]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/ktime.h
[PATCH] add asm-generic/mman.h
[mirror_ubuntu-bionic-kernel.git] / include / linux / ktime.h
CommitLineData
97fc79f9
TG
1/*
2 * include/linux/ktime.h
3 *
4 * ktime_t - nanosecond-resolution time format.
5 *
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8 *
9 * data type definitions, declarations, prototypes and macros.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
66188fae
TG
13 * Credits:
14 *
15 * Roman Zippel provided the ideas and primary code snippets of
16 * the ktime_t union and further simplifications of the original
17 * code.
18 *
97fc79f9
TG
19 * For licencing details see kernel-base/COPYING
20 */
21#ifndef _LINUX_KTIME_H
22#define _LINUX_KTIME_H
23
24#include <linux/time.h>
25#include <linux/jiffies.h>
26
27/*
28 * ktime_t:
29 *
30 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
31 * internal representation of time values in scalar nanoseconds. The
32 * design plays out best on 64-bit CPUs, where most conversions are
33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
34 * operations.
35 *
36 * On 32-bit CPUs an optimized representation of the timespec structure
37 * is used to avoid expensive conversions from and to timespecs. The
38 * endian-aware order of the tv struct members is choosen to allow
39 * mathematical operations on the tv64 member of the union too, which
40 * for certain operations produces better code.
41 *
42 * For architectures with efficient support for 64/32-bit conversions the
43 * plain scalar nanosecond based representation can be selected by the
44 * config switch CONFIG_KTIME_SCALAR.
45 */
46typedef union {
47 s64 tv64;
48#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
49 struct {
50# ifdef __BIG_ENDIAN
51 s32 sec, nsec;
52# else
53 s32 nsec, sec;
54# endif
55 } tv;
56#endif
57} ktime_t;
58
59#define KTIME_MAX (~((u64)1 << 63))
60
61/*
62 * ktime_t definitions when using the 64-bit scalar representation:
63 */
64
65#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
66
67/* Define a ktime_t variable and initialize it to zero: */
68#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
69
70/**
71 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
72 *
73 * @secs: seconds to set
74 * @nsecs: nanoseconds to set
75 *
76 * Return the ktime_t representation of the value
77 */
78static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
79{
80 return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
81}
82
83/* Subtract two ktime_t variables. rem = lhs -rhs: */
84#define ktime_sub(lhs, rhs) \
85 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
86
87/* Add two ktime_t variables. res = lhs + rhs: */
88#define ktime_add(lhs, rhs) \
89 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
90
91/*
92 * Add a ktime_t variable and a scalar nanosecond value.
93 * res = kt + nsval:
94 */
95#define ktime_add_ns(kt, nsval) \
96 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
97
98/* convert a timespec to ktime_t format: */
99#define timespec_to_ktime(ts) ktime_set((ts).tv_sec, (ts).tv_nsec)
100
101/* convert a timeval to ktime_t format: */
102#define timeval_to_ktime(tv) ktime_set((tv).tv_sec, (tv).tv_usec * 1000)
103
104/* Map the ktime_t to timespec conversion to ns_to_timespec function */
105#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
106
107/* Map the ktime_t to timeval conversion to ns_to_timeval function */
108#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
109
110/* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */
111#define ktime_to_clock_t(kt) nsec_to_clock_t((kt).tv64)
112
113/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
114#define ktime_to_ns(kt) ((kt).tv64)
115
116#else
117
118/*
119 * Helper macros/inlines to get the ktime_t math right in the timespec
120 * representation. The macros are sometimes ugly - their actual use is
121 * pretty okay-ish, given the circumstances. We do all this for
122 * performance reasons. The pure scalar nsec_t based code was nice and
123 * simple, but created too many 64-bit / 32-bit conversions and divisions.
124 *
125 * Be especially aware that negative values are represented in a way
126 * that the tv.sec field is negative and the tv.nsec field is greater
127 * or equal to zero but less than nanoseconds per second. This is the
128 * same representation which is used by timespecs.
129 *
130 * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
131 */
132
133/* Define a ktime_t variable and initialize it to zero: */
134#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
135
136/* Set a ktime_t variable to a value in sec/nsec representation: */
137static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
138{
139 return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
140}
141
142/**
143 * ktime_sub - subtract two ktime_t variables
144 *
145 * @lhs: minuend
146 * @rhs: subtrahend
147 *
148 * Returns the remainder of the substraction
149 */
150static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
151{
152 ktime_t res;
153
154 res.tv64 = lhs.tv64 - rhs.tv64;
155 if (res.tv.nsec < 0)
156 res.tv.nsec += NSEC_PER_SEC;
157
158 return res;
159}
160
161/**
162 * ktime_add - add two ktime_t variables
163 *
164 * @add1: addend1
165 * @add2: addend2
166 *
167 * Returns the sum of addend1 and addend2
168 */
169static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
170{
171 ktime_t res;
172
173 res.tv64 = add1.tv64 + add2.tv64;
174 /*
175 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
176 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
177 *
178 * it's equivalent to:
179 * tv.nsec -= NSEC_PER_SEC
180 * tv.sec ++;
181 */
182 if (res.tv.nsec >= NSEC_PER_SEC)
183 res.tv64 += (u32)-NSEC_PER_SEC;
184
185 return res;
186}
187
188/**
189 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
190 *
191 * @kt: addend
192 * @nsec: the scalar nsec value to add
193 *
194 * Returns the sum of kt and nsec in ktime_t format
195 */
196extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
197
198/**
199 * timespec_to_ktime - convert a timespec to ktime_t format
200 *
201 * @ts: the timespec variable to convert
202 *
203 * Returns a ktime_t variable with the converted timespec value
204 */
205static inline ktime_t timespec_to_ktime(const struct timespec ts)
206{
207 return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
208 .nsec = (s32)ts.tv_nsec } };
209}
210
211/**
212 * timeval_to_ktime - convert a timeval to ktime_t format
213 *
214 * @tv: the timeval variable to convert
215 *
216 * Returns a ktime_t variable with the converted timeval value
217 */
218static inline ktime_t timeval_to_ktime(const struct timeval tv)
219{
220 return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
221 .nsec = (s32)tv.tv_usec * 1000 } };
222}
223
224/**
225 * ktime_to_timespec - convert a ktime_t variable to timespec format
226 *
227 * @kt: the ktime_t variable to convert
228 *
229 * Returns the timespec representation of the ktime value
230 */
231static inline struct timespec ktime_to_timespec(const ktime_t kt)
232{
233 return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
234 .tv_nsec = (long) kt.tv.nsec };
235}
236
237/**
238 * ktime_to_timeval - convert a ktime_t variable to timeval format
239 *
240 * @kt: the ktime_t variable to convert
241 *
242 * Returns the timeval representation of the ktime value
243 */
244static inline struct timeval ktime_to_timeval(const ktime_t kt)
245{
246 return (struct timeval) {
247 .tv_sec = (time_t) kt.tv.sec,
248 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
249}
250
251/**
252 * ktime_to_clock_t - convert a ktime_t variable to clock_t format
253 * @kt: the ktime_t variable to convert
254 *
255 * Returns a clock_t variable with the converted value
256 */
257static inline clock_t ktime_to_clock_t(const ktime_t kt)
258{
259 return nsec_to_clock_t( (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec);
260}
261
262/**
263 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
264 * @kt: the ktime_t variable to convert
265 *
266 * Returns the scalar nanoseconds representation of kt
267 */
268static inline u64 ktime_to_ns(const ktime_t kt)
269{
270 return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
271}
272
273#endif
274
c0a31329
TG
275/*
276 * The resolution of the clocks. The resolution value is returned in
277 * the clock_getres() system call to give application programmers an
278 * idea of the (in)accuracy of timers. Timer values are rounded up to
279 * this resolution values.
280 */
e2787630
TG
281#define KTIME_REALTIME_RES (ktime_t){ .tv64 = TICK_NSEC }
282#define KTIME_MONOTONIC_RES (ktime_t){ .tv64 = TICK_NSEC }
c0a31329
TG
283
284/* Get the monotonic time in timespec format: */
285extern void ktime_get_ts(struct timespec *ts);
286
287/* Get the real (wall-) time in timespec format: */
288#define ktime_get_real_ts(ts) getnstimeofday(ts)
289
97fc79f9 290#endif