
208
209 * Suppose, for example, we want to convert from seconds to jiffies
210 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
211 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
212 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
213 * might calculate at compile time, however, the result will only have
214 * about 3-4 bits of precision (less for smaller values of HZ).
215 *
216 * So, we scale as follows:
217 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
218 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
219 * Then we make SCALE a power of two so:
220 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
221 * Now we define:
222 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
223 * jiff = (sec * SEC_CONV) >> SCALE;
224 *
225 * Often the math we use will expand beyond 32-bits so we tell C how to
226 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
227 * which should take the result back to 32-bits. We want this expansion
228 * to capture as much precision as possible. At the same time we don't
229 * want to overflow so we pick the SCALE to avoid this. In this file,
230 * that means using a different scale for each range of HZ values (as
231 * defined in timex.h).
232 *
233 * For those who want to know, gcc will give a 64-bit result from a "*"
234 * operator if the result is a long long AND at least one of the
235 * operands is cast to long long (usually just prior to the "*" so as
236 * not to confuse it into thinking it really has a 64-bit operand,
3eb05676 237 * which, buy the way, it can do, but it takes more code and at least 2
1da177e4
LT
238 * mpys).
239
240 * We also need to be aware that one second in nanoseconds is only a
241 * couple of bits away from overflowing a 32-bit word, so we MUST use
242 * 64-bits to get the full range time in nanoseconds.
243
244 */
245
246/*
247 * Here are the scales we will use. One for seconds, nanoseconds and
248 * microseconds.
249 *
250 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
251 * check if the sign bit is set. If not, we bump the shift count by 1.
252 * (Gets an extra bit of precision where we can use it.)
253 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
254 * Haven't tested others.
255
256 * Limits of cpp (for #if expressions) only long (no long long), but
257 * then we only need the most signicant bit.
258 */
259
260#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
261#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
262#undef SEC_JIFFIE_SC
263#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
264#endif
265#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
266#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
267#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
268 TICK_NSEC -1) / (u64)TICK_NSEC))
269
270#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
271 TICK_NSEC -1) / (u64)TICK_NSEC))
272#define USEC_CONVERSION \
273 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
274 TICK_NSEC -1) / (u64)TICK_NSEC))
275/*
276 * USEC_ROUND is used in the timeval to jiffie conversion. See there
277 * for more details. It is the scaled resolution rounding value. Note
278 * that it is a 64-bit value. Since, when it is applied, we are already
279 * in jiffies (albit scaled), it is nothing but the bits we will shift
280 * off.
281 */
282#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
283/*
284 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
285 * into seconds. The 64-bit case will overflow if we are not careful,
286 * so use the messy SH_DIV macro to do it. Still all constants.
287 */
288#if BITS_PER_LONG < 64
289# define MAX_SEC_IN_JIFFIES \
290 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
291#else /* take care of overflow on 64 bits machines */
292# define MAX_SEC_IN_JIFFIES \
293 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
294
295#endif
296
297/*
8b9365d7 298 * Convert various time units to each other:
1da177e4 299 */
8b9365d7
IM
300extern unsigned int jiffies_to_msecs(const unsigned long j);
301extern unsigned int jiffies_to_usecs(const unsigned long j);
302extern unsigned long msecs_to_jiffies(const unsigned int m);
303extern unsigned long usecs_to_jiffies(const unsigned int u);
304extern unsigned long timespec_to_jiffies(const struct timespec *value);
305extern void jiffies_to_timespec(const unsigned long jiffies,
306 struct timespec *value);
307extern unsigned long timeval_to_jiffies(const struct timeval *value);
308extern void jiffies_to_timeval(const unsigned long jiffies,
309 struct timeval *value);
cbbc719f 310extern clock_t jiffies_to_clock_t(unsigned long x);
8b9365d7
IM
311extern unsigned long clock_t_to_jiffies(unsigned long x);
312extern u64 jiffies_64_to_clock_t(u64 x);
313extern u64 nsec_to_clock_t(u64 x);
a1dabb6b 314extern u64 nsecs_to_jiffies64(u64 n);
b7b20df9 315extern unsigned long nsecs_to_jiffies(u64 n);
8b9365d7
IM
316
317#define TIMESTAMP_SIZE 30
1da177e4
LT
318
319#endif