]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/mm.h
ACPI: fix acpi_find_child_device() invocation in acpi_preset_companion()
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
1da177e4
LT
28
29struct mempolicy;
30struct anon_vma;
bf181b9f 31struct anon_vma_chain;
4e950f6f 32struct file_ra_state;
e8edc6e0 33struct user_struct;
4e950f6f 34struct writeback_control;
682aa8e1 35struct bdi_writeback;
1da177e4 36
597b7305
MH
37void init_mm_internals(void);
38
fccc9987 39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 40extern unsigned long max_mapnr;
fccc9987
JL
41
42static inline void set_max_mapnr(unsigned long limit)
43{
44 max_mapnr = limit;
45}
46#else
47static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
48#endif
49
4481374c 50extern unsigned long totalram_pages;
1da177e4 51extern void * high_memory;
1da177e4
LT
52extern int page_cluster;
53
54#ifdef CONFIG_SYSCTL
55extern int sysctl_legacy_va_layout;
56#else
57#define sysctl_legacy_va_layout 0
58#endif
59
d07e2259
DC
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61extern const int mmap_rnd_bits_min;
62extern const int mmap_rnd_bits_max;
63extern int mmap_rnd_bits __read_mostly;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66extern const int mmap_rnd_compat_bits_min;
67extern const int mmap_rnd_compat_bits_max;
68extern int mmap_rnd_compat_bits __read_mostly;
69#endif
70
1da177e4
LT
71#include <asm/page.h>
72#include <asm/pgtable.h>
73#include <asm/processor.h>
1da177e4 74
79442ed1
TC
75#ifndef __pa_symbol
76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77#endif
78
1dff8083
AB
79#ifndef page_to_virt
80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81#endif
82
568c5fe5
LA
83#ifndef lm_alias
84#define lm_alias(x) __va(__pa_symbol(x))
85#endif
86
593befa6
DD
87/*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94#ifndef mm_forbids_zeropage
95#define mm_forbids_zeropage(X) (0)
96#endif
97
a4a3ede2
PT
98/*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103#ifndef mm_zero_struct_page
104#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105#endif
106
ea606cf5
AR
107/*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123#define MAPCOUNT_ELF_CORE_MARGIN (5)
124#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126extern int sysctl_max_map_count;
127
c9b1d098 128extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 129extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 130
49f0ce5f
JM
131extern int sysctl_overcommit_memory;
132extern int sysctl_overcommit_ratio;
133extern unsigned long sysctl_overcommit_kbytes;
134
135extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
1da177e4
LT
140#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
27ac792c
AR
142/* to align the pointer to the (next) page boundary */
143#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
0fa73b86 145/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 146#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 147
1da177e4
LT
148/*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
0d2c7e02 157struct vm_area_struct *vm_area_alloc(struct mm_struct *);
e88c5cf9
LT
158struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
159void vm_area_free(struct vm_area_struct *);
c43692e8 160
1da177e4 161#ifndef CONFIG_MMU
8feae131
DH
162extern struct rb_root nommu_region_tree;
163extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
164
165extern unsigned int kobjsize(const void *objp);
166#endif
167
168/*
605d9288 169 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 170 * When changing, update also include/trace/events/mmflags.h
1da177e4 171 */
cc2383ec
KK
172#define VM_NONE 0x00000000
173
1da177e4
LT
174#define VM_READ 0x00000001 /* currently active flags */
175#define VM_WRITE 0x00000002
176#define VM_EXEC 0x00000004
177#define VM_SHARED 0x00000008
178
7e2cff42 179/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
180#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
181#define VM_MAYWRITE 0x00000020
182#define VM_MAYEXEC 0x00000040
183#define VM_MAYSHARE 0x00000080
184
185#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 186#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 187#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 188#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 189#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 190
1da177e4
LT
191#define VM_LOCKED 0x00002000
192#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
193
194 /* Used by sys_madvise() */
195#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
196#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
197
198#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
199#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 200#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 201#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 202#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 203#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 204#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 205#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 206#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 207#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 208
d9104d1c
CG
209#ifdef CONFIG_MEM_SOFT_DIRTY
210# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
211#else
212# define VM_SOFTDIRTY 0
213#endif
214
b379d790 215#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
216#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
217#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 218#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 219
63c17fb8
DH
220#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
221#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 225#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
226#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
227#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
228#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
229#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 230#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
231#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
232
cc2383ec
KK
233#if defined(CONFIG_X86)
234# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
235#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
236# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
237# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
238# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
239# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
240# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
241#endif
cc2383ec
KK
242#elif defined(CONFIG_PPC)
243# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
244#elif defined(CONFIG_PARISC)
245# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
246#elif defined(CONFIG_METAG)
247# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
248#elif defined(CONFIG_IA64)
249# define VM_GROWSUP VM_ARCH_1
250#elif !defined(CONFIG_MMU)
251# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
252#endif
253
df3735c5 254#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 255/* MPX specific bounds table or bounds directory */
fa87b91c 256# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
257#else
258# define VM_MPX VM_NONE
4aae7e43
QR
259#endif
260
cc2383ec
KK
261#ifndef VM_GROWSUP
262# define VM_GROWSUP VM_NONE
263#endif
264
a8bef8ff
MG
265/* Bits set in the VMA until the stack is in its final location */
266#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
267
1da177e4
LT
268#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
269#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
270#endif
271
272#ifdef CONFIG_STACK_GROWSUP
30bdbb78 273#define VM_STACK VM_GROWSUP
1da177e4 274#else
30bdbb78 275#define VM_STACK VM_GROWSDOWN
1da177e4
LT
276#endif
277
30bdbb78
KK
278#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
279
b291f000 280/*
78f11a25
AA
281 * Special vmas that are non-mergable, non-mlock()able.
282 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 283 */
9050d7eb 284#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 285
a0715cc2
AT
286/* This mask defines which mm->def_flags a process can inherit its parent */
287#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
288
de60f5f1
EM
289/* This mask is used to clear all the VMA flags used by mlock */
290#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
291
1da177e4
LT
292/*
293 * mapping from the currently active vm_flags protection bits (the
294 * low four bits) to a page protection mask..
295 */
296extern pgprot_t protection_map[16];
297
d0217ac0 298#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
299#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
300#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
301#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
302#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
303#define FAULT_FLAG_TRIED 0x20 /* Second try */
304#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 305#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 306#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 307
282a8e03
RZ
308#define FAULT_FLAG_TRACE \
309 { FAULT_FLAG_WRITE, "WRITE" }, \
310 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
311 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
312 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
313 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
314 { FAULT_FLAG_TRIED, "TRIED" }, \
315 { FAULT_FLAG_USER, "USER" }, \
316 { FAULT_FLAG_REMOTE, "REMOTE" }, \
317 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
318
54cb8821 319/*
d0217ac0 320 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
321 * ->fault function. The vma's ->fault is responsible for returning a bitmask
322 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 323 *
c20cd45e
MH
324 * MM layer fills up gfp_mask for page allocations but fault handler might
325 * alter it if its implementation requires a different allocation context.
326 *
9b4bdd2f 327 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 328 */
d0217ac0 329struct vm_fault {
82b0f8c3 330 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 331 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 332 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 333 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 334 unsigned long address; /* Faulting virtual address */
82b0f8c3 335 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 336 * the 'address' */
a2d58167
DJ
337 pud_t *pud; /* Pointer to pud entry matching
338 * the 'address'
339 */
2994302b 340 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 341
3917048d
JK
342 struct page *cow_page; /* Page handler may use for COW fault */
343 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 344 struct page *page; /* ->fault handlers should return a
83c54070 345 * page here, unless VM_FAULT_NOPAGE
d0217ac0 346 * is set (which is also implied by
83c54070 347 * VM_FAULT_ERROR).
d0217ac0 348 */
82b0f8c3 349 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
350 pte_t *pte; /* Pointer to pte entry matching
351 * the 'address'. NULL if the page
352 * table hasn't been allocated.
353 */
354 spinlock_t *ptl; /* Page table lock.
355 * Protects pte page table if 'pte'
356 * is not NULL, otherwise pmd.
357 */
7267ec00
KS
358 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
359 * vm_ops->map_pages() calls
360 * alloc_set_pte() from atomic context.
361 * do_fault_around() pre-allocates
362 * page table to avoid allocation from
363 * atomic context.
364 */
54cb8821 365};
1da177e4 366
c791ace1
DJ
367/* page entry size for vm->huge_fault() */
368enum page_entry_size {
369 PE_SIZE_PTE = 0,
370 PE_SIZE_PMD,
371 PE_SIZE_PUD,
372};
373
1da177e4
LT
374/*
375 * These are the virtual MM functions - opening of an area, closing and
376 * unmapping it (needed to keep files on disk up-to-date etc), pointer
377 * to the functions called when a no-page or a wp-page exception occurs.
378 */
379struct vm_operations_struct {
380 void (*open)(struct vm_area_struct * area);
381 void (*close)(struct vm_area_struct * area);
31383c68 382 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 383 int (*mremap)(struct vm_area_struct * area);
11bac800 384 int (*fault)(struct vm_fault *vmf);
c791ace1 385 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 386 void (*map_pages)(struct vm_fault *vmf,
bae473a4 387 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
388
389 /* notification that a previously read-only page is about to become
390 * writable, if an error is returned it will cause a SIGBUS */
11bac800 391 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 392
dd906184 393 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 394 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 395
28b2ee20
RR
396 /* called by access_process_vm when get_user_pages() fails, typically
397 * for use by special VMAs that can switch between memory and hardware
398 */
399 int (*access)(struct vm_area_struct *vma, unsigned long addr,
400 void *buf, int len, int write);
78d683e8
AL
401
402 /* Called by the /proc/PID/maps code to ask the vma whether it
403 * has a special name. Returning non-NULL will also cause this
404 * vma to be dumped unconditionally. */
405 const char *(*name)(struct vm_area_struct *vma);
406
1da177e4 407#ifdef CONFIG_NUMA
a6020ed7
LS
408 /*
409 * set_policy() op must add a reference to any non-NULL @new mempolicy
410 * to hold the policy upon return. Caller should pass NULL @new to
411 * remove a policy and fall back to surrounding context--i.e. do not
412 * install a MPOL_DEFAULT policy, nor the task or system default
413 * mempolicy.
414 */
1da177e4 415 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
416
417 /*
418 * get_policy() op must add reference [mpol_get()] to any policy at
419 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
420 * in mm/mempolicy.c will do this automatically.
421 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
422 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
423 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
424 * must return NULL--i.e., do not "fallback" to task or system default
425 * policy.
426 */
1da177e4
LT
427 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
428 unsigned long addr);
429#endif
667a0a06
DV
430 /*
431 * Called by vm_normal_page() for special PTEs to find the
432 * page for @addr. This is useful if the default behavior
433 * (using pte_page()) would not find the correct page.
434 */
435 struct page *(*find_special_page)(struct vm_area_struct *vma,
436 unsigned long addr);
1da177e4
LT
437};
438
439struct mmu_gather;
440struct inode;
441
349aef0b
AM
442#define page_private(page) ((page)->private)
443#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 444
5c7fb56e
DW
445#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
446static inline int pmd_devmap(pmd_t pmd)
447{
448 return 0;
449}
a00cc7d9
MW
450static inline int pud_devmap(pud_t pud)
451{
452 return 0;
453}
b59f65fa
KS
454static inline int pgd_devmap(pgd_t pgd)
455{
456 return 0;
457}
5c7fb56e
DW
458#endif
459
1da177e4
LT
460/*
461 * FIXME: take this include out, include page-flags.h in
462 * files which need it (119 of them)
463 */
464#include <linux/page-flags.h>
71e3aac0 465#include <linux/huge_mm.h>
1da177e4
LT
466
467/*
468 * Methods to modify the page usage count.
469 *
470 * What counts for a page usage:
471 * - cache mapping (page->mapping)
472 * - private data (page->private)
473 * - page mapped in a task's page tables, each mapping
474 * is counted separately
475 *
476 * Also, many kernel routines increase the page count before a critical
477 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
478 */
479
480/*
da6052f7 481 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 482 */
7c8ee9a8
NP
483static inline int put_page_testzero(struct page *page)
484{
fe896d18
JK
485 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
486 return page_ref_dec_and_test(page);
7c8ee9a8 487}
1da177e4
LT
488
489/*
7c8ee9a8
NP
490 * Try to grab a ref unless the page has a refcount of zero, return false if
491 * that is the case.
8e0861fa
AK
492 * This can be called when MMU is off so it must not access
493 * any of the virtual mappings.
1da177e4 494 */
7c8ee9a8
NP
495static inline int get_page_unless_zero(struct page *page)
496{
fe896d18 497 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 498}
1da177e4 499
53df8fdc 500extern int page_is_ram(unsigned long pfn);
124fe20d
DW
501
502enum {
503 REGION_INTERSECTS,
504 REGION_DISJOINT,
505 REGION_MIXED,
506};
507
1c29f25b
TK
508int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
509 unsigned long desc);
53df8fdc 510
48667e7a 511/* Support for virtually mapped pages */
b3bdda02
CL
512struct page *vmalloc_to_page(const void *addr);
513unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 514
0738c4bb
PM
515/*
516 * Determine if an address is within the vmalloc range
517 *
518 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
519 * is no special casing required.
520 */
bb00a789 521static inline bool is_vmalloc_addr(const void *x)
9e2779fa 522{
0738c4bb 523#ifdef CONFIG_MMU
9e2779fa
CL
524 unsigned long addr = (unsigned long)x;
525
526 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 527#else
bb00a789 528 return false;
8ca3ed87 529#endif
0738c4bb 530}
81ac3ad9
KH
531#ifdef CONFIG_MMU
532extern int is_vmalloc_or_module_addr(const void *x);
533#else
934831d0 534static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
535{
536 return 0;
537}
538#endif
9e2779fa 539
a7c3e901
MH
540extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
541static inline void *kvmalloc(size_t size, gfp_t flags)
542{
543 return kvmalloc_node(size, flags, NUMA_NO_NODE);
544}
545static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
546{
547 return kvmalloc_node(size, flags | __GFP_ZERO, node);
548}
549static inline void *kvzalloc(size_t size, gfp_t flags)
550{
551 return kvmalloc(size, flags | __GFP_ZERO);
552}
553
752ade68
MH
554static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
555{
556 if (size != 0 && n > SIZE_MAX / size)
557 return NULL;
558
559 return kvmalloc(n * size, flags);
560}
561
39f1f78d
AV
562extern void kvfree(const void *addr);
563
53f9263b
KS
564static inline int compound_mapcount(struct page *page)
565{
5f527c2b 566 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
567 page = compound_head(page);
568 return atomic_read(compound_mapcount_ptr(page)) + 1;
569}
570
70b50f94
AA
571/*
572 * The atomic page->_mapcount, starts from -1: so that transitions
573 * both from it and to it can be tracked, using atomic_inc_and_test
574 * and atomic_add_negative(-1).
575 */
22b751c3 576static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
577{
578 atomic_set(&(page)->_mapcount, -1);
579}
580
b20ce5e0
KS
581int __page_mapcount(struct page *page);
582
70b50f94
AA
583static inline int page_mapcount(struct page *page)
584{
1d148e21 585 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 586
b20ce5e0
KS
587 if (unlikely(PageCompound(page)))
588 return __page_mapcount(page);
589 return atomic_read(&page->_mapcount) + 1;
590}
591
592#ifdef CONFIG_TRANSPARENT_HUGEPAGE
593int total_mapcount(struct page *page);
6d0a07ed 594int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
595#else
596static inline int total_mapcount(struct page *page)
597{
598 return page_mapcount(page);
70b50f94 599}
6d0a07ed
AA
600static inline int page_trans_huge_mapcount(struct page *page,
601 int *total_mapcount)
602{
603 int mapcount = page_mapcount(page);
604 if (total_mapcount)
605 *total_mapcount = mapcount;
606 return mapcount;
607}
b20ce5e0 608#endif
70b50f94 609
b49af68f
CL
610static inline struct page *virt_to_head_page(const void *x)
611{
612 struct page *page = virt_to_page(x);
ccaafd7f 613
1d798ca3 614 return compound_head(page);
b49af68f
CL
615}
616
ddc58f27
KS
617void __put_page(struct page *page);
618
1d7ea732 619void put_pages_list(struct list_head *pages);
1da177e4 620
8dfcc9ba 621void split_page(struct page *page, unsigned int order);
8dfcc9ba 622
33f2ef89
AW
623/*
624 * Compound pages have a destructor function. Provide a
625 * prototype for that function and accessor functions.
f1e61557 626 * These are _only_ valid on the head of a compound page.
33f2ef89 627 */
f1e61557
KS
628typedef void compound_page_dtor(struct page *);
629
630/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
631enum compound_dtor_id {
632 NULL_COMPOUND_DTOR,
633 COMPOUND_PAGE_DTOR,
634#ifdef CONFIG_HUGETLB_PAGE
635 HUGETLB_PAGE_DTOR,
9a982250
KS
636#endif
637#ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
639#endif
640 NR_COMPOUND_DTORS,
641};
642extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
643
644static inline void set_compound_page_dtor(struct page *page,
f1e61557 645 enum compound_dtor_id compound_dtor)
33f2ef89 646{
f1e61557
KS
647 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
648 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
649}
650
651static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
652{
f1e61557
KS
653 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
654 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
655}
656
d00181b9 657static inline unsigned int compound_order(struct page *page)
d85f3385 658{
6d777953 659 if (!PageHead(page))
d85f3385 660 return 0;
e4b294c2 661 return page[1].compound_order;
d85f3385
CL
662}
663
f1e61557 664static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 665{
e4b294c2 666 page[1].compound_order = order;
d85f3385
CL
667}
668
9a982250
KS
669void free_compound_page(struct page *page);
670
3dece370 671#ifdef CONFIG_MMU
14fd403f
AA
672/*
673 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
674 * servicing faults for write access. In the normal case, do always want
675 * pte_mkwrite. But get_user_pages can cause write faults for mappings
676 * that do not have writing enabled, when used by access_process_vm.
677 */
678static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
679{
680 if (likely(vma->vm_flags & VM_WRITE))
681 pte = pte_mkwrite(pte);
682 return pte;
683}
8c6e50b0 684
82b0f8c3 685int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 686 struct page *page);
9118c0cb 687int finish_fault(struct vm_fault *vmf);
66a6197c 688int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 689#endif
14fd403f 690
1da177e4
LT
691/*
692 * Multiple processes may "see" the same page. E.g. for untouched
693 * mappings of /dev/null, all processes see the same page full of
694 * zeroes, and text pages of executables and shared libraries have
695 * only one copy in memory, at most, normally.
696 *
697 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
698 * page_count() == 0 means the page is free. page->lru is then used for
699 * freelist management in the buddy allocator.
da6052f7 700 * page_count() > 0 means the page has been allocated.
1da177e4 701 *
da6052f7
NP
702 * Pages are allocated by the slab allocator in order to provide memory
703 * to kmalloc and kmem_cache_alloc. In this case, the management of the
704 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
705 * unless a particular usage is carefully commented. (the responsibility of
706 * freeing the kmalloc memory is the caller's, of course).
1da177e4 707 *
da6052f7
NP
708 * A page may be used by anyone else who does a __get_free_page().
709 * In this case, page_count still tracks the references, and should only
710 * be used through the normal accessor functions. The top bits of page->flags
711 * and page->virtual store page management information, but all other fields
712 * are unused and could be used privately, carefully. The management of this
713 * page is the responsibility of the one who allocated it, and those who have
714 * subsequently been given references to it.
715 *
716 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
717 * managed by the Linux memory manager: I/O, buffers, swapping etc.
718 * The following discussion applies only to them.
719 *
da6052f7
NP
720 * A pagecache page contains an opaque `private' member, which belongs to the
721 * page's address_space. Usually, this is the address of a circular list of
722 * the page's disk buffers. PG_private must be set to tell the VM to call
723 * into the filesystem to release these pages.
1da177e4 724 *
da6052f7
NP
725 * A page may belong to an inode's memory mapping. In this case, page->mapping
726 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 727 * in units of PAGE_SIZE.
1da177e4 728 *
da6052f7
NP
729 * If pagecache pages are not associated with an inode, they are said to be
730 * anonymous pages. These may become associated with the swapcache, and in that
731 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 732 *
da6052f7
NP
733 * In either case (swapcache or inode backed), the pagecache itself holds one
734 * reference to the page. Setting PG_private should also increment the
735 * refcount. The each user mapping also has a reference to the page.
1da177e4 736 *
da6052f7
NP
737 * The pagecache pages are stored in a per-mapping radix tree, which is
738 * rooted at mapping->page_tree, and indexed by offset.
739 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
740 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 741 *
da6052f7 742 * All pagecache pages may be subject to I/O:
1da177e4
LT
743 * - inode pages may need to be read from disk,
744 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
745 * to be written back to the inode on disk,
746 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
747 * modified may need to be swapped out to swap space and (later) to be read
748 * back into memory.
1da177e4
LT
749 */
750
751/*
752 * The zone field is never updated after free_area_init_core()
753 * sets it, so none of the operations on it need to be atomic.
1da177e4 754 */
348f8b6c 755
90572890 756/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 757#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
758#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
759#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 760#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 761
348f8b6c 762/*
25985edc 763 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
764 * sections we define the shift as 0; that plus a 0 mask ensures
765 * the compiler will optimise away reference to them.
766 */
d41dee36
AW
767#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
768#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
769#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 770#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 771
bce54bbf
WD
772/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
773#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 774#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
775#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
776 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 777#else
89689ae7 778#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
779#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
780 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
781#endif
782
bd8029b6 783#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 784
9223b419
CL
785#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
786#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
787#endif
788
d41dee36
AW
789#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
790#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
791#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 792#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 793#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 794
33dd4e0e 795static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 796{
348f8b6c 797 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 798}
1da177e4 799
260ae3f7
DW
800#ifdef CONFIG_ZONE_DEVICE
801static inline bool is_zone_device_page(const struct page *page)
802{
803 return page_zonenum(page) == ZONE_DEVICE;
804}
805#else
806static inline bool is_zone_device_page(const struct page *page)
807{
808 return false;
809}
7b2d55d2 810#endif
5042db43 811
6b368cd4 812#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
df6ad698 813void put_zone_device_private_or_public_page(struct page *page);
6b368cd4
JG
814DECLARE_STATIC_KEY_FALSE(device_private_key);
815#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
816static inline bool is_device_private_page(const struct page *page);
817static inline bool is_device_public_page(const struct page *page);
818#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
df6ad698 819static inline void put_zone_device_private_or_public_page(struct page *page)
5042db43 820{
5042db43 821}
6b368cd4
JG
822#define IS_HMM_ENABLED 0
823static inline bool is_device_private_page(const struct page *page)
824{
825 return false;
826}
827static inline bool is_device_public_page(const struct page *page)
828{
829 return false;
830}
df6ad698 831#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
260ae3f7 832
7b2d55d2 833
7d225d5f
LT
834/* 127: arbitrary random number, small enough to assemble well */
835#define page_ref_zero_or_close_to_overflow(page) \
836 ((unsigned int) page_ref_count(page) + 127u <= 127u)
837
3565fce3
DW
838static inline void get_page(struct page *page)
839{
840 page = compound_head(page);
841 /*
842 * Getting a normal page or the head of a compound page
0139aa7b 843 * requires to already have an elevated page->_refcount.
3565fce3 844 */
7d225d5f 845 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 846 page_ref_inc(page);
3565fce3
DW
847}
848
16748b28
LT
849static inline __must_check bool try_get_page(struct page *page)
850{
851 page = compound_head(page);
852 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
853 return false;
854 page_ref_inc(page);
855 return true;
856}
857
3565fce3
DW
858static inline void put_page(struct page *page)
859{
860 page = compound_head(page);
861
7b2d55d2
JG
862 /*
863 * For private device pages we need to catch refcount transition from
864 * 2 to 1, when refcount reach one it means the private device page is
865 * free and we need to inform the device driver through callback. See
866 * include/linux/memremap.h and HMM for details.
867 */
6b368cd4
JG
868 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
869 unlikely(is_device_public_page(page)))) {
df6ad698 870 put_zone_device_private_or_public_page(page);
7b2d55d2
JG
871 return;
872 }
873
3565fce3
DW
874 if (put_page_testzero(page))
875 __put_page(page);
3565fce3
DW
876}
877
9127ab4f
CS
878#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
879#define SECTION_IN_PAGE_FLAGS
880#endif
881
89689ae7 882/*
7a8010cd
VB
883 * The identification function is mainly used by the buddy allocator for
884 * determining if two pages could be buddies. We are not really identifying
885 * the zone since we could be using the section number id if we do not have
886 * node id available in page flags.
887 * We only guarantee that it will return the same value for two combinable
888 * pages in a zone.
89689ae7 889 */
cb2b95e1
AW
890static inline int page_zone_id(struct page *page)
891{
89689ae7 892 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
893}
894
25ba77c1 895static inline int zone_to_nid(struct zone *zone)
89fa3024 896{
d5f541ed
CL
897#ifdef CONFIG_NUMA
898 return zone->node;
899#else
900 return 0;
901#endif
89fa3024
CL
902}
903
89689ae7 904#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 905extern int page_to_nid(const struct page *page);
89689ae7 906#else
33dd4e0e 907static inline int page_to_nid(const struct page *page)
d41dee36 908{
89689ae7 909 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 910}
89689ae7
CL
911#endif
912
57e0a030 913#ifdef CONFIG_NUMA_BALANCING
90572890 914static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 915{
90572890 916 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
917}
918
90572890 919static inline int cpupid_to_pid(int cpupid)
57e0a030 920{
90572890 921 return cpupid & LAST__PID_MASK;
57e0a030 922}
b795854b 923
90572890 924static inline int cpupid_to_cpu(int cpupid)
b795854b 925{
90572890 926 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
927}
928
90572890 929static inline int cpupid_to_nid(int cpupid)
b795854b 930{
90572890 931 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
932}
933
90572890 934static inline bool cpupid_pid_unset(int cpupid)
57e0a030 935{
90572890 936 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
937}
938
90572890 939static inline bool cpupid_cpu_unset(int cpupid)
b795854b 940{
90572890 941 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
942}
943
8c8a743c
PZ
944static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
945{
946 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
947}
948
949#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
950#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
951static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 952{
1ae71d03 953 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 954}
90572890
PZ
955
956static inline int page_cpupid_last(struct page *page)
957{
958 return page->_last_cpupid;
959}
960static inline void page_cpupid_reset_last(struct page *page)
b795854b 961{
1ae71d03 962 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
963}
964#else
90572890 965static inline int page_cpupid_last(struct page *page)
75980e97 966{
90572890 967 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
968}
969
90572890 970extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 971
90572890 972static inline void page_cpupid_reset_last(struct page *page)
75980e97 973{
09940a4f 974 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 975}
90572890
PZ
976#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
977#else /* !CONFIG_NUMA_BALANCING */
978static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 979{
90572890 980 return page_to_nid(page); /* XXX */
57e0a030
MG
981}
982
90572890 983static inline int page_cpupid_last(struct page *page)
57e0a030 984{
90572890 985 return page_to_nid(page); /* XXX */
57e0a030
MG
986}
987
90572890 988static inline int cpupid_to_nid(int cpupid)
b795854b
MG
989{
990 return -1;
991}
992
90572890 993static inline int cpupid_to_pid(int cpupid)
b795854b
MG
994{
995 return -1;
996}
997
90572890 998static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
999{
1000 return -1;
1001}
1002
90572890
PZ
1003static inline int cpu_pid_to_cpupid(int nid, int pid)
1004{
1005 return -1;
1006}
1007
1008static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1009{
1010 return 1;
1011}
1012
90572890 1013static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1014{
1015}
8c8a743c
PZ
1016
1017static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1018{
1019 return false;
1020}
90572890 1021#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1022
33dd4e0e 1023static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1024{
1025 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1026}
1027
75ef7184
MG
1028static inline pg_data_t *page_pgdat(const struct page *page)
1029{
1030 return NODE_DATA(page_to_nid(page));
1031}
1032
9127ab4f 1033#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1034static inline void set_page_section(struct page *page, unsigned long section)
1035{
1036 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1037 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1038}
1039
aa462abe 1040static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1041{
1042 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1043}
308c05e3 1044#endif
d41dee36 1045
2f1b6248 1046static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1047{
1048 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1049 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1050}
2f1b6248 1051
348f8b6c
DH
1052static inline void set_page_node(struct page *page, unsigned long node)
1053{
1054 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1055 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1056}
89689ae7 1057
2f1b6248 1058static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1059 unsigned long node, unsigned long pfn)
1da177e4 1060{
348f8b6c
DH
1061 set_page_zone(page, zone);
1062 set_page_node(page, node);
9127ab4f 1063#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1064 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1065#endif
1da177e4
LT
1066}
1067
0610c25d
GT
1068#ifdef CONFIG_MEMCG
1069static inline struct mem_cgroup *page_memcg(struct page *page)
1070{
1071 return page->mem_cgroup;
1072}
55779ec7
JW
1073static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1074{
1075 WARN_ON_ONCE(!rcu_read_lock_held());
1076 return READ_ONCE(page->mem_cgroup);
1077}
0610c25d
GT
1078#else
1079static inline struct mem_cgroup *page_memcg(struct page *page)
1080{
1081 return NULL;
1082}
55779ec7
JW
1083static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1084{
1085 WARN_ON_ONCE(!rcu_read_lock_held());
1086 return NULL;
1087}
0610c25d
GT
1088#endif
1089
f6ac2354
CL
1090/*
1091 * Some inline functions in vmstat.h depend on page_zone()
1092 */
1093#include <linux/vmstat.h>
1094
33dd4e0e 1095static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1096{
1dff8083 1097 return page_to_virt(page);
1da177e4
LT
1098}
1099
1100#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1101#define HASHED_PAGE_VIRTUAL
1102#endif
1103
1104#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1105static inline void *page_address(const struct page *page)
1106{
1107 return page->virtual;
1108}
1109static inline void set_page_address(struct page *page, void *address)
1110{
1111 page->virtual = address;
1112}
1da177e4
LT
1113#define page_address_init() do { } while(0)
1114#endif
1115
1116#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1117void *page_address(const struct page *page);
1da177e4
LT
1118void set_page_address(struct page *page, void *virtual);
1119void page_address_init(void);
1120#endif
1121
1122#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1123#define page_address(page) lowmem_page_address(page)
1124#define set_page_address(page, address) do { } while(0)
1125#define page_address_init() do { } while(0)
1126#endif
1127
e39155ea
KS
1128extern void *page_rmapping(struct page *page);
1129extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1130extern struct address_space *page_mapping(struct page *page);
1da177e4 1131
f981c595
MG
1132extern struct address_space *__page_file_mapping(struct page *);
1133
1134static inline
1135struct address_space *page_file_mapping(struct page *page)
1136{
1137 if (unlikely(PageSwapCache(page)))
1138 return __page_file_mapping(page);
1139
1140 return page->mapping;
1141}
1142
f6ab1f7f
HY
1143extern pgoff_t __page_file_index(struct page *page);
1144
1da177e4
LT
1145/*
1146 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1147 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1148 */
1149static inline pgoff_t page_index(struct page *page)
1150{
1151 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1152 return __page_file_index(page);
1da177e4
LT
1153 return page->index;
1154}
1155
1aa8aea5 1156bool page_mapped(struct page *page);
bda807d4 1157struct address_space *page_mapping(struct page *page);
1da177e4 1158
2f064f34
MH
1159/*
1160 * Return true only if the page has been allocated with
1161 * ALLOC_NO_WATERMARKS and the low watermark was not
1162 * met implying that the system is under some pressure.
1163 */
1164static inline bool page_is_pfmemalloc(struct page *page)
1165{
1166 /*
1167 * Page index cannot be this large so this must be
1168 * a pfmemalloc page.
1169 */
1170 return page->index == -1UL;
1171}
1172
1173/*
1174 * Only to be called by the page allocator on a freshly allocated
1175 * page.
1176 */
1177static inline void set_page_pfmemalloc(struct page *page)
1178{
1179 page->index = -1UL;
1180}
1181
1182static inline void clear_page_pfmemalloc(struct page *page)
1183{
1184 page->index = 0;
1185}
1186
1da177e4
LT
1187/*
1188 * Different kinds of faults, as returned by handle_mm_fault().
1189 * Used to decide whether a process gets delivered SIGBUS or
1190 * just gets major/minor fault counters bumped up.
1191 */
d0217ac0 1192
83c54070
NP
1193#define VM_FAULT_OOM 0x0001
1194#define VM_FAULT_SIGBUS 0x0002
1195#define VM_FAULT_MAJOR 0x0004
1196#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1197#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1198#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1199#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1200
83c54070
NP
1201#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1202#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1203#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1204#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1205#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1206#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1207 * and needs fsync() to complete (for
1208 * synchronous page faults in DAX) */
aa50d3a7 1209
33692f27
LT
1210#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1211 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1212 VM_FAULT_FALLBACK)
aa50d3a7 1213
282a8e03
RZ
1214#define VM_FAULT_RESULT_TRACE \
1215 { VM_FAULT_OOM, "OOM" }, \
1216 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1217 { VM_FAULT_MAJOR, "MAJOR" }, \
1218 { VM_FAULT_WRITE, "WRITE" }, \
1219 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1220 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1221 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1222 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1223 { VM_FAULT_LOCKED, "LOCKED" }, \
1224 { VM_FAULT_RETRY, "RETRY" }, \
1225 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1226 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1227 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1228
aa50d3a7
AK
1229/* Encode hstate index for a hwpoisoned large page */
1230#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1231#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1232
1c0fe6e3
NP
1233/*
1234 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1235 */
1236extern void pagefault_out_of_memory(void);
1237
1da177e4
LT
1238#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1239
ddd588b5 1240/*
7bf02ea2 1241 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1242 * various contexts.
1243 */
4b59e6c4 1244#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1245
9af744d7 1246extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1247
7f43add4 1248extern bool can_do_mlock(void);
1da177e4
LT
1249extern int user_shm_lock(size_t, struct user_struct *);
1250extern void user_shm_unlock(size_t, struct user_struct *);
1251
1252/*
1253 * Parameter block passed down to zap_pte_range in exceptional cases.
1254 */
1255struct zap_details {
1da177e4
LT
1256 struct address_space *check_mapping; /* Check page->mapping if set */
1257 pgoff_t first_index; /* Lowest page->index to unmap */
1258 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1259};
1260
df6ad698
JG
1261struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1262 pte_t pte, bool with_public_device);
1263#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1264
28093f9f
GS
1265struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1266 pmd_t pmd);
7e675137 1267
c627f9cc
JS
1268int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1269 unsigned long size);
14f5ff5d 1270void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1271 unsigned long size);
4f74d2c8
LT
1272void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1273 unsigned long start, unsigned long end);
e6473092
MM
1274
1275/**
1276 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1277 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1278 * this handler should only handle pud_trans_huge() puds.
1279 * the pmd_entry or pte_entry callbacks will be used for
1280 * regular PUDs.
e6473092 1281 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1282 * this handler is required to be able to handle
1283 * pmd_trans_huge() pmds. They may simply choose to
1284 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1285 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1286 * @pte_hole: if set, called for each hole at all levels
5dc37642 1287 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1288 * @test_walk: caller specific callback function to determine whether
f7e2355f 1289 * we walk over the current vma or not. Returning 0
fafaa426
NH
1290 * value means "do page table walk over the current vma,"
1291 * and a negative one means "abort current page table walk
f7e2355f 1292 * right now." 1 means "skip the current vma."
fafaa426
NH
1293 * @mm: mm_struct representing the target process of page table walk
1294 * @vma: vma currently walked (NULL if walking outside vmas)
1295 * @private: private data for callbacks' usage
e6473092 1296 *
fafaa426 1297 * (see the comment on walk_page_range() for more details)
e6473092
MM
1298 */
1299struct mm_walk {
a00cc7d9
MW
1300 int (*pud_entry)(pud_t *pud, unsigned long addr,
1301 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1302 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1303 unsigned long next, struct mm_walk *walk);
1304 int (*pte_entry)(pte_t *pte, unsigned long addr,
1305 unsigned long next, struct mm_walk *walk);
1306 int (*pte_hole)(unsigned long addr, unsigned long next,
1307 struct mm_walk *walk);
1308 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1309 unsigned long addr, unsigned long next,
1310 struct mm_walk *walk);
fafaa426
NH
1311 int (*test_walk)(unsigned long addr, unsigned long next,
1312 struct mm_walk *walk);
2165009b 1313 struct mm_struct *mm;
fafaa426 1314 struct vm_area_struct *vma;
2165009b 1315 void *private;
e6473092
MM
1316};
1317
2165009b
DH
1318int walk_page_range(unsigned long addr, unsigned long end,
1319 struct mm_walk *walk);
900fc5f1 1320int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1321void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1322 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1323int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1324 struct vm_area_struct *vma);
1da177e4
LT
1325void unmap_mapping_range(struct address_space *mapping,
1326 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395 1327int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1328 unsigned long *start, unsigned long *end,
09796395 1329 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1330int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1331 unsigned long *pfn);
d87fe660 1332int follow_phys(struct vm_area_struct *vma, unsigned long address,
1333 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1334int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1335 void *buf, int len, int write);
1da177e4
LT
1336
1337static inline void unmap_shared_mapping_range(struct address_space *mapping,
1338 loff_t const holebegin, loff_t const holelen)
1339{
1340 unmap_mapping_range(mapping, holebegin, holelen, 0);
1341}
1342
7caef267 1343extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1344extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1345void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1346void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1347int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1348int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1349int invalidate_inode_page(struct page *page);
1350
7ee1dd3f 1351#ifdef CONFIG_MMU
dcddffd4
KS
1352extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1353 unsigned int flags);
5c723ba5 1354extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1355 unsigned long address, unsigned int fault_flags,
1356 bool *unlocked);
7ee1dd3f 1357#else
dcddffd4
KS
1358static inline int handle_mm_fault(struct vm_area_struct *vma,
1359 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1360{
1361 /* should never happen if there's no MMU */
1362 BUG();
1363 return VM_FAULT_SIGBUS;
1364}
5c723ba5
PZ
1365static inline int fixup_user_fault(struct task_struct *tsk,
1366 struct mm_struct *mm, unsigned long address,
4a9e1cda 1367 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1368{
1369 /* should never happen if there's no MMU */
1370 BUG();
1371 return -EFAULT;
1372}
7ee1dd3f 1373#endif
f33ea7f4 1374
c088e31d
SF
1375extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1376extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1377 int);
1378extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1379extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1380
1381#define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1382 __LINE__)
1383#define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1384 __LINE__)
1385#define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1386#define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1387
1388#ifndef CONFIG_MMU
1389extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1390extern void vmr_do_fput(struct vm_region *, const char[], int);
1391
1392#define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1393 __LINE__)
1394#define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1395#endif /* !CONFIG_MMU */
1396
f307ab6d
LS
1397extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1398 unsigned int gup_flags);
5ddd36b9 1399extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1400 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1401extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1402 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1403
1e987790
DH
1404long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1405 unsigned long start, unsigned long nr_pages,
9beae1ea 1406 unsigned int gup_flags, struct page **pages,
5b56d49f 1407 struct vm_area_struct **vmas, int *locked);
c12d2da5 1408long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1409 unsigned int gup_flags, struct page **pages,
cde70140 1410 struct vm_area_struct **vmas);
c12d2da5 1411long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1412 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1413long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1414 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1415#ifdef CONFIG_FS_DAX
1416long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1417 unsigned int gup_flags, struct page **pages,
1418 struct vm_area_struct **vmas);
1419#else
1420static inline long get_user_pages_longterm(unsigned long start,
1421 unsigned long nr_pages, unsigned int gup_flags,
1422 struct page **pages, struct vm_area_struct **vmas)
1423{
1424 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1425}
1426#endif /* CONFIG_FS_DAX */
1427
d2bf6be8
NP
1428int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1429 struct page **pages);
8025e5dd
JK
1430
1431/* Container for pinned pfns / pages */
1432struct frame_vector {
1433 unsigned int nr_allocated; /* Number of frames we have space for */
1434 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1435 bool got_ref; /* Did we pin pages by getting page ref? */
1436 bool is_pfns; /* Does array contain pages or pfns? */
1437 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1438 * pfns_vector_pages() or pfns_vector_pfns()
1439 * for access */
1440};
1441
1442struct frame_vector *frame_vector_create(unsigned int nr_frames);
1443void frame_vector_destroy(struct frame_vector *vec);
1444int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1445 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1446void put_vaddr_frames(struct frame_vector *vec);
1447int frame_vector_to_pages(struct frame_vector *vec);
1448void frame_vector_to_pfns(struct frame_vector *vec);
1449
1450static inline unsigned int frame_vector_count(struct frame_vector *vec)
1451{
1452 return vec->nr_frames;
1453}
1454
1455static inline struct page **frame_vector_pages(struct frame_vector *vec)
1456{
1457 if (vec->is_pfns) {
1458 int err = frame_vector_to_pages(vec);
1459
1460 if (err)
1461 return ERR_PTR(err);
1462 }
1463 return (struct page **)(vec->ptrs);
1464}
1465
1466static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1467{
1468 if (!vec->is_pfns)
1469 frame_vector_to_pfns(vec);
1470 return (unsigned long *)(vec->ptrs);
1471}
1472
18022c5d
MG
1473struct kvec;
1474int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1475 struct page **pages);
1476int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1477struct page *get_dump_page(unsigned long addr);
1da177e4 1478
cf9a2ae8 1479extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1480extern void do_invalidatepage(struct page *page, unsigned int offset,
1481 unsigned int length);
cf9a2ae8 1482
1da177e4 1483int __set_page_dirty_nobuffers(struct page *page);
76719325 1484int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1485int redirty_page_for_writepage(struct writeback_control *wbc,
1486 struct page *page);
62cccb8c 1487void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1488void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1489 struct bdi_writeback *wb);
b3c97528 1490int set_page_dirty(struct page *page);
1da177e4 1491int set_page_dirty_lock(struct page *page);
736304f3
JK
1492void __cancel_dirty_page(struct page *page);
1493static inline void cancel_dirty_page(struct page *page)
1494{
1495 /* Avoid atomic ops, locking, etc. when not actually needed. */
1496 if (PageDirty(page))
1497 __cancel_dirty_page(page);
1498}
1da177e4 1499int clear_page_dirty_for_io(struct page *page);
b9ea2515 1500
a9090253 1501int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1502
b5330628
ON
1503static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1504{
1505 return !vma->vm_ops;
1506}
1507
b0506e48
MR
1508#ifdef CONFIG_SHMEM
1509/*
1510 * The vma_is_shmem is not inline because it is used only by slow
1511 * paths in userfault.
1512 */
1513bool vma_is_shmem(struct vm_area_struct *vma);
1514#else
1515static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1516#endif
1517
d17af505 1518int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1519
b6a2fea3
OW
1520extern unsigned long move_page_tables(struct vm_area_struct *vma,
1521 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1522 unsigned long new_addr, unsigned long len,
1523 bool need_rmap_locks);
7da4d641
PZ
1524extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1525 unsigned long end, pgprot_t newprot,
4b10e7d5 1526 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1527extern int mprotect_fixup(struct vm_area_struct *vma,
1528 struct vm_area_struct **pprev, unsigned long start,
1529 unsigned long end, unsigned long newflags);
1da177e4 1530
465a454f
PZ
1531/*
1532 * doesn't attempt to fault and will return short.
1533 */
1534int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1535 struct page **pages);
d559db08
KH
1536/*
1537 * per-process(per-mm_struct) statistics.
1538 */
d559db08
KH
1539static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1540{
69c97823
KK
1541 long val = atomic_long_read(&mm->rss_stat.count[member]);
1542
1543#ifdef SPLIT_RSS_COUNTING
1544 /*
1545 * counter is updated in asynchronous manner and may go to minus.
1546 * But it's never be expected number for users.
1547 */
1548 if (val < 0)
1549 val = 0;
172703b0 1550#endif
69c97823
KK
1551 return (unsigned long)val;
1552}
d559db08
KH
1553
1554static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1555{
172703b0 1556 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1557}
1558
1559static inline void inc_mm_counter(struct mm_struct *mm, int member)
1560{
172703b0 1561 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1562}
1563
1564static inline void dec_mm_counter(struct mm_struct *mm, int member)
1565{
172703b0 1566 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1567}
1568
eca56ff9
JM
1569/* Optimized variant when page is already known not to be PageAnon */
1570static inline int mm_counter_file(struct page *page)
1571{
1572 if (PageSwapBacked(page))
1573 return MM_SHMEMPAGES;
1574 return MM_FILEPAGES;
1575}
1576
1577static inline int mm_counter(struct page *page)
1578{
1579 if (PageAnon(page))
1580 return MM_ANONPAGES;
1581 return mm_counter_file(page);
1582}
1583
d559db08
KH
1584static inline unsigned long get_mm_rss(struct mm_struct *mm)
1585{
1586 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1587 get_mm_counter(mm, MM_ANONPAGES) +
1588 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1589}
1590
1591static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1592{
1593 return max(mm->hiwater_rss, get_mm_rss(mm));
1594}
1595
1596static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1597{
1598 return max(mm->hiwater_vm, mm->total_vm);
1599}
1600
1601static inline void update_hiwater_rss(struct mm_struct *mm)
1602{
1603 unsigned long _rss = get_mm_rss(mm);
1604
1605 if ((mm)->hiwater_rss < _rss)
1606 (mm)->hiwater_rss = _rss;
1607}
1608
1609static inline void update_hiwater_vm(struct mm_struct *mm)
1610{
1611 if (mm->hiwater_vm < mm->total_vm)
1612 mm->hiwater_vm = mm->total_vm;
1613}
1614
695f0559
PC
1615static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1616{
1617 mm->hiwater_rss = get_mm_rss(mm);
1618}
1619
d559db08
KH
1620static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1621 struct mm_struct *mm)
1622{
1623 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1624
1625 if (*maxrss < hiwater_rss)
1626 *maxrss = hiwater_rss;
1627}
1628
53bddb4e 1629#if defined(SPLIT_RSS_COUNTING)
05af2e10 1630void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1631#else
05af2e10 1632static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1633{
1634}
1635#endif
465a454f 1636
3565fce3
DW
1637#ifndef __HAVE_ARCH_PTE_DEVMAP
1638static inline int pte_devmap(pte_t pte)
1639{
1640 return 0;
1641}
1642#endif
1643
6d2329f8 1644int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1645
25ca1d6c
NK
1646extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1647 spinlock_t **ptl);
1648static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1649 spinlock_t **ptl)
1650{
1651 pte_t *ptep;
1652 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1653 return ptep;
1654}
c9cfcddf 1655
c2febafc
KS
1656#ifdef __PAGETABLE_P4D_FOLDED
1657static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1658 unsigned long address)
1659{
1660 return 0;
1661}
1662#else
1663int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1664#endif
1665
b4e98d9a 1666#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1667static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1668 unsigned long address)
1669{
1670 return 0;
1671}
b4e98d9a
KS
1672static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1673static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1674
5f22df00 1675#else
c2febafc 1676int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1677
b4e98d9a
KS
1678static inline void mm_inc_nr_puds(struct mm_struct *mm)
1679{
fc708bc1
MS
1680 if (mm_pud_folded(mm))
1681 return;
af5b0f6a 1682 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1683}
1684
1685static inline void mm_dec_nr_puds(struct mm_struct *mm)
1686{
fc708bc1
MS
1687 if (mm_pud_folded(mm))
1688 return;
af5b0f6a 1689 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1690}
5f22df00
NP
1691#endif
1692
2d2f5119 1693#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1694static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1695 unsigned long address)
1696{
1697 return 0;
1698}
dc6c9a35 1699
dc6c9a35
KS
1700static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1701static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1702
5f22df00 1703#else
1bb3630e 1704int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1705
dc6c9a35
KS
1706static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1707{
fc708bc1
MS
1708 if (mm_pmd_folded(mm))
1709 return;
af5b0f6a 1710 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1711}
1712
1713static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1714{
fc708bc1
MS
1715 if (mm_pmd_folded(mm))
1716 return;
af5b0f6a 1717 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1718}
5f22df00
NP
1719#endif
1720
c4812909 1721#ifdef CONFIG_MMU
af5b0f6a 1722static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1723{
af5b0f6a 1724 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1725}
1726
af5b0f6a 1727static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1728{
af5b0f6a 1729 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1730}
1731
1732static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1733{
af5b0f6a 1734 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1735}
1736
1737static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1738{
af5b0f6a 1739 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1740}
1741#else
c4812909 1742
af5b0f6a
KS
1743static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1744static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1745{
1746 return 0;
1747}
1748
1749static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1750static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1751#endif
1752
3ed3a4f0 1753int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1754int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1755
1da177e4
LT
1756/*
1757 * The following ifdef needed to get the 4level-fixup.h header to work.
1758 * Remove it when 4level-fixup.h has been removed.
1759 */
1bb3630e 1760#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1761
1762#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1763static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1764 unsigned long address)
1765{
1766 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1767 NULL : p4d_offset(pgd, address);
1768}
1769
1770static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1771 unsigned long address)
1da177e4 1772{
c2febafc
KS
1773 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1774 NULL : pud_offset(p4d, address);
1da177e4 1775}
505a60e2 1776#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1777
1778static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1779{
1bb3630e
HD
1780 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1781 NULL: pmd_offset(pud, address);
1da177e4 1782}
1bb3630e
HD
1783#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1784
57c1ffce 1785#if USE_SPLIT_PTE_PTLOCKS
597d795a 1786#if ALLOC_SPLIT_PTLOCKS
b35f1819 1787void __init ptlock_cache_init(void);
539edb58
PZ
1788extern bool ptlock_alloc(struct page *page);
1789extern void ptlock_free(struct page *page);
1790
1791static inline spinlock_t *ptlock_ptr(struct page *page)
1792{
1793 return page->ptl;
1794}
597d795a 1795#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1796static inline void ptlock_cache_init(void)
1797{
1798}
1799
49076ec2
KS
1800static inline bool ptlock_alloc(struct page *page)
1801{
49076ec2
KS
1802 return true;
1803}
539edb58 1804
49076ec2
KS
1805static inline void ptlock_free(struct page *page)
1806{
49076ec2
KS
1807}
1808
1809static inline spinlock_t *ptlock_ptr(struct page *page)
1810{
539edb58 1811 return &page->ptl;
49076ec2 1812}
597d795a 1813#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1814
1815static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1816{
1817 return ptlock_ptr(pmd_page(*pmd));
1818}
1819
1820static inline bool ptlock_init(struct page *page)
1821{
1822 /*
1823 * prep_new_page() initialize page->private (and therefore page->ptl)
1824 * with 0. Make sure nobody took it in use in between.
1825 *
1826 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1827 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1828 */
309381fe 1829 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1830 if (!ptlock_alloc(page))
1831 return false;
1832 spin_lock_init(ptlock_ptr(page));
1833 return true;
1834}
1835
1836/* Reset page->mapping so free_pages_check won't complain. */
1837static inline void pte_lock_deinit(struct page *page)
1838{
1839 page->mapping = NULL;
1840 ptlock_free(page);
1841}
1842
57c1ffce 1843#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1844/*
1845 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1846 */
49076ec2
KS
1847static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1848{
1849 return &mm->page_table_lock;
1850}
b35f1819 1851static inline void ptlock_cache_init(void) {}
49076ec2
KS
1852static inline bool ptlock_init(struct page *page) { return true; }
1853static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1854#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1855
b35f1819
KS
1856static inline void pgtable_init(void)
1857{
1858 ptlock_cache_init();
1859 pgtable_cache_init();
1860}
1861
390f44e2 1862static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1863{
706874e9
VD
1864 if (!ptlock_init(page))
1865 return false;
2f569afd 1866 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1867 return true;
2f569afd
MS
1868}
1869
1870static inline void pgtable_page_dtor(struct page *page)
1871{
1872 pte_lock_deinit(page);
1873 dec_zone_page_state(page, NR_PAGETABLE);
1874}
1875
c74df32c
HD
1876#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1877({ \
4c21e2f2 1878 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1879 pte_t *__pte = pte_offset_map(pmd, address); \
1880 *(ptlp) = __ptl; \
1881 spin_lock(__ptl); \
1882 __pte; \
1883})
1884
1885#define pte_unmap_unlock(pte, ptl) do { \
1886 spin_unlock(ptl); \
1887 pte_unmap(pte); \
1888} while (0)
1889
3ed3a4f0
KS
1890#define pte_alloc(mm, pmd, address) \
1891 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1892
1893#define pte_alloc_map(mm, pmd, address) \
1894 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1895
c74df32c 1896#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1897 (pte_alloc(mm, pmd, address) ? \
1898 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1899
1bb3630e 1900#define pte_alloc_kernel(pmd, address) \
8ac1f832 1901 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1902 NULL: pte_offset_kernel(pmd, address))
1da177e4 1903
e009bb30
KS
1904#if USE_SPLIT_PMD_PTLOCKS
1905
634391ac
MS
1906static struct page *pmd_to_page(pmd_t *pmd)
1907{
1908 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1909 return virt_to_page((void *)((unsigned long) pmd & mask));
1910}
1911
e009bb30
KS
1912static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1913{
634391ac 1914 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1915}
1916
1917static inline bool pgtable_pmd_page_ctor(struct page *page)
1918{
e009bb30
KS
1919#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1920 page->pmd_huge_pte = NULL;
1921#endif
49076ec2 1922 return ptlock_init(page);
e009bb30
KS
1923}
1924
1925static inline void pgtable_pmd_page_dtor(struct page *page)
1926{
1927#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1928 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1929#endif
49076ec2 1930 ptlock_free(page);
e009bb30
KS
1931}
1932
634391ac 1933#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1934
1935#else
1936
9a86cb7b
KS
1937static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1938{
1939 return &mm->page_table_lock;
1940}
1941
e009bb30
KS
1942static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1943static inline void pgtable_pmd_page_dtor(struct page *page) {}
1944
c389a250 1945#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1946
e009bb30
KS
1947#endif
1948
9a86cb7b
KS
1949static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1950{
1951 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1952 spin_lock(ptl);
1953 return ptl;
1954}
1955
a00cc7d9
MW
1956/*
1957 * No scalability reason to split PUD locks yet, but follow the same pattern
1958 * as the PMD locks to make it easier if we decide to. The VM should not be
1959 * considered ready to switch to split PUD locks yet; there may be places
1960 * which need to be converted from page_table_lock.
1961 */
1962static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1963{
1964 return &mm->page_table_lock;
1965}
1966
1967static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1968{
1969 spinlock_t *ptl = pud_lockptr(mm, pud);
1970
1971 spin_lock(ptl);
1972 return ptl;
1973}
62906027 1974
a00cc7d9 1975extern void __init pagecache_init(void);
1da177e4 1976extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1977extern void free_area_init_node(int nid, unsigned long * zones_size,
1978 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1979extern void free_initmem(void);
1980
69afade7
JL
1981/*
1982 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1983 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1984 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1985 * Return pages freed into the buddy system.
1986 */
11199692 1987extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1988 int poison, char *s);
c3d5f5f0 1989
cfa11e08
JL
1990#ifdef CONFIG_HIGHMEM
1991/*
1992 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1993 * and totalram_pages.
1994 */
1995extern void free_highmem_page(struct page *page);
1996#endif
69afade7 1997
c3d5f5f0 1998extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1999extern void mem_init_print_info(const char *str);
69afade7 2000
4b50bcc7 2001extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2002
69afade7
JL
2003/* Free the reserved page into the buddy system, so it gets managed. */
2004static inline void __free_reserved_page(struct page *page)
2005{
2006 ClearPageReserved(page);
2007 init_page_count(page);
2008 __free_page(page);
2009}
2010
2011static inline void free_reserved_page(struct page *page)
2012{
2013 __free_reserved_page(page);
2014 adjust_managed_page_count(page, 1);
2015}
2016
2017static inline void mark_page_reserved(struct page *page)
2018{
2019 SetPageReserved(page);
2020 adjust_managed_page_count(page, -1);
2021}
2022
2023/*
2024 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2025 * The freed pages will be poisoned with pattern "poison" if it's within
2026 * range [0, UCHAR_MAX].
2027 * Return pages freed into the buddy system.
69afade7
JL
2028 */
2029static inline unsigned long free_initmem_default(int poison)
2030{
2031 extern char __init_begin[], __init_end[];
2032
11199692 2033 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2034 poison, "unused kernel");
2035}
2036
7ee3d4e8
JL
2037static inline unsigned long get_num_physpages(void)
2038{
2039 int nid;
2040 unsigned long phys_pages = 0;
2041
2042 for_each_online_node(nid)
2043 phys_pages += node_present_pages(nid);
2044
2045 return phys_pages;
2046}
2047
0ee332c1 2048#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2049/*
0ee332c1 2050 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2051 * zones, allocate the backing mem_map and account for memory holes in a more
2052 * architecture independent manner. This is a substitute for creating the
2053 * zone_sizes[] and zholes_size[] arrays and passing them to
2054 * free_area_init_node()
2055 *
2056 * An architecture is expected to register range of page frames backed by
0ee332c1 2057 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2058 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2059 * usage, an architecture is expected to do something like
2060 *
2061 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2062 * max_highmem_pfn};
2063 * for_each_valid_physical_page_range()
0ee332c1 2064 * memblock_add_node(base, size, nid)
c713216d
MG
2065 * free_area_init_nodes(max_zone_pfns);
2066 *
0ee332c1
TH
2067 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2068 * registered physical page range. Similarly
2069 * sparse_memory_present_with_active_regions() calls memory_present() for
2070 * each range when SPARSEMEM is enabled.
c713216d
MG
2071 *
2072 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2073 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2074 */
2075extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2076unsigned long node_map_pfn_alignment(void);
32996250
YL
2077unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2078 unsigned long end_pfn);
c713216d
MG
2079extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2080 unsigned long end_pfn);
2081extern void get_pfn_range_for_nid(unsigned int nid,
2082 unsigned long *start_pfn, unsigned long *end_pfn);
2083extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2084extern void free_bootmem_with_active_regions(int nid,
2085 unsigned long max_low_pfn);
2086extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2087
0ee332c1 2088#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2089
0ee332c1 2090#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2091 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2092static inline int __early_pfn_to_nid(unsigned long pfn,
2093 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2094{
2095 return 0;
2096}
2097#else
2098/* please see mm/page_alloc.c */
2099extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2100/* there is a per-arch backend function. */
8a942fde
MG
2101extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2102 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2103#endif
2104
afa11cd3 2105#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2106void zero_resv_unavail(void);
2107#else
2108static inline void zero_resv_unavail(void) {}
2109#endif
2110
0e0b864e 2111extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
2112extern void memmap_init_zone(unsigned long, int, unsigned long,
2113 unsigned long, enum memmap_context);
bc75d33f 2114extern void setup_per_zone_wmarks(void);
1b79acc9 2115extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2116extern void mem_init(void);
8feae131 2117extern void __init mmap_init(void);
9af744d7 2118extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2119extern long si_mem_available(void);
1da177e4
LT
2120extern void si_meminfo(struct sysinfo * val);
2121extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2122#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2123extern unsigned long arch_reserved_kernel_pages(void);
2124#endif
1da177e4 2125
a8e99259
MH
2126extern __printf(3, 4)
2127void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2128
e7c8d5c9 2129extern void setup_per_cpu_pageset(void);
e7c8d5c9 2130
112067f0 2131extern void zone_pcp_update(struct zone *zone);
340175b7 2132extern void zone_pcp_reset(struct zone *zone);
112067f0 2133
75f7ad8e
PS
2134/* page_alloc.c */
2135extern int min_free_kbytes;
795ae7a0 2136extern int watermark_scale_factor;
75f7ad8e 2137
8feae131 2138/* nommu.c */
33e5d769 2139extern atomic_long_t mmap_pages_allocated;
7e660872 2140extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2141
6b2dbba8 2142/* interval_tree.c */
6b2dbba8 2143void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2144 struct rb_root_cached *root);
9826a516
ML
2145void vma_interval_tree_insert_after(struct vm_area_struct *node,
2146 struct vm_area_struct *prev,
f808c13f 2147 struct rb_root_cached *root);
6b2dbba8 2148void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2149 struct rb_root_cached *root);
2150struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2151 unsigned long start, unsigned long last);
2152struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2153 unsigned long start, unsigned long last);
2154
2155#define vma_interval_tree_foreach(vma, root, start, last) \
2156 for (vma = vma_interval_tree_iter_first(root, start, last); \
2157 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2158
bf181b9f 2159void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2160 struct rb_root_cached *root);
bf181b9f 2161void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2162 struct rb_root_cached *root);
2163struct anon_vma_chain *
2164anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2165 unsigned long start, unsigned long last);
bf181b9f
ML
2166struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2167 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2168#ifdef CONFIG_DEBUG_VM_RB
2169void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2170#endif
bf181b9f
ML
2171
2172#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2173 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2174 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2175
1da177e4 2176/* mmap.c */
34b4e4aa 2177extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2178extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2179 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2180 struct vm_area_struct *expand);
2181static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2182 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2183{
2184 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2185}
1da177e4
LT
2186extern struct vm_area_struct *vma_merge(struct mm_struct *,
2187 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2188 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2189 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2190extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2191extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2192 unsigned long addr, int new_below);
2193extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2194 unsigned long addr, int new_below);
1da177e4
LT
2195extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2196extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2197 struct rb_node **, struct rb_node *);
a8fb5618 2198extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2199extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2200 unsigned long addr, unsigned long len, pgoff_t pgoff,
2201 bool *need_rmap_locks);
1da177e4 2202extern void exit_mmap(struct mm_struct *);
925d1c40 2203
9c599024
CG
2204static inline int check_data_rlimit(unsigned long rlim,
2205 unsigned long new,
2206 unsigned long start,
2207 unsigned long end_data,
2208 unsigned long start_data)
2209{
2210 if (rlim < RLIM_INFINITY) {
2211 if (((new - start) + (end_data - start_data)) > rlim)
2212 return -ENOSPC;
2213 }
2214
2215 return 0;
2216}
2217
7906d00c
AA
2218extern int mm_take_all_locks(struct mm_struct *mm);
2219extern void mm_drop_all_locks(struct mm_struct *mm);
2220
38646013
JS
2221extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2222extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2223extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2224
84638335
KK
2225extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2226extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2227
2eefd878
DS
2228extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2229 const struct vm_special_mapping *sm);
3935ed6a
SS
2230extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2231 unsigned long addr, unsigned long len,
a62c34bd
AL
2232 unsigned long flags,
2233 const struct vm_special_mapping *spec);
2234/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2235extern int install_special_mapping(struct mm_struct *mm,
2236 unsigned long addr, unsigned long len,
2237 unsigned long flags, struct page **pages);
1da177e4
LT
2238
2239extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2240
0165ab44 2241extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2242 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2243 struct list_head *uf);
1fcfd8db 2244extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2245 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2246 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2247 struct list_head *uf);
2248extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2249 struct list_head *uf);
1da177e4 2250
1fcfd8db
ON
2251static inline unsigned long
2252do_mmap_pgoff(struct file *file, unsigned long addr,
2253 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2254 unsigned long pgoff, unsigned long *populate,
2255 struct list_head *uf)
1fcfd8db 2256{
897ab3e0 2257 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2258}
2259
bebeb3d6
ML
2260#ifdef CONFIG_MMU
2261extern int __mm_populate(unsigned long addr, unsigned long len,
2262 int ignore_errors);
2263static inline void mm_populate(unsigned long addr, unsigned long len)
2264{
2265 /* Ignore errors */
2266 (void) __mm_populate(addr, len, 1);
2267}
2268#else
2269static inline void mm_populate(unsigned long addr, unsigned long len) {}
2270#endif
2271
e4eb1ff6 2272/* These take the mm semaphore themselves */
5d22fc25 2273extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2274extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2275extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2276extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2277 unsigned long, unsigned long,
2278 unsigned long, unsigned long);
1da177e4 2279
db4fbfb9
ML
2280struct vm_unmapped_area_info {
2281#define VM_UNMAPPED_AREA_TOPDOWN 1
2282 unsigned long flags;
2283 unsigned long length;
2284 unsigned long low_limit;
2285 unsigned long high_limit;
2286 unsigned long align_mask;
2287 unsigned long align_offset;
2288};
2289
2290extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2291extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2292
2293/*
2294 * Search for an unmapped address range.
2295 *
2296 * We are looking for a range that:
2297 * - does not intersect with any VMA;
2298 * - is contained within the [low_limit, high_limit) interval;
2299 * - is at least the desired size.
2300 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2301 */
2302static inline unsigned long
2303vm_unmapped_area(struct vm_unmapped_area_info *info)
2304{
cdd7875e 2305 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2306 return unmapped_area_topdown(info);
cdd7875e
BP
2307 else
2308 return unmapped_area(info);
db4fbfb9
ML
2309}
2310
85821aab 2311/* truncate.c */
1da177e4 2312extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2313extern void truncate_inode_pages_range(struct address_space *,
2314 loff_t lstart, loff_t lend);
91b0abe3 2315extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2316
2317/* generic vm_area_ops exported for stackable file systems */
11bac800 2318extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2319extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2320 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2321extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2322
2323/* mm/page-writeback.c */
2b69c828 2324int __must_check write_one_page(struct page *page);
1cf6e7d8 2325void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2326
2327/* readahead.c */
2328#define VM_MAX_READAHEAD 128 /* kbytes */
2329#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2330
1da177e4 2331int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2332 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2333
2334void page_cache_sync_readahead(struct address_space *mapping,
2335 struct file_ra_state *ra,
2336 struct file *filp,
2337 pgoff_t offset,
2338 unsigned long size);
2339
2340void page_cache_async_readahead(struct address_space *mapping,
2341 struct file_ra_state *ra,
2342 struct file *filp,
2343 struct page *pg,
2344 pgoff_t offset,
2345 unsigned long size);
2346
1be7107f 2347extern unsigned long stack_guard_gap;
d05f3169 2348/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2349extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2350
2351/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2352extern int expand_downwards(struct vm_area_struct *vma,
2353 unsigned long address);
8ca3eb08 2354#if VM_GROWSUP
46dea3d0 2355extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2356#else
fee7e49d 2357 #define expand_upwards(vma, address) (0)
9ab88515 2358#endif
1da177e4
LT
2359
2360/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2361extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2362extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2363 struct vm_area_struct **pprev);
2364
2365/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2366 NULL if none. Assume start_addr < end_addr. */
2367static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2368{
2369 struct vm_area_struct * vma = find_vma(mm,start_addr);
2370
2371 if (vma && end_addr <= vma->vm_start)
2372 vma = NULL;
2373 return vma;
2374}
2375
1be7107f
HD
2376static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2377{
2378 unsigned long vm_start = vma->vm_start;
2379
2380 if (vma->vm_flags & VM_GROWSDOWN) {
2381 vm_start -= stack_guard_gap;
2382 if (vm_start > vma->vm_start)
2383 vm_start = 0;
2384 }
2385 return vm_start;
2386}
2387
2388static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2389{
2390 unsigned long vm_end = vma->vm_end;
2391
2392 if (vma->vm_flags & VM_GROWSUP) {
2393 vm_end += stack_guard_gap;
2394 if (vm_end < vma->vm_end)
2395 vm_end = -PAGE_SIZE;
2396 }
2397 return vm_end;
2398}
2399
1da177e4
LT
2400static inline unsigned long vma_pages(struct vm_area_struct *vma)
2401{
2402 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2403}
2404
640708a2
PE
2405/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2406static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2407 unsigned long vm_start, unsigned long vm_end)
2408{
2409 struct vm_area_struct *vma = find_vma(mm, vm_start);
2410
2411 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2412 vma = NULL;
2413
2414 return vma;
2415}
2416
162aed49
MK
2417static inline bool range_in_vma(struct vm_area_struct *vma,
2418 unsigned long start, unsigned long end)
2419{
2420 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2421}
2422
bad849b3 2423#ifdef CONFIG_MMU
804af2cf 2424pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2425void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2426#else
2427static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2428{
2429 return __pgprot(0);
2430}
64e45507
PF
2431static inline void vma_set_page_prot(struct vm_area_struct *vma)
2432{
2433 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2434}
bad849b3
DH
2435#endif
2436
5877231f 2437#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2438unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2439 unsigned long start, unsigned long end);
2440#endif
2441
deceb6cd 2442struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2443int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2444 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2445int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2446int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2447 unsigned long pfn);
1745cbc5
AL
2448int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2449 unsigned long pfn, pgprot_t pgprot);
423bad60 2450int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2451 pfn_t pfn);
b2770da6
RZ
2452int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2453 pfn_t pfn);
b4cbb197
LT
2454int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2455
deceb6cd 2456
240aadee
ML
2457struct page *follow_page_mask(struct vm_area_struct *vma,
2458 unsigned long address, unsigned int foll_flags,
2459 unsigned int *page_mask);
2460
2461static inline struct page *follow_page(struct vm_area_struct *vma,
2462 unsigned long address, unsigned int foll_flags)
2463{
2464 unsigned int unused_page_mask;
2465 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2466}
2467
deceb6cd
HD
2468#define FOLL_WRITE 0x01 /* check pte is writable */
2469#define FOLL_TOUCH 0x02 /* mark page accessed */
2470#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2471#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2472#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2473#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2474 * and return without waiting upon it */
84d33df2 2475#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2476#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2477#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2478#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2479#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2480#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2481#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2482#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2483#define FOLL_COW 0x4000 /* internal GUP flag */
4cc2a00a 2484#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2485
9a291a7c
JM
2486static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2487{
2488 if (vm_fault & VM_FAULT_OOM)
2489 return -ENOMEM;
2490 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2491 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2492 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2493 return -EFAULT;
2494 return 0;
2495}
2496
2f569afd 2497typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2498 void *data);
2499extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2500 unsigned long size, pte_fn_t fn, void *data);
2501
1da177e4 2502
8823b1db
LA
2503#ifdef CONFIG_PAGE_POISONING
2504extern bool page_poisoning_enabled(void);
2505extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2506extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2507#else
2508static inline bool page_poisoning_enabled(void) { return false; }
2509static inline void kernel_poison_pages(struct page *page, int numpages,
2510 int enable) { }
1414c7f4 2511static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2512#endif
2513
12d6f21e 2514#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2515extern bool _debug_pagealloc_enabled;
2516extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2517
2518static inline bool debug_pagealloc_enabled(void)
2519{
2520 return _debug_pagealloc_enabled;
2521}
2522
2523static inline void
2524kernel_map_pages(struct page *page, int numpages, int enable)
2525{
2526 if (!debug_pagealloc_enabled())
2527 return;
2528
2529 __kernel_map_pages(page, numpages, enable);
2530}
8a235efa
RW
2531#ifdef CONFIG_HIBERNATION
2532extern bool kernel_page_present(struct page *page);
40b44137
JK
2533#endif /* CONFIG_HIBERNATION */
2534#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2535static inline void
9858db50 2536kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2537#ifdef CONFIG_HIBERNATION
2538static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2539#endif /* CONFIG_HIBERNATION */
2540static inline bool debug_pagealloc_enabled(void)
2541{
2542 return false;
2543}
2544#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2545
a6c19dfe 2546#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2547extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2548extern int in_gate_area_no_mm(unsigned long addr);
2549extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2550#else
a6c19dfe
AL
2551static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2552{
2553 return NULL;
2554}
2555static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2556static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2557{
2558 return 0;
2559}
1da177e4
LT
2560#endif /* __HAVE_ARCH_GATE_AREA */
2561
44a70ade
MH
2562extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2563
146732ce
JT
2564#ifdef CONFIG_SYSCTL
2565extern int sysctl_drop_caches;
8d65af78 2566int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2567 void __user *, size_t *, loff_t *);
146732ce
JT
2568#endif
2569
cb731d6c
VD
2570void drop_slab(void);
2571void drop_slab_node(int nid);
9d0243bc 2572
7a9166e3
LY
2573#ifndef CONFIG_MMU
2574#define randomize_va_space 0
2575#else
a62eaf15 2576extern int randomize_va_space;
7a9166e3 2577#endif
a62eaf15 2578
045e72ac 2579const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2580void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2581
9bdac914
YL
2582void sparse_mem_maps_populate_node(struct page **map_map,
2583 unsigned long pnum_begin,
2584 unsigned long pnum_end,
2585 unsigned long map_count,
2586 int nodeid);
2587
98f3cfc1 2588struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111 2589pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2590p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2591pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2592pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2593pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2594void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2595struct vmem_altmap;
2596void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2597 struct vmem_altmap *altmap);
2598static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2599{
2600 return __vmemmap_alloc_block_buf(size, node, NULL);
2601}
2602
8f6aac41 2603void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2604int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2605 int node);
2606int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2607void vmemmap_populate_print_last(void);
0197518c 2608#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2609void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2610#endif
46723bfa 2611void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2612 unsigned long nr_pages);
6a46079c 2613
82ba011b
AK
2614enum mf_flags {
2615 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2616 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2617 MF_MUST_KILL = 1 << 2,
cf870c70 2618 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2619};
cd42f4a3 2620extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2621extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2622extern int unpoison_memory(unsigned long pfn);
ead07f6a 2623extern int get_hwpoison_page(struct page *page);
4e41a30c 2624#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2625extern int sysctl_memory_failure_early_kill;
2626extern int sysctl_memory_failure_recovery;
facb6011 2627extern void shake_page(struct page *p, int access);
293c07e3 2628extern atomic_long_t num_poisoned_pages;
facb6011 2629extern int soft_offline_page(struct page *page, int flags);
6a46079c 2630
cc637b17
XX
2631
2632/*
2633 * Error handlers for various types of pages.
2634 */
cc3e2af4 2635enum mf_result {
cc637b17
XX
2636 MF_IGNORED, /* Error: cannot be handled */
2637 MF_FAILED, /* Error: handling failed */
2638 MF_DELAYED, /* Will be handled later */
2639 MF_RECOVERED, /* Successfully recovered */
2640};
2641
2642enum mf_action_page_type {
2643 MF_MSG_KERNEL,
2644 MF_MSG_KERNEL_HIGH_ORDER,
2645 MF_MSG_SLAB,
2646 MF_MSG_DIFFERENT_COMPOUND,
2647 MF_MSG_POISONED_HUGE,
2648 MF_MSG_HUGE,
2649 MF_MSG_FREE_HUGE,
8e88be0d 2650 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2651 MF_MSG_UNMAP_FAILED,
2652 MF_MSG_DIRTY_SWAPCACHE,
2653 MF_MSG_CLEAN_SWAPCACHE,
2654 MF_MSG_DIRTY_MLOCKED_LRU,
2655 MF_MSG_CLEAN_MLOCKED_LRU,
2656 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2657 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2658 MF_MSG_DIRTY_LRU,
2659 MF_MSG_CLEAN_LRU,
2660 MF_MSG_TRUNCATED_LRU,
2661 MF_MSG_BUDDY,
2662 MF_MSG_BUDDY_2ND,
2663 MF_MSG_UNKNOWN,
2664};
2665
47ad8475
AA
2666#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2667extern void clear_huge_page(struct page *page,
c79b57e4 2668 unsigned long addr_hint,
47ad8475
AA
2669 unsigned int pages_per_huge_page);
2670extern void copy_user_huge_page(struct page *dst, struct page *src,
2671 unsigned long addr, struct vm_area_struct *vma,
2672 unsigned int pages_per_huge_page);
fa4d75c1
MK
2673extern long copy_huge_page_from_user(struct page *dst_page,
2674 const void __user *usr_src,
810a56b9
MK
2675 unsigned int pages_per_huge_page,
2676 bool allow_pagefault);
47ad8475
AA
2677#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2678
e30825f1 2679extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2680
c0a32fc5
SG
2681#ifdef CONFIG_DEBUG_PAGEALLOC
2682extern unsigned int _debug_guardpage_minorder;
e30825f1 2683extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2684
2685static inline unsigned int debug_guardpage_minorder(void)
2686{
2687 return _debug_guardpage_minorder;
2688}
2689
e30825f1
JK
2690static inline bool debug_guardpage_enabled(void)
2691{
2692 return _debug_guardpage_enabled;
2693}
2694
c0a32fc5
SG
2695static inline bool page_is_guard(struct page *page)
2696{
e30825f1
JK
2697 struct page_ext *page_ext;
2698
2699 if (!debug_guardpage_enabled())
2700 return false;
2701
2702 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2703 if (unlikely(!page_ext))
2704 return false;
2705
e30825f1 2706 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2707}
2708#else
2709static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2710static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2711static inline bool page_is_guard(struct page *page) { return false; }
2712#endif /* CONFIG_DEBUG_PAGEALLOC */
2713
f9872caf
CS
2714#if MAX_NUMNODES > 1
2715void __init setup_nr_node_ids(void);
2716#else
2717static inline void setup_nr_node_ids(void) {}
2718#endif
2719
1da177e4
LT
2720#endif /* __KERNEL__ */
2721#endif /* _LINUX_MM_H */