]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/mm.h
Merge tag 'ftracetest-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
1da177e4
LT
22
23struct mempolicy;
24struct anon_vma;
bf181b9f 25struct anon_vma_chain;
4e950f6f 26struct file_ra_state;
e8edc6e0 27struct user_struct;
4e950f6f 28struct writeback_control;
1da177e4 29
fccc9987 30#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 31extern unsigned long max_mapnr;
fccc9987
JL
32
33static inline void set_max_mapnr(unsigned long limit)
34{
35 max_mapnr = limit;
36}
37#else
38static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
39#endif
40
4481374c 41extern unsigned long totalram_pages;
1da177e4 42extern void * high_memory;
1da177e4
LT
43extern int page_cluster;
44
45#ifdef CONFIG_SYSCTL
46extern int sysctl_legacy_va_layout;
47#else
48#define sysctl_legacy_va_layout 0
49#endif
50
51#include <asm/page.h>
52#include <asm/pgtable.h>
53#include <asm/processor.h>
1da177e4 54
79442ed1
TC
55#ifndef __pa_symbol
56#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
57#endif
58
c9b1d098 59extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 60extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 61
49f0ce5f
JM
62extern int sysctl_overcommit_memory;
63extern int sysctl_overcommit_ratio;
64extern unsigned long sysctl_overcommit_kbytes;
65
66extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
67 size_t *, loff_t *);
68extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
69 size_t *, loff_t *);
70
1da177e4
LT
71#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
72
27ac792c
AR
73/* to align the pointer to the (next) page boundary */
74#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
75
0fa73b86
AM
76/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
77#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
78
1da177e4
LT
79/*
80 * Linux kernel virtual memory manager primitives.
81 * The idea being to have a "virtual" mm in the same way
82 * we have a virtual fs - giving a cleaner interface to the
83 * mm details, and allowing different kinds of memory mappings
84 * (from shared memory to executable loading to arbitrary
85 * mmap() functions).
86 */
87
c43692e8
CL
88extern struct kmem_cache *vm_area_cachep;
89
1da177e4 90#ifndef CONFIG_MMU
8feae131
DH
91extern struct rb_root nommu_region_tree;
92extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
93
94extern unsigned int kobjsize(const void *objp);
95#endif
96
97/*
605d9288 98 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 99 */
cc2383ec
KK
100#define VM_NONE 0x00000000
101
1da177e4
LT
102#define VM_READ 0x00000001 /* currently active flags */
103#define VM_WRITE 0x00000002
104#define VM_EXEC 0x00000004
105#define VM_SHARED 0x00000008
106
7e2cff42 107/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
108#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
109#define VM_MAYWRITE 0x00000020
110#define VM_MAYEXEC 0x00000040
111#define VM_MAYSHARE 0x00000080
112
113#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 114#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
115#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
116
1da177e4
LT
117#define VM_LOCKED 0x00002000
118#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
119
120 /* Used by sys_madvise() */
121#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
122#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
123
124#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
125#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 126#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 127#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
128#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
129#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 130#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 131#define VM_ARCH_2 0x02000000
0103bd16 132#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 133
d9104d1c
CG
134#ifdef CONFIG_MEM_SOFT_DIRTY
135# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
136#else
137# define VM_SOFTDIRTY 0
138#endif
139
b379d790 140#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
141#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
142#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 143#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 144
cc2383ec
KK
145#if defined(CONFIG_X86)
146# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
147#elif defined(CONFIG_PPC)
148# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
149#elif defined(CONFIG_PARISC)
150# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
151#elif defined(CONFIG_METAG)
152# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
153#elif defined(CONFIG_IA64)
154# define VM_GROWSUP VM_ARCH_1
155#elif !defined(CONFIG_MMU)
156# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
157#endif
158
4aae7e43
QR
159#if defined(CONFIG_X86)
160/* MPX specific bounds table or bounds directory */
161# define VM_MPX VM_ARCH_2
162#endif
163
cc2383ec
KK
164#ifndef VM_GROWSUP
165# define VM_GROWSUP VM_NONE
166#endif
167
a8bef8ff
MG
168/* Bits set in the VMA until the stack is in its final location */
169#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
170
1da177e4
LT
171#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
172#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
173#endif
174
175#ifdef CONFIG_STACK_GROWSUP
176#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
177#else
178#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179#endif
180
b291f000 181/*
78f11a25
AA
182 * Special vmas that are non-mergable, non-mlock()able.
183 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 184 */
9050d7eb 185#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 186
a0715cc2
AT
187/* This mask defines which mm->def_flags a process can inherit its parent */
188#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
189
1da177e4
LT
190/*
191 * mapping from the currently active vm_flags protection bits (the
192 * low four bits) to a page protection mask..
193 */
194extern pgprot_t protection_map[16];
195
d0217ac0
NP
196#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
197#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 198#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 199#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 200#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 201#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 202#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 203#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 204
54cb8821 205/*
d0217ac0 206 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
207 * ->fault function. The vma's ->fault is responsible for returning a bitmask
208 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 209 *
d0217ac0 210 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 211 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 212 */
d0217ac0
NP
213struct vm_fault {
214 unsigned int flags; /* FAULT_FLAG_xxx flags */
215 pgoff_t pgoff; /* Logical page offset based on vma */
216 void __user *virtual_address; /* Faulting virtual address */
217
218 struct page *page; /* ->fault handlers should return a
83c54070 219 * page here, unless VM_FAULT_NOPAGE
d0217ac0 220 * is set (which is also implied by
83c54070 221 * VM_FAULT_ERROR).
d0217ac0 222 */
8c6e50b0
KS
223 /* for ->map_pages() only */
224 pgoff_t max_pgoff; /* map pages for offset from pgoff till
225 * max_pgoff inclusive */
226 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 227};
1da177e4
LT
228
229/*
230 * These are the virtual MM functions - opening of an area, closing and
231 * unmapping it (needed to keep files on disk up-to-date etc), pointer
232 * to the functions called when a no-page or a wp-page exception occurs.
233 */
234struct vm_operations_struct {
235 void (*open)(struct vm_area_struct * area);
236 void (*close)(struct vm_area_struct * area);
d0217ac0 237 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 238 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
239
240 /* notification that a previously read-only page is about to become
241 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 242 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
243
244 /* called by access_process_vm when get_user_pages() fails, typically
245 * for use by special VMAs that can switch between memory and hardware
246 */
247 int (*access)(struct vm_area_struct *vma, unsigned long addr,
248 void *buf, int len, int write);
78d683e8
AL
249
250 /* Called by the /proc/PID/maps code to ask the vma whether it
251 * has a special name. Returning non-NULL will also cause this
252 * vma to be dumped unconditionally. */
253 const char *(*name)(struct vm_area_struct *vma);
254
1da177e4 255#ifdef CONFIG_NUMA
a6020ed7
LS
256 /*
257 * set_policy() op must add a reference to any non-NULL @new mempolicy
258 * to hold the policy upon return. Caller should pass NULL @new to
259 * remove a policy and fall back to surrounding context--i.e. do not
260 * install a MPOL_DEFAULT policy, nor the task or system default
261 * mempolicy.
262 */
1da177e4 263 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
264
265 /*
266 * get_policy() op must add reference [mpol_get()] to any policy at
267 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
268 * in mm/mempolicy.c will do this automatically.
269 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
270 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
271 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
272 * must return NULL--i.e., do not "fallback" to task or system default
273 * policy.
274 */
1da177e4
LT
275 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
276 unsigned long addr);
7b2259b3
CL
277 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
278 const nodemask_t *to, unsigned long flags);
1da177e4 279#endif
0b173bc4
KK
280 /* called by sys_remap_file_pages() to populate non-linear mapping */
281 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
282 unsigned long size, pgoff_t pgoff);
1da177e4
LT
283};
284
285struct mmu_gather;
286struct inode;
287
349aef0b
AM
288#define page_private(page) ((page)->private)
289#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 290
b12c4ad1
MK
291/* It's valid only if the page is free path or free_list */
292static inline void set_freepage_migratetype(struct page *page, int migratetype)
293{
95e34412 294 page->index = migratetype;
b12c4ad1
MK
295}
296
297/* It's valid only if the page is free path or free_list */
298static inline int get_freepage_migratetype(struct page *page)
299{
95e34412 300 return page->index;
b12c4ad1
MK
301}
302
1da177e4
LT
303/*
304 * FIXME: take this include out, include page-flags.h in
305 * files which need it (119 of them)
306 */
307#include <linux/page-flags.h>
71e3aac0 308#include <linux/huge_mm.h>
1da177e4
LT
309
310/*
311 * Methods to modify the page usage count.
312 *
313 * What counts for a page usage:
314 * - cache mapping (page->mapping)
315 * - private data (page->private)
316 * - page mapped in a task's page tables, each mapping
317 * is counted separately
318 *
319 * Also, many kernel routines increase the page count before a critical
320 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
321 */
322
323/*
da6052f7 324 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 325 */
7c8ee9a8
NP
326static inline int put_page_testzero(struct page *page)
327{
309381fe 328 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 329 return atomic_dec_and_test(&page->_count);
7c8ee9a8 330}
1da177e4
LT
331
332/*
7c8ee9a8
NP
333 * Try to grab a ref unless the page has a refcount of zero, return false if
334 * that is the case.
8e0861fa
AK
335 * This can be called when MMU is off so it must not access
336 * any of the virtual mappings.
1da177e4 337 */
7c8ee9a8
NP
338static inline int get_page_unless_zero(struct page *page)
339{
8dc04efb 340 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 341}
1da177e4 342
8e0861fa
AK
343/*
344 * Try to drop a ref unless the page has a refcount of one, return false if
345 * that is the case.
346 * This is to make sure that the refcount won't become zero after this drop.
347 * This can be called when MMU is off so it must not access
348 * any of the virtual mappings.
349 */
350static inline int put_page_unless_one(struct page *page)
351{
352 return atomic_add_unless(&page->_count, -1, 1);
353}
354
53df8fdc 355extern int page_is_ram(unsigned long pfn);
67cf13ce 356extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 357
48667e7a 358/* Support for virtually mapped pages */
b3bdda02
CL
359struct page *vmalloc_to_page(const void *addr);
360unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 361
0738c4bb
PM
362/*
363 * Determine if an address is within the vmalloc range
364 *
365 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
366 * is no special casing required.
367 */
9e2779fa
CL
368static inline int is_vmalloc_addr(const void *x)
369{
0738c4bb 370#ifdef CONFIG_MMU
9e2779fa
CL
371 unsigned long addr = (unsigned long)x;
372
373 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
374#else
375 return 0;
8ca3ed87 376#endif
0738c4bb 377}
81ac3ad9
KH
378#ifdef CONFIG_MMU
379extern int is_vmalloc_or_module_addr(const void *x);
380#else
934831d0 381static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
382{
383 return 0;
384}
385#endif
9e2779fa 386
39f1f78d
AV
387extern void kvfree(const void *addr);
388
e9da73d6
AA
389static inline void compound_lock(struct page *page)
390{
391#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 392 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
393 bit_spin_lock(PG_compound_lock, &page->flags);
394#endif
395}
396
397static inline void compound_unlock(struct page *page)
398{
399#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 400 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
401 bit_spin_unlock(PG_compound_lock, &page->flags);
402#endif
403}
404
405static inline unsigned long compound_lock_irqsave(struct page *page)
406{
407 unsigned long uninitialized_var(flags);
408#ifdef CONFIG_TRANSPARENT_HUGEPAGE
409 local_irq_save(flags);
410 compound_lock(page);
411#endif
412 return flags;
413}
414
415static inline void compound_unlock_irqrestore(struct page *page,
416 unsigned long flags)
417{
418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 compound_unlock(page);
420 local_irq_restore(flags);
421#endif
422}
423
d2ee40ea
JZ
424static inline struct page *compound_head_by_tail(struct page *tail)
425{
426 struct page *head = tail->first_page;
427
428 /*
429 * page->first_page may be a dangling pointer to an old
430 * compound page, so recheck that it is still a tail
431 * page before returning.
432 */
433 smp_rmb();
434 if (likely(PageTail(tail)))
435 return head;
436 return tail;
437}
438
d85f3385
CL
439static inline struct page *compound_head(struct page *page)
440{
d2ee40ea
JZ
441 if (unlikely(PageTail(page)))
442 return compound_head_by_tail(page);
d85f3385
CL
443 return page;
444}
445
70b50f94
AA
446/*
447 * The atomic page->_mapcount, starts from -1: so that transitions
448 * both from it and to it can be tracked, using atomic_inc_and_test
449 * and atomic_add_negative(-1).
450 */
22b751c3 451static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
452{
453 atomic_set(&(page)->_mapcount, -1);
454}
455
456static inline int page_mapcount(struct page *page)
457{
458 return atomic_read(&(page)->_mapcount) + 1;
459}
460
4c21e2f2 461static inline int page_count(struct page *page)
1da177e4 462{
d85f3385 463 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
464}
465
44518d2b
AA
466#ifdef CONFIG_HUGETLB_PAGE
467extern int PageHeadHuge(struct page *page_head);
468#else /* CONFIG_HUGETLB_PAGE */
469static inline int PageHeadHuge(struct page *page_head)
470{
471 return 0;
472}
473#endif /* CONFIG_HUGETLB_PAGE */
474
475static inline bool __compound_tail_refcounted(struct page *page)
476{
477 return !PageSlab(page) && !PageHeadHuge(page);
478}
479
480/*
481 * This takes a head page as parameter and tells if the
482 * tail page reference counting can be skipped.
483 *
484 * For this to be safe, PageSlab and PageHeadHuge must remain true on
485 * any given page where they return true here, until all tail pins
486 * have been released.
487 */
488static inline bool compound_tail_refcounted(struct page *page)
489{
309381fe 490 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
491 return __compound_tail_refcounted(page);
492}
493
b35a35b5
AA
494static inline void get_huge_page_tail(struct page *page)
495{
496 /*
5eaf1a9e 497 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 498 */
309381fe
SL
499 VM_BUG_ON_PAGE(!PageTail(page), page);
500 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
501 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 502 if (compound_tail_refcounted(page->first_page))
44518d2b 503 atomic_inc(&page->_mapcount);
b35a35b5
AA
504}
505
70b50f94
AA
506extern bool __get_page_tail(struct page *page);
507
1da177e4
LT
508static inline void get_page(struct page *page)
509{
70b50f94
AA
510 if (unlikely(PageTail(page)))
511 if (likely(__get_page_tail(page)))
512 return;
91807063
AA
513 /*
514 * Getting a normal page or the head of a compound page
70b50f94 515 * requires to already have an elevated page->_count.
91807063 516 */
309381fe 517 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
518 atomic_inc(&page->_count);
519}
520
b49af68f
CL
521static inline struct page *virt_to_head_page(const void *x)
522{
523 struct page *page = virt_to_page(x);
524 return compound_head(page);
525}
526
7835e98b
NP
527/*
528 * Setup the page count before being freed into the page allocator for
529 * the first time (boot or memory hotplug)
530 */
531static inline void init_page_count(struct page *page)
532{
533 atomic_set(&page->_count, 1);
534}
535
5f24ce5f
AA
536/*
537 * PageBuddy() indicate that the page is free and in the buddy system
538 * (see mm/page_alloc.c).
ef2b4b95
AA
539 *
540 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
541 * -2 so that an underflow of the page_mapcount() won't be mistaken
542 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
543 * efficiently by most CPU architectures.
5f24ce5f 544 */
ef2b4b95
AA
545#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
546
5f24ce5f
AA
547static inline int PageBuddy(struct page *page)
548{
ef2b4b95 549 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
550}
551
552static inline void __SetPageBuddy(struct page *page)
553{
309381fe 554 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 555 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
556}
557
558static inline void __ClearPageBuddy(struct page *page)
559{
309381fe 560 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
561 atomic_set(&page->_mapcount, -1);
562}
563
d6d86c0a
KK
564#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
565
566static inline int PageBalloon(struct page *page)
567{
568 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
569}
570
571static inline void __SetPageBalloon(struct page *page)
572{
573 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
574 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
575}
576
577static inline void __ClearPageBalloon(struct page *page)
578{
579 VM_BUG_ON_PAGE(!PageBalloon(page), page);
580 atomic_set(&page->_mapcount, -1);
581}
582
1da177e4 583void put_page(struct page *page);
1d7ea732 584void put_pages_list(struct list_head *pages);
1da177e4 585
8dfcc9ba 586void split_page(struct page *page, unsigned int order);
748446bb 587int split_free_page(struct page *page);
8dfcc9ba 588
33f2ef89
AW
589/*
590 * Compound pages have a destructor function. Provide a
591 * prototype for that function and accessor functions.
592 * These are _only_ valid on the head of a PG_compound page.
593 */
594typedef void compound_page_dtor(struct page *);
595
596static inline void set_compound_page_dtor(struct page *page,
597 compound_page_dtor *dtor)
598{
599 page[1].lru.next = (void *)dtor;
600}
601
602static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
603{
604 return (compound_page_dtor *)page[1].lru.next;
605}
606
d85f3385
CL
607static inline int compound_order(struct page *page)
608{
6d777953 609 if (!PageHead(page))
d85f3385
CL
610 return 0;
611 return (unsigned long)page[1].lru.prev;
612}
613
614static inline void set_compound_order(struct page *page, unsigned long order)
615{
616 page[1].lru.prev = (void *)order;
617}
618
3dece370 619#ifdef CONFIG_MMU
14fd403f
AA
620/*
621 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
622 * servicing faults for write access. In the normal case, do always want
623 * pte_mkwrite. But get_user_pages can cause write faults for mappings
624 * that do not have writing enabled, when used by access_process_vm.
625 */
626static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
627{
628 if (likely(vma->vm_flags & VM_WRITE))
629 pte = pte_mkwrite(pte);
630 return pte;
631}
8c6e50b0
KS
632
633void do_set_pte(struct vm_area_struct *vma, unsigned long address,
634 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 635#endif
14fd403f 636
1da177e4
LT
637/*
638 * Multiple processes may "see" the same page. E.g. for untouched
639 * mappings of /dev/null, all processes see the same page full of
640 * zeroes, and text pages of executables and shared libraries have
641 * only one copy in memory, at most, normally.
642 *
643 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
644 * page_count() == 0 means the page is free. page->lru is then used for
645 * freelist management in the buddy allocator.
da6052f7 646 * page_count() > 0 means the page has been allocated.
1da177e4 647 *
da6052f7
NP
648 * Pages are allocated by the slab allocator in order to provide memory
649 * to kmalloc and kmem_cache_alloc. In this case, the management of the
650 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
651 * unless a particular usage is carefully commented. (the responsibility of
652 * freeing the kmalloc memory is the caller's, of course).
1da177e4 653 *
da6052f7
NP
654 * A page may be used by anyone else who does a __get_free_page().
655 * In this case, page_count still tracks the references, and should only
656 * be used through the normal accessor functions. The top bits of page->flags
657 * and page->virtual store page management information, but all other fields
658 * are unused and could be used privately, carefully. The management of this
659 * page is the responsibility of the one who allocated it, and those who have
660 * subsequently been given references to it.
661 *
662 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
663 * managed by the Linux memory manager: I/O, buffers, swapping etc.
664 * The following discussion applies only to them.
665 *
da6052f7
NP
666 * A pagecache page contains an opaque `private' member, which belongs to the
667 * page's address_space. Usually, this is the address of a circular list of
668 * the page's disk buffers. PG_private must be set to tell the VM to call
669 * into the filesystem to release these pages.
1da177e4 670 *
da6052f7
NP
671 * A page may belong to an inode's memory mapping. In this case, page->mapping
672 * is the pointer to the inode, and page->index is the file offset of the page,
673 * in units of PAGE_CACHE_SIZE.
1da177e4 674 *
da6052f7
NP
675 * If pagecache pages are not associated with an inode, they are said to be
676 * anonymous pages. These may become associated with the swapcache, and in that
677 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 678 *
da6052f7
NP
679 * In either case (swapcache or inode backed), the pagecache itself holds one
680 * reference to the page. Setting PG_private should also increment the
681 * refcount. The each user mapping also has a reference to the page.
1da177e4 682 *
da6052f7
NP
683 * The pagecache pages are stored in a per-mapping radix tree, which is
684 * rooted at mapping->page_tree, and indexed by offset.
685 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
686 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 687 *
da6052f7 688 * All pagecache pages may be subject to I/O:
1da177e4
LT
689 * - inode pages may need to be read from disk,
690 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
691 * to be written back to the inode on disk,
692 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
693 * modified may need to be swapped out to swap space and (later) to be read
694 * back into memory.
1da177e4
LT
695 */
696
697/*
698 * The zone field is never updated after free_area_init_core()
699 * sets it, so none of the operations on it need to be atomic.
1da177e4 700 */
348f8b6c 701
90572890 702/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 703#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
704#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
705#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 706#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 707
348f8b6c 708/*
25985edc 709 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
710 * sections we define the shift as 0; that plus a 0 mask ensures
711 * the compiler will optimise away reference to them.
712 */
d41dee36
AW
713#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
714#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
715#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 716#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 717
bce54bbf
WD
718/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
719#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 720#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
721#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
722 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 723#else
89689ae7 724#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
725#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
726 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
727#endif
728
bd8029b6 729#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 730
9223b419
CL
731#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
732#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
733#endif
734
d41dee36
AW
735#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
736#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
737#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 738#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 739#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 740
33dd4e0e 741static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 742{
348f8b6c 743 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 744}
1da177e4 745
9127ab4f
CS
746#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
747#define SECTION_IN_PAGE_FLAGS
748#endif
749
89689ae7 750/*
7a8010cd
VB
751 * The identification function is mainly used by the buddy allocator for
752 * determining if two pages could be buddies. We are not really identifying
753 * the zone since we could be using the section number id if we do not have
754 * node id available in page flags.
755 * We only guarantee that it will return the same value for two combinable
756 * pages in a zone.
89689ae7 757 */
cb2b95e1
AW
758static inline int page_zone_id(struct page *page)
759{
89689ae7 760 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
761}
762
25ba77c1 763static inline int zone_to_nid(struct zone *zone)
89fa3024 764{
d5f541ed
CL
765#ifdef CONFIG_NUMA
766 return zone->node;
767#else
768 return 0;
769#endif
89fa3024
CL
770}
771
89689ae7 772#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 773extern int page_to_nid(const struct page *page);
89689ae7 774#else
33dd4e0e 775static inline int page_to_nid(const struct page *page)
d41dee36 776{
89689ae7 777 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 778}
89689ae7
CL
779#endif
780
57e0a030 781#ifdef CONFIG_NUMA_BALANCING
90572890 782static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 783{
90572890 784 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
785}
786
90572890 787static inline int cpupid_to_pid(int cpupid)
57e0a030 788{
90572890 789 return cpupid & LAST__PID_MASK;
57e0a030 790}
b795854b 791
90572890 792static inline int cpupid_to_cpu(int cpupid)
b795854b 793{
90572890 794 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
795}
796
90572890 797static inline int cpupid_to_nid(int cpupid)
b795854b 798{
90572890 799 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
800}
801
90572890 802static inline bool cpupid_pid_unset(int cpupid)
57e0a030 803{
90572890 804 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
805}
806
90572890 807static inline bool cpupid_cpu_unset(int cpupid)
b795854b 808{
90572890 809 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
810}
811
8c8a743c
PZ
812static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
813{
814 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
815}
816
817#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
818#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
819static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 820{
1ae71d03 821 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 822}
90572890
PZ
823
824static inline int page_cpupid_last(struct page *page)
825{
826 return page->_last_cpupid;
827}
828static inline void page_cpupid_reset_last(struct page *page)
b795854b 829{
1ae71d03 830 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
831}
832#else
90572890 833static inline int page_cpupid_last(struct page *page)
75980e97 834{
90572890 835 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
836}
837
90572890 838extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 839
90572890 840static inline void page_cpupid_reset_last(struct page *page)
75980e97 841{
90572890 842 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 843
90572890
PZ
844 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
845 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 846}
90572890
PZ
847#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
848#else /* !CONFIG_NUMA_BALANCING */
849static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 850{
90572890 851 return page_to_nid(page); /* XXX */
57e0a030
MG
852}
853
90572890 854static inline int page_cpupid_last(struct page *page)
57e0a030 855{
90572890 856 return page_to_nid(page); /* XXX */
57e0a030
MG
857}
858
90572890 859static inline int cpupid_to_nid(int cpupid)
b795854b
MG
860{
861 return -1;
862}
863
90572890 864static inline int cpupid_to_pid(int cpupid)
b795854b
MG
865{
866 return -1;
867}
868
90572890 869static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
870{
871 return -1;
872}
873
90572890
PZ
874static inline int cpu_pid_to_cpupid(int nid, int pid)
875{
876 return -1;
877}
878
879static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
880{
881 return 1;
882}
883
90572890 884static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
885{
886}
8c8a743c
PZ
887
888static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
889{
890 return false;
891}
90572890 892#endif /* CONFIG_NUMA_BALANCING */
57e0a030 893
33dd4e0e 894static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
895{
896 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
897}
898
9127ab4f 899#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
900static inline void set_page_section(struct page *page, unsigned long section)
901{
902 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
903 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
904}
905
aa462abe 906static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
907{
908 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
909}
308c05e3 910#endif
d41dee36 911
2f1b6248 912static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
913{
914 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
915 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
916}
2f1b6248 917
348f8b6c
DH
918static inline void set_page_node(struct page *page, unsigned long node)
919{
920 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
921 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 922}
89689ae7 923
2f1b6248 924static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 925 unsigned long node, unsigned long pfn)
1da177e4 926{
348f8b6c
DH
927 set_page_zone(page, zone);
928 set_page_node(page, node);
9127ab4f 929#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 930 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 931#endif
1da177e4
LT
932}
933
f6ac2354
CL
934/*
935 * Some inline functions in vmstat.h depend on page_zone()
936 */
937#include <linux/vmstat.h>
938
33dd4e0e 939static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 940{
aa462abe 941 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
942}
943
944#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
945#define HASHED_PAGE_VIRTUAL
946#endif
947
948#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
949static inline void *page_address(const struct page *page)
950{
951 return page->virtual;
952}
953static inline void set_page_address(struct page *page, void *address)
954{
955 page->virtual = address;
956}
1da177e4
LT
957#define page_address_init() do { } while(0)
958#endif
959
960#if defined(HASHED_PAGE_VIRTUAL)
f9918794 961void *page_address(const struct page *page);
1da177e4
LT
962void set_page_address(struct page *page, void *virtual);
963void page_address_init(void);
964#endif
965
966#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
967#define page_address(page) lowmem_page_address(page)
968#define set_page_address(page, address) do { } while(0)
969#define page_address_init() do { } while(0)
970#endif
971
972/*
973 * On an anonymous page mapped into a user virtual memory area,
974 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
975 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
976 *
977 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
978 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
979 * and then page->mapping points, not to an anon_vma, but to a private
980 * structure which KSM associates with that merged page. See ksm.h.
981 *
982 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
983 *
984 * Please note that, confusingly, "page_mapping" refers to the inode
985 * address_space which maps the page from disk; whereas "page_mapped"
986 * refers to user virtual address space into which the page is mapped.
987 */
988#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
989#define PAGE_MAPPING_KSM 2
990#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 991
9800339b 992extern struct address_space *page_mapping(struct page *page);
1da177e4 993
3ca7b3c5
HD
994/* Neutral page->mapping pointer to address_space or anon_vma or other */
995static inline void *page_rmapping(struct page *page)
996{
997 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
998}
999
f981c595
MG
1000extern struct address_space *__page_file_mapping(struct page *);
1001
1002static inline
1003struct address_space *page_file_mapping(struct page *page)
1004{
1005 if (unlikely(PageSwapCache(page)))
1006 return __page_file_mapping(page);
1007
1008 return page->mapping;
1009}
1010
1da177e4
LT
1011static inline int PageAnon(struct page *page)
1012{
1013 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1014}
1015
1016/*
1017 * Return the pagecache index of the passed page. Regular pagecache pages
1018 * use ->index whereas swapcache pages use ->private
1019 */
1020static inline pgoff_t page_index(struct page *page)
1021{
1022 if (unlikely(PageSwapCache(page)))
4c21e2f2 1023 return page_private(page);
1da177e4
LT
1024 return page->index;
1025}
1026
f981c595
MG
1027extern pgoff_t __page_file_index(struct page *page);
1028
1029/*
1030 * Return the file index of the page. Regular pagecache pages use ->index
1031 * whereas swapcache pages use swp_offset(->private)
1032 */
1033static inline pgoff_t page_file_index(struct page *page)
1034{
1035 if (unlikely(PageSwapCache(page)))
1036 return __page_file_index(page);
1037
1038 return page->index;
1039}
1040
1da177e4
LT
1041/*
1042 * Return true if this page is mapped into pagetables.
1043 */
1044static inline int page_mapped(struct page *page)
1045{
1046 return atomic_read(&(page)->_mapcount) >= 0;
1047}
1048
1da177e4
LT
1049/*
1050 * Different kinds of faults, as returned by handle_mm_fault().
1051 * Used to decide whether a process gets delivered SIGBUS or
1052 * just gets major/minor fault counters bumped up.
1053 */
d0217ac0 1054
83c54070 1055#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1056
83c54070
NP
1057#define VM_FAULT_OOM 0x0001
1058#define VM_FAULT_SIGBUS 0x0002
1059#define VM_FAULT_MAJOR 0x0004
1060#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1061#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1062#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1063
83c54070
NP
1064#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1065#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1066#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1067#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1068
aa50d3a7
AK
1069#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1070
1071#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1072 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1073
1074/* Encode hstate index for a hwpoisoned large page */
1075#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1076#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1077
1c0fe6e3
NP
1078/*
1079 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1080 */
1081extern void pagefault_out_of_memory(void);
1082
1da177e4
LT
1083#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1084
ddd588b5 1085/*
7bf02ea2 1086 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1087 * various contexts.
1088 */
4b59e6c4 1089#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1090
7bf02ea2
DR
1091extern void show_free_areas(unsigned int flags);
1092extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1093
1da177e4 1094int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1095#ifdef CONFIG_SHMEM
1096bool shmem_mapping(struct address_space *mapping);
1097#else
1098static inline bool shmem_mapping(struct address_space *mapping)
1099{
1100 return false;
1101}
1102#endif
1da177e4 1103
e8edc6e0 1104extern int can_do_mlock(void);
1da177e4
LT
1105extern int user_shm_lock(size_t, struct user_struct *);
1106extern void user_shm_unlock(size_t, struct user_struct *);
1107
1108/*
1109 * Parameter block passed down to zap_pte_range in exceptional cases.
1110 */
1111struct zap_details {
1112 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1113 struct address_space *check_mapping; /* Check page->mapping if set */
1114 pgoff_t first_index; /* Lowest page->index to unmap */
1115 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1116};
1117
7e675137
NP
1118struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1119 pte_t pte);
1120
c627f9cc
JS
1121int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1122 unsigned long size);
14f5ff5d 1123void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1124 unsigned long size, struct zap_details *);
4f74d2c8
LT
1125void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1126 unsigned long start, unsigned long end);
e6473092
MM
1127
1128/**
1129 * mm_walk - callbacks for walk_page_range
1130 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1131 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1132 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1133 * this handler is required to be able to handle
1134 * pmd_trans_huge() pmds. They may simply choose to
1135 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1136 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1137 * @pte_hole: if set, called for each hole at all levels
5dc37642 1138 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1139 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1140 * is used.
e6473092
MM
1141 *
1142 * (see walk_page_range for more details)
1143 */
1144struct mm_walk {
0f157a5b
AM
1145 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1146 unsigned long next, struct mm_walk *walk);
1147 int (*pud_entry)(pud_t *pud, unsigned long addr,
1148 unsigned long next, struct mm_walk *walk);
1149 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1150 unsigned long next, struct mm_walk *walk);
1151 int (*pte_entry)(pte_t *pte, unsigned long addr,
1152 unsigned long next, struct mm_walk *walk);
1153 int (*pte_hole)(unsigned long addr, unsigned long next,
1154 struct mm_walk *walk);
1155 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1156 unsigned long addr, unsigned long next,
1157 struct mm_walk *walk);
2165009b
DH
1158 struct mm_struct *mm;
1159 void *private;
e6473092
MM
1160};
1161
2165009b
DH
1162int walk_page_range(unsigned long addr, unsigned long end,
1163 struct mm_walk *walk);
42b77728 1164void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1165 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1166int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1167 struct vm_area_struct *vma);
1da177e4
LT
1168void unmap_mapping_range(struct address_space *mapping,
1169 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1170int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1171 unsigned long *pfn);
d87fe660 1172int follow_phys(struct vm_area_struct *vma, unsigned long address,
1173 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1174int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1175 void *buf, int len, int write);
1da177e4
LT
1176
1177static inline void unmap_shared_mapping_range(struct address_space *mapping,
1178 loff_t const holebegin, loff_t const holelen)
1179{
1180 unmap_mapping_range(mapping, holebegin, holelen, 0);
1181}
1182
7caef267 1183extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1184extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1185void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1186void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1187int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1188int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1189int invalidate_inode_page(struct page *page);
1190
7ee1dd3f 1191#ifdef CONFIG_MMU
83c54070 1192extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1193 unsigned long address, unsigned int flags);
5c723ba5
PZ
1194extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1195 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1196#else
1197static inline int handle_mm_fault(struct mm_struct *mm,
1198 struct vm_area_struct *vma, unsigned long address,
d06063cc 1199 unsigned int flags)
7ee1dd3f
DH
1200{
1201 /* should never happen if there's no MMU */
1202 BUG();
1203 return VM_FAULT_SIGBUS;
1204}
5c723ba5
PZ
1205static inline int fixup_user_fault(struct task_struct *tsk,
1206 struct mm_struct *mm, unsigned long address,
1207 unsigned int fault_flags)
1208{
1209 /* should never happen if there's no MMU */
1210 BUG();
1211 return -EFAULT;
1212}
7ee1dd3f 1213#endif
f33ea7f4 1214
1da177e4 1215extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1216extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1217 void *buf, int len, int write);
1da177e4 1218
28a35716
ML
1219long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1220 unsigned long start, unsigned long nr_pages,
1221 unsigned int foll_flags, struct page **pages,
1222 struct vm_area_struct **vmas, int *nonblocking);
1223long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1224 unsigned long start, unsigned long nr_pages,
1225 int write, int force, struct page **pages,
1226 struct vm_area_struct **vmas);
d2bf6be8
NP
1227int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1228 struct page **pages);
18022c5d
MG
1229struct kvec;
1230int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1231 struct page **pages);
1232int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1233struct page *get_dump_page(unsigned long addr);
1da177e4 1234
cf9a2ae8 1235extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1236extern void do_invalidatepage(struct page *page, unsigned int offset,
1237 unsigned int length);
cf9a2ae8 1238
1da177e4 1239int __set_page_dirty_nobuffers(struct page *page);
76719325 1240int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1241int redirty_page_for_writepage(struct writeback_control *wbc,
1242 struct page *page);
e3a7cca1 1243void account_page_dirtied(struct page *page, struct address_space *mapping);
b3c97528 1244int set_page_dirty(struct page *page);
1da177e4
LT
1245int set_page_dirty_lock(struct page *page);
1246int clear_page_dirty_for_io(struct page *page);
a9090253 1247int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1248
39aa3cb3 1249/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1250static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1251{
1252 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1253}
1254
a09a79f6
MP
1255static inline int stack_guard_page_start(struct vm_area_struct *vma,
1256 unsigned long addr)
1257{
1258 return (vma->vm_flags & VM_GROWSDOWN) &&
1259 (vma->vm_start == addr) &&
1260 !vma_growsdown(vma->vm_prev, addr);
1261}
1262
1263/* Is the vma a continuation of the stack vma below it? */
1264static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1265{
1266 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1267}
1268
1269static inline int stack_guard_page_end(struct vm_area_struct *vma,
1270 unsigned long addr)
1271{
1272 return (vma->vm_flags & VM_GROWSUP) &&
1273 (vma->vm_end == addr) &&
1274 !vma_growsup(vma->vm_next, addr);
1275}
1276
58cb6548
ON
1277extern struct task_struct *task_of_stack(struct task_struct *task,
1278 struct vm_area_struct *vma, bool in_group);
b7643757 1279
b6a2fea3
OW
1280extern unsigned long move_page_tables(struct vm_area_struct *vma,
1281 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1282 unsigned long new_addr, unsigned long len,
1283 bool need_rmap_locks);
7da4d641
PZ
1284extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1285 unsigned long end, pgprot_t newprot,
4b10e7d5 1286 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1287extern int mprotect_fixup(struct vm_area_struct *vma,
1288 struct vm_area_struct **pprev, unsigned long start,
1289 unsigned long end, unsigned long newflags);
1da177e4 1290
465a454f
PZ
1291/*
1292 * doesn't attempt to fault and will return short.
1293 */
1294int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1295 struct page **pages);
d559db08
KH
1296/*
1297 * per-process(per-mm_struct) statistics.
1298 */
d559db08
KH
1299static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1300{
69c97823
KK
1301 long val = atomic_long_read(&mm->rss_stat.count[member]);
1302
1303#ifdef SPLIT_RSS_COUNTING
1304 /*
1305 * counter is updated in asynchronous manner and may go to minus.
1306 * But it's never be expected number for users.
1307 */
1308 if (val < 0)
1309 val = 0;
172703b0 1310#endif
69c97823
KK
1311 return (unsigned long)val;
1312}
d559db08
KH
1313
1314static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1315{
172703b0 1316 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1317}
1318
1319static inline void inc_mm_counter(struct mm_struct *mm, int member)
1320{
172703b0 1321 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1322}
1323
1324static inline void dec_mm_counter(struct mm_struct *mm, int member)
1325{
172703b0 1326 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1327}
1328
d559db08
KH
1329static inline unsigned long get_mm_rss(struct mm_struct *mm)
1330{
1331 return get_mm_counter(mm, MM_FILEPAGES) +
1332 get_mm_counter(mm, MM_ANONPAGES);
1333}
1334
1335static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1336{
1337 return max(mm->hiwater_rss, get_mm_rss(mm));
1338}
1339
1340static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1341{
1342 return max(mm->hiwater_vm, mm->total_vm);
1343}
1344
1345static inline void update_hiwater_rss(struct mm_struct *mm)
1346{
1347 unsigned long _rss = get_mm_rss(mm);
1348
1349 if ((mm)->hiwater_rss < _rss)
1350 (mm)->hiwater_rss = _rss;
1351}
1352
1353static inline void update_hiwater_vm(struct mm_struct *mm)
1354{
1355 if (mm->hiwater_vm < mm->total_vm)
1356 mm->hiwater_vm = mm->total_vm;
1357}
1358
1359static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1360 struct mm_struct *mm)
1361{
1362 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1363
1364 if (*maxrss < hiwater_rss)
1365 *maxrss = hiwater_rss;
1366}
1367
53bddb4e 1368#if defined(SPLIT_RSS_COUNTING)
05af2e10 1369void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1370#else
05af2e10 1371static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1372{
1373}
1374#endif
465a454f 1375
4e950f6f 1376int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1377
25ca1d6c
NK
1378extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1379 spinlock_t **ptl);
1380static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1381 spinlock_t **ptl)
1382{
1383 pte_t *ptep;
1384 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1385 return ptep;
1386}
c9cfcddf 1387
5f22df00
NP
1388#ifdef __PAGETABLE_PUD_FOLDED
1389static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1390 unsigned long address)
1391{
1392 return 0;
1393}
1394#else
1bb3630e 1395int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1396#endif
1397
1398#ifdef __PAGETABLE_PMD_FOLDED
1399static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1400 unsigned long address)
1401{
1402 return 0;
1403}
1404#else
1bb3630e 1405int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1406#endif
1407
8ac1f832
AA
1408int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1409 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1410int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1411
1da177e4
LT
1412/*
1413 * The following ifdef needed to get the 4level-fixup.h header to work.
1414 * Remove it when 4level-fixup.h has been removed.
1415 */
1bb3630e 1416#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1417static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1418{
1bb3630e
HD
1419 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1420 NULL: pud_offset(pgd, address);
1da177e4
LT
1421}
1422
1423static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1424{
1bb3630e
HD
1425 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1426 NULL: pmd_offset(pud, address);
1da177e4 1427}
1bb3630e
HD
1428#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1429
57c1ffce 1430#if USE_SPLIT_PTE_PTLOCKS
597d795a 1431#if ALLOC_SPLIT_PTLOCKS
b35f1819 1432void __init ptlock_cache_init(void);
539edb58
PZ
1433extern bool ptlock_alloc(struct page *page);
1434extern void ptlock_free(struct page *page);
1435
1436static inline spinlock_t *ptlock_ptr(struct page *page)
1437{
1438 return page->ptl;
1439}
597d795a 1440#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1441static inline void ptlock_cache_init(void)
1442{
1443}
1444
49076ec2
KS
1445static inline bool ptlock_alloc(struct page *page)
1446{
49076ec2
KS
1447 return true;
1448}
539edb58 1449
49076ec2
KS
1450static inline void ptlock_free(struct page *page)
1451{
49076ec2
KS
1452}
1453
1454static inline spinlock_t *ptlock_ptr(struct page *page)
1455{
539edb58 1456 return &page->ptl;
49076ec2 1457}
597d795a 1458#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1459
1460static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1461{
1462 return ptlock_ptr(pmd_page(*pmd));
1463}
1464
1465static inline bool ptlock_init(struct page *page)
1466{
1467 /*
1468 * prep_new_page() initialize page->private (and therefore page->ptl)
1469 * with 0. Make sure nobody took it in use in between.
1470 *
1471 * It can happen if arch try to use slab for page table allocation:
1472 * slab code uses page->slab_cache and page->first_page (for tail
1473 * pages), which share storage with page->ptl.
1474 */
309381fe 1475 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1476 if (!ptlock_alloc(page))
1477 return false;
1478 spin_lock_init(ptlock_ptr(page));
1479 return true;
1480}
1481
1482/* Reset page->mapping so free_pages_check won't complain. */
1483static inline void pte_lock_deinit(struct page *page)
1484{
1485 page->mapping = NULL;
1486 ptlock_free(page);
1487}
1488
57c1ffce 1489#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1490/*
1491 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1492 */
49076ec2
KS
1493static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1494{
1495 return &mm->page_table_lock;
1496}
b35f1819 1497static inline void ptlock_cache_init(void) {}
49076ec2
KS
1498static inline bool ptlock_init(struct page *page) { return true; }
1499static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1500#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1501
b35f1819
KS
1502static inline void pgtable_init(void)
1503{
1504 ptlock_cache_init();
1505 pgtable_cache_init();
1506}
1507
390f44e2 1508static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1509{
2f569afd 1510 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1511 return ptlock_init(page);
2f569afd
MS
1512}
1513
1514static inline void pgtable_page_dtor(struct page *page)
1515{
1516 pte_lock_deinit(page);
1517 dec_zone_page_state(page, NR_PAGETABLE);
1518}
1519
c74df32c
HD
1520#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1521({ \
4c21e2f2 1522 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1523 pte_t *__pte = pte_offset_map(pmd, address); \
1524 *(ptlp) = __ptl; \
1525 spin_lock(__ptl); \
1526 __pte; \
1527})
1528
1529#define pte_unmap_unlock(pte, ptl) do { \
1530 spin_unlock(ptl); \
1531 pte_unmap(pte); \
1532} while (0)
1533
8ac1f832
AA
1534#define pte_alloc_map(mm, vma, pmd, address) \
1535 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1536 pmd, address))? \
1537 NULL: pte_offset_map(pmd, address))
1bb3630e 1538
c74df32c 1539#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1540 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1541 pmd, address))? \
c74df32c
HD
1542 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1543
1bb3630e 1544#define pte_alloc_kernel(pmd, address) \
8ac1f832 1545 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1546 NULL: pte_offset_kernel(pmd, address))
1da177e4 1547
e009bb30
KS
1548#if USE_SPLIT_PMD_PTLOCKS
1549
634391ac
MS
1550static struct page *pmd_to_page(pmd_t *pmd)
1551{
1552 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1553 return virt_to_page((void *)((unsigned long) pmd & mask));
1554}
1555
e009bb30
KS
1556static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1557{
634391ac 1558 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1559}
1560
1561static inline bool pgtable_pmd_page_ctor(struct page *page)
1562{
e009bb30
KS
1563#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1564 page->pmd_huge_pte = NULL;
1565#endif
49076ec2 1566 return ptlock_init(page);
e009bb30
KS
1567}
1568
1569static inline void pgtable_pmd_page_dtor(struct page *page)
1570{
1571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1572 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1573#endif
49076ec2 1574 ptlock_free(page);
e009bb30
KS
1575}
1576
634391ac 1577#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1578
1579#else
1580
9a86cb7b
KS
1581static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1582{
1583 return &mm->page_table_lock;
1584}
1585
e009bb30
KS
1586static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1587static inline void pgtable_pmd_page_dtor(struct page *page) {}
1588
c389a250 1589#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1590
e009bb30
KS
1591#endif
1592
9a86cb7b
KS
1593static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1594{
1595 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1596 spin_lock(ptl);
1597 return ptl;
1598}
1599
1da177e4 1600extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1601extern void free_area_init_node(int nid, unsigned long * zones_size,
1602 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1603extern void free_initmem(void);
1604
69afade7
JL
1605/*
1606 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1607 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1608 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1609 * Return pages freed into the buddy system.
1610 */
11199692 1611extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1612 int poison, char *s);
c3d5f5f0 1613
cfa11e08
JL
1614#ifdef CONFIG_HIGHMEM
1615/*
1616 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1617 * and totalram_pages.
1618 */
1619extern void free_highmem_page(struct page *page);
1620#endif
69afade7 1621
c3d5f5f0 1622extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1623extern void mem_init_print_info(const char *str);
69afade7
JL
1624
1625/* Free the reserved page into the buddy system, so it gets managed. */
1626static inline void __free_reserved_page(struct page *page)
1627{
1628 ClearPageReserved(page);
1629 init_page_count(page);
1630 __free_page(page);
1631}
1632
1633static inline void free_reserved_page(struct page *page)
1634{
1635 __free_reserved_page(page);
1636 adjust_managed_page_count(page, 1);
1637}
1638
1639static inline void mark_page_reserved(struct page *page)
1640{
1641 SetPageReserved(page);
1642 adjust_managed_page_count(page, -1);
1643}
1644
1645/*
1646 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1647 * The freed pages will be poisoned with pattern "poison" if it's within
1648 * range [0, UCHAR_MAX].
1649 * Return pages freed into the buddy system.
69afade7
JL
1650 */
1651static inline unsigned long free_initmem_default(int poison)
1652{
1653 extern char __init_begin[], __init_end[];
1654
11199692 1655 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1656 poison, "unused kernel");
1657}
1658
7ee3d4e8
JL
1659static inline unsigned long get_num_physpages(void)
1660{
1661 int nid;
1662 unsigned long phys_pages = 0;
1663
1664 for_each_online_node(nid)
1665 phys_pages += node_present_pages(nid);
1666
1667 return phys_pages;
1668}
1669
0ee332c1 1670#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1671/*
0ee332c1 1672 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1673 * zones, allocate the backing mem_map and account for memory holes in a more
1674 * architecture independent manner. This is a substitute for creating the
1675 * zone_sizes[] and zholes_size[] arrays and passing them to
1676 * free_area_init_node()
1677 *
1678 * An architecture is expected to register range of page frames backed by
0ee332c1 1679 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1680 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1681 * usage, an architecture is expected to do something like
1682 *
1683 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1684 * max_highmem_pfn};
1685 * for_each_valid_physical_page_range()
0ee332c1 1686 * memblock_add_node(base, size, nid)
c713216d
MG
1687 * free_area_init_nodes(max_zone_pfns);
1688 *
0ee332c1
TH
1689 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1690 * registered physical page range. Similarly
1691 * sparse_memory_present_with_active_regions() calls memory_present() for
1692 * each range when SPARSEMEM is enabled.
c713216d
MG
1693 *
1694 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1695 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1696 */
1697extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1698unsigned long node_map_pfn_alignment(void);
32996250
YL
1699unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1700 unsigned long end_pfn);
c713216d
MG
1701extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1702 unsigned long end_pfn);
1703extern void get_pfn_range_for_nid(unsigned int nid,
1704 unsigned long *start_pfn, unsigned long *end_pfn);
1705extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1706extern void free_bootmem_with_active_regions(int nid,
1707 unsigned long max_low_pfn);
1708extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1709
0ee332c1 1710#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1711
0ee332c1 1712#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1713 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1714static inline int __early_pfn_to_nid(unsigned long pfn)
1715{
1716 return 0;
1717}
1718#else
1719/* please see mm/page_alloc.c */
1720extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1721/* there is a per-arch backend function. */
1722extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1723#endif
1724
0e0b864e 1725extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1726extern void memmap_init_zone(unsigned long, int, unsigned long,
1727 unsigned long, enum memmap_context);
bc75d33f 1728extern void setup_per_zone_wmarks(void);
1b79acc9 1729extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1730extern void mem_init(void);
8feae131 1731extern void __init mmap_init(void);
b2b755b5 1732extern void show_mem(unsigned int flags);
1da177e4
LT
1733extern void si_meminfo(struct sysinfo * val);
1734extern void si_meminfo_node(struct sysinfo *val, int nid);
1735
3ee9a4f0
JP
1736extern __printf(3, 4)
1737void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1738
e7c8d5c9 1739extern void setup_per_cpu_pageset(void);
e7c8d5c9 1740
112067f0 1741extern void zone_pcp_update(struct zone *zone);
340175b7 1742extern void zone_pcp_reset(struct zone *zone);
112067f0 1743
75f7ad8e
PS
1744/* page_alloc.c */
1745extern int min_free_kbytes;
1746
8feae131 1747/* nommu.c */
33e5d769 1748extern atomic_long_t mmap_pages_allocated;
7e660872 1749extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1750
6b2dbba8 1751/* interval_tree.c */
6b2dbba8
ML
1752void vma_interval_tree_insert(struct vm_area_struct *node,
1753 struct rb_root *root);
9826a516
ML
1754void vma_interval_tree_insert_after(struct vm_area_struct *node,
1755 struct vm_area_struct *prev,
1756 struct rb_root *root);
6b2dbba8
ML
1757void vma_interval_tree_remove(struct vm_area_struct *node,
1758 struct rb_root *root);
1759struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1760 unsigned long start, unsigned long last);
1761struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1762 unsigned long start, unsigned long last);
1763
1764#define vma_interval_tree_foreach(vma, root, start, last) \
1765 for (vma = vma_interval_tree_iter_first(root, start, last); \
1766 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1767
1768static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1769 struct list_head *list)
1770{
6b2dbba8 1771 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1772}
1773
bf181b9f
ML
1774void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1775 struct rb_root *root);
1776void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1777 struct rb_root *root);
1778struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1779 struct rb_root *root, unsigned long start, unsigned long last);
1780struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1781 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1782#ifdef CONFIG_DEBUG_VM_RB
1783void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1784#endif
bf181b9f
ML
1785
1786#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1787 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1788 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1789
1da177e4 1790/* mmap.c */
34b4e4aa 1791extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1792extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1793 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1794extern struct vm_area_struct *vma_merge(struct mm_struct *,
1795 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1796 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1797 struct mempolicy *);
1798extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1799extern int split_vma(struct mm_struct *,
1800 struct vm_area_struct *, unsigned long addr, int new_below);
1801extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1802extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1803 struct rb_node **, struct rb_node *);
a8fb5618 1804extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1805extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1806 unsigned long addr, unsigned long len, pgoff_t pgoff,
1807 bool *need_rmap_locks);
1da177e4 1808extern void exit_mmap(struct mm_struct *);
925d1c40 1809
9c599024
CG
1810static inline int check_data_rlimit(unsigned long rlim,
1811 unsigned long new,
1812 unsigned long start,
1813 unsigned long end_data,
1814 unsigned long start_data)
1815{
1816 if (rlim < RLIM_INFINITY) {
1817 if (((new - start) + (end_data - start_data)) > rlim)
1818 return -ENOSPC;
1819 }
1820
1821 return 0;
1822}
1823
7906d00c
AA
1824extern int mm_take_all_locks(struct mm_struct *mm);
1825extern void mm_drop_all_locks(struct mm_struct *mm);
1826
38646013
JS
1827extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1828extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1829
119f657c 1830extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1831extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1832 unsigned long addr, unsigned long len,
a62c34bd
AL
1833 unsigned long flags,
1834 const struct vm_special_mapping *spec);
1835/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1836extern int install_special_mapping(struct mm_struct *mm,
1837 unsigned long addr, unsigned long len,
1838 unsigned long flags, struct page **pages);
1da177e4
LT
1839
1840extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1841
0165ab44 1842extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1843 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1844extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1845 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1846 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1847extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1848
bebeb3d6
ML
1849#ifdef CONFIG_MMU
1850extern int __mm_populate(unsigned long addr, unsigned long len,
1851 int ignore_errors);
1852static inline void mm_populate(unsigned long addr, unsigned long len)
1853{
1854 /* Ignore errors */
1855 (void) __mm_populate(addr, len, 1);
1856}
1857#else
1858static inline void mm_populate(unsigned long addr, unsigned long len) {}
1859#endif
1860
e4eb1ff6
LT
1861/* These take the mm semaphore themselves */
1862extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1863extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1864extern unsigned long vm_mmap(struct file *, unsigned long,
1865 unsigned long, unsigned long,
1866 unsigned long, unsigned long);
1da177e4 1867
db4fbfb9
ML
1868struct vm_unmapped_area_info {
1869#define VM_UNMAPPED_AREA_TOPDOWN 1
1870 unsigned long flags;
1871 unsigned long length;
1872 unsigned long low_limit;
1873 unsigned long high_limit;
1874 unsigned long align_mask;
1875 unsigned long align_offset;
1876};
1877
1878extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1879extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1880
1881/*
1882 * Search for an unmapped address range.
1883 *
1884 * We are looking for a range that:
1885 * - does not intersect with any VMA;
1886 * - is contained within the [low_limit, high_limit) interval;
1887 * - is at least the desired size.
1888 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1889 */
1890static inline unsigned long
1891vm_unmapped_area(struct vm_unmapped_area_info *info)
1892{
1893 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1894 return unmapped_area(info);
1895 else
1896 return unmapped_area_topdown(info);
1897}
1898
85821aab 1899/* truncate.c */
1da177e4 1900extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1901extern void truncate_inode_pages_range(struct address_space *,
1902 loff_t lstart, loff_t lend);
91b0abe3 1903extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1904
1905/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1906extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1907extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1908extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1909
1910/* mm/page-writeback.c */
1911int write_one_page(struct page *page, int wait);
1cf6e7d8 1912void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1913
1914/* readahead.c */
1915#define VM_MAX_READAHEAD 128 /* kbytes */
1916#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1917
1da177e4 1918int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1919 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1920
1921void page_cache_sync_readahead(struct address_space *mapping,
1922 struct file_ra_state *ra,
1923 struct file *filp,
1924 pgoff_t offset,
1925 unsigned long size);
1926
1927void page_cache_async_readahead(struct address_space *mapping,
1928 struct file_ra_state *ra,
1929 struct file *filp,
1930 struct page *pg,
1931 pgoff_t offset,
1932 unsigned long size);
1933
1da177e4
LT
1934unsigned long max_sane_readahead(unsigned long nr);
1935
d05f3169 1936/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1937extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1938
1939/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1940extern int expand_downwards(struct vm_area_struct *vma,
1941 unsigned long address);
8ca3eb08 1942#if VM_GROWSUP
46dea3d0 1943extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1944#else
1945 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1946#endif
1da177e4
LT
1947
1948/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1949extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1950extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1951 struct vm_area_struct **pprev);
1952
1953/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1954 NULL if none. Assume start_addr < end_addr. */
1955static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1956{
1957 struct vm_area_struct * vma = find_vma(mm,start_addr);
1958
1959 if (vma && end_addr <= vma->vm_start)
1960 vma = NULL;
1961 return vma;
1962}
1963
1964static inline unsigned long vma_pages(struct vm_area_struct *vma)
1965{
1966 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1967}
1968
640708a2
PE
1969/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1970static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1971 unsigned long vm_start, unsigned long vm_end)
1972{
1973 struct vm_area_struct *vma = find_vma(mm, vm_start);
1974
1975 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1976 vma = NULL;
1977
1978 return vma;
1979}
1980
bad849b3 1981#ifdef CONFIG_MMU
804af2cf 1982pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 1983void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
1984#else
1985static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1986{
1987 return __pgprot(0);
1988}
64e45507
PF
1989static inline void vma_set_page_prot(struct vm_area_struct *vma)
1990{
1991 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1992}
bad849b3
DH
1993#endif
1994
5877231f 1995#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 1996unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1997 unsigned long start, unsigned long end);
1998#endif
1999
deceb6cd 2000struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2001int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2002 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2003int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2004int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2005 unsigned long pfn);
423bad60
NP
2006int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2007 unsigned long pfn);
b4cbb197
LT
2008int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2009
deceb6cd 2010
240aadee
ML
2011struct page *follow_page_mask(struct vm_area_struct *vma,
2012 unsigned long address, unsigned int foll_flags,
2013 unsigned int *page_mask);
2014
2015static inline struct page *follow_page(struct vm_area_struct *vma,
2016 unsigned long address, unsigned int foll_flags)
2017{
2018 unsigned int unused_page_mask;
2019 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2020}
2021
deceb6cd
HD
2022#define FOLL_WRITE 0x01 /* check pte is writable */
2023#define FOLL_TOUCH 0x02 /* mark page accessed */
2024#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2025#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2026#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2027#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2028 * and return without waiting upon it */
110d74a9 2029#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 2030#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2031#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2032#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2033#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2034#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2035
2f569afd 2036typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2037 void *data);
2038extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2039 unsigned long size, pte_fn_t fn, void *data);
2040
1da177e4 2041#ifdef CONFIG_PROC_FS
ab50b8ed 2042void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2043#else
ab50b8ed 2044static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2045 unsigned long flags, struct file *file, long pages)
2046{
44de9d0c 2047 mm->total_vm += pages;
1da177e4
LT
2048}
2049#endif /* CONFIG_PROC_FS */
2050
12d6f21e 2051#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 2052extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
2053#ifdef CONFIG_HIBERNATION
2054extern bool kernel_page_present(struct page *page);
2055#endif /* CONFIG_HIBERNATION */
12d6f21e 2056#else
1da177e4 2057static inline void
9858db50 2058kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2059#ifdef CONFIG_HIBERNATION
2060static inline bool kernel_page_present(struct page *page) { return true; }
2061#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2062#endif
2063
a6c19dfe 2064#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2065extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2066extern int in_gate_area_no_mm(unsigned long addr);
2067extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2068#else
a6c19dfe
AL
2069static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2070{
2071 return NULL;
2072}
2073static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2074static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2075{
2076 return 0;
2077}
1da177e4
LT
2078#endif /* __HAVE_ARCH_GATE_AREA */
2079
146732ce
JT
2080#ifdef CONFIG_SYSCTL
2081extern int sysctl_drop_caches;
8d65af78 2082int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2083 void __user *, size_t *, loff_t *);
146732ce
JT
2084#endif
2085
a09ed5e0 2086unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
2087 unsigned long nr_pages_scanned,
2088 unsigned long lru_pages);
9d0243bc 2089
7a9166e3
LY
2090#ifndef CONFIG_MMU
2091#define randomize_va_space 0
2092#else
a62eaf15 2093extern int randomize_va_space;
7a9166e3 2094#endif
a62eaf15 2095
045e72ac 2096const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2097void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2098
9bdac914
YL
2099void sparse_mem_maps_populate_node(struct page **map_map,
2100 unsigned long pnum_begin,
2101 unsigned long pnum_end,
2102 unsigned long map_count,
2103 int nodeid);
2104
98f3cfc1 2105struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2106pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2107pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2108pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2109pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2110void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2111void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2112void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2113int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2114 int node);
2115int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2116void vmemmap_populate_print_last(void);
0197518c 2117#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2118void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2119#endif
46723bfa
YI
2120void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2121 unsigned long size);
6a46079c 2122
82ba011b
AK
2123enum mf_flags {
2124 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2125 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2126 MF_MUST_KILL = 1 << 2,
cf870c70 2127 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2128};
cd42f4a3 2129extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2130extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2131extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2132extern int sysctl_memory_failure_early_kill;
2133extern int sysctl_memory_failure_recovery;
facb6011 2134extern void shake_page(struct page *p, int access);
293c07e3 2135extern atomic_long_t num_poisoned_pages;
facb6011 2136extern int soft_offline_page(struct page *page, int flags);
6a46079c 2137
47ad8475
AA
2138#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2139extern void clear_huge_page(struct page *page,
2140 unsigned long addr,
2141 unsigned int pages_per_huge_page);
2142extern void copy_user_huge_page(struct page *dst, struct page *src,
2143 unsigned long addr, struct vm_area_struct *vma,
2144 unsigned int pages_per_huge_page);
2145#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2146
c0a32fc5
SG
2147#ifdef CONFIG_DEBUG_PAGEALLOC
2148extern unsigned int _debug_guardpage_minorder;
2149
2150static inline unsigned int debug_guardpage_minorder(void)
2151{
2152 return _debug_guardpage_minorder;
2153}
2154
2155static inline bool page_is_guard(struct page *page)
2156{
2157 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2158}
2159#else
2160static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2161static inline bool page_is_guard(struct page *page) { return false; }
2162#endif /* CONFIG_DEBUG_PAGEALLOC */
2163
f9872caf
CS
2164#if MAX_NUMNODES > 1
2165void __init setup_nr_node_ids(void);
2166#else
2167static inline void setup_nr_node_ids(void) {}
2168#endif
2169
1da177e4
LT
2170#endif /* __KERNEL__ */
2171#endif /* _LINUX_MM_H */