]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/mm.h
mm: make vm_area_alloc() initialize core fields
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
1da177e4
LT
28
29struct mempolicy;
30struct anon_vma;
bf181b9f 31struct anon_vma_chain;
4e950f6f 32struct file_ra_state;
e8edc6e0 33struct user_struct;
4e950f6f 34struct writeback_control;
682aa8e1 35struct bdi_writeback;
1da177e4 36
597b7305
MH
37void init_mm_internals(void);
38
fccc9987 39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 40extern unsigned long max_mapnr;
fccc9987
JL
41
42static inline void set_max_mapnr(unsigned long limit)
43{
44 max_mapnr = limit;
45}
46#else
47static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
48#endif
49
4481374c 50extern unsigned long totalram_pages;
1da177e4 51extern void * high_memory;
1da177e4
LT
52extern int page_cluster;
53
54#ifdef CONFIG_SYSCTL
55extern int sysctl_legacy_va_layout;
56#else
57#define sysctl_legacy_va_layout 0
58#endif
59
d07e2259
DC
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61extern const int mmap_rnd_bits_min;
62extern const int mmap_rnd_bits_max;
63extern int mmap_rnd_bits __read_mostly;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66extern const int mmap_rnd_compat_bits_min;
67extern const int mmap_rnd_compat_bits_max;
68extern int mmap_rnd_compat_bits __read_mostly;
69#endif
70
1da177e4
LT
71#include <asm/page.h>
72#include <asm/pgtable.h>
73#include <asm/processor.h>
1da177e4 74
79442ed1
TC
75#ifndef __pa_symbol
76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77#endif
78
1dff8083
AB
79#ifndef page_to_virt
80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81#endif
82
568c5fe5
LA
83#ifndef lm_alias
84#define lm_alias(x) __va(__pa_symbol(x))
85#endif
86
593befa6
DD
87/*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94#ifndef mm_forbids_zeropage
95#define mm_forbids_zeropage(X) (0)
96#endif
97
a4a3ede2
PT
98/*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103#ifndef mm_zero_struct_page
104#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105#endif
106
ea606cf5
AR
107/*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123#define MAPCOUNT_ELF_CORE_MARGIN (5)
124#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126extern int sysctl_max_map_count;
127
c9b1d098 128extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 129extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 130
49f0ce5f
JM
131extern int sysctl_overcommit_memory;
132extern int sysctl_overcommit_ratio;
133extern unsigned long sysctl_overcommit_kbytes;
134
135extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
1da177e4
LT
140#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
27ac792c
AR
142/* to align the pointer to the (next) page boundary */
143#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
0fa73b86 145/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 146#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 147
1da177e4
LT
148/*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
0d2c7e02 157struct vm_area_struct *vm_area_alloc(struct mm_struct *);
e88c5cf9
LT
158struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
159void vm_area_free(struct vm_area_struct *);
c43692e8 160
1da177e4 161#ifndef CONFIG_MMU
8feae131
DH
162extern struct rb_root nommu_region_tree;
163extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
164
165extern unsigned int kobjsize(const void *objp);
166#endif
167
168/*
605d9288 169 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 170 * When changing, update also include/trace/events/mmflags.h
1da177e4 171 */
cc2383ec
KK
172#define VM_NONE 0x00000000
173
1da177e4
LT
174#define VM_READ 0x00000001 /* currently active flags */
175#define VM_WRITE 0x00000002
176#define VM_EXEC 0x00000004
177#define VM_SHARED 0x00000008
178
7e2cff42 179/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
180#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
181#define VM_MAYWRITE 0x00000020
182#define VM_MAYEXEC 0x00000040
183#define VM_MAYSHARE 0x00000080
184
185#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 186#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 187#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 188#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 189#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 190
1da177e4
LT
191#define VM_LOCKED 0x00002000
192#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
193
194 /* Used by sys_madvise() */
195#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
196#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
197
198#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
199#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 200#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 201#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 202#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 203#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 204#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 205#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 206#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 207#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 208
d9104d1c
CG
209#ifdef CONFIG_MEM_SOFT_DIRTY
210# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
211#else
212# define VM_SOFTDIRTY 0
213#endif
214
b379d790 215#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
216#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
217#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 218#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 219
63c17fb8
DH
220#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
221#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 225#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
226#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
227#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
228#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
229#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 230#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
231#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
232
cc2383ec
KK
233#if defined(CONFIG_X86)
234# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
235#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
236# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
237# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
238# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
239# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
240# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
241#endif
cc2383ec
KK
242#elif defined(CONFIG_PPC)
243# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
244#elif defined(CONFIG_PARISC)
245# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
246#elif defined(CONFIG_METAG)
247# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
248#elif defined(CONFIG_IA64)
249# define VM_GROWSUP VM_ARCH_1
250#elif !defined(CONFIG_MMU)
251# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
252#endif
253
df3735c5 254#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 255/* MPX specific bounds table or bounds directory */
fa87b91c 256# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
257#else
258# define VM_MPX VM_NONE
4aae7e43
QR
259#endif
260
cc2383ec
KK
261#ifndef VM_GROWSUP
262# define VM_GROWSUP VM_NONE
263#endif
264
a8bef8ff
MG
265/* Bits set in the VMA until the stack is in its final location */
266#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
267
1da177e4
LT
268#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
269#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
270#endif
271
272#ifdef CONFIG_STACK_GROWSUP
30bdbb78 273#define VM_STACK VM_GROWSUP
1da177e4 274#else
30bdbb78 275#define VM_STACK VM_GROWSDOWN
1da177e4
LT
276#endif
277
30bdbb78
KK
278#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
279
b291f000 280/*
78f11a25
AA
281 * Special vmas that are non-mergable, non-mlock()able.
282 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 283 */
9050d7eb 284#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 285
a0715cc2
AT
286/* This mask defines which mm->def_flags a process can inherit its parent */
287#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
288
de60f5f1
EM
289/* This mask is used to clear all the VMA flags used by mlock */
290#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
291
1da177e4
LT
292/*
293 * mapping from the currently active vm_flags protection bits (the
294 * low four bits) to a page protection mask..
295 */
296extern pgprot_t protection_map[16];
297
d0217ac0 298#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
299#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
300#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
301#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
302#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
303#define FAULT_FLAG_TRIED 0x20 /* Second try */
304#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 305#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 306#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 307
282a8e03
RZ
308#define FAULT_FLAG_TRACE \
309 { FAULT_FLAG_WRITE, "WRITE" }, \
310 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
311 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
312 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
313 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
314 { FAULT_FLAG_TRIED, "TRIED" }, \
315 { FAULT_FLAG_USER, "USER" }, \
316 { FAULT_FLAG_REMOTE, "REMOTE" }, \
317 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
318
54cb8821 319/*
d0217ac0 320 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
321 * ->fault function. The vma's ->fault is responsible for returning a bitmask
322 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 323 *
c20cd45e
MH
324 * MM layer fills up gfp_mask for page allocations but fault handler might
325 * alter it if its implementation requires a different allocation context.
326 *
9b4bdd2f 327 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 328 */
d0217ac0 329struct vm_fault {
82b0f8c3 330 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 331 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 332 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 333 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 334 unsigned long address; /* Faulting virtual address */
82b0f8c3 335 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 336 * the 'address' */
a2d58167
DJ
337 pud_t *pud; /* Pointer to pud entry matching
338 * the 'address'
339 */
2994302b 340 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 341
3917048d
JK
342 struct page *cow_page; /* Page handler may use for COW fault */
343 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 344 struct page *page; /* ->fault handlers should return a
83c54070 345 * page here, unless VM_FAULT_NOPAGE
d0217ac0 346 * is set (which is also implied by
83c54070 347 * VM_FAULT_ERROR).
d0217ac0 348 */
82b0f8c3 349 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
350 pte_t *pte; /* Pointer to pte entry matching
351 * the 'address'. NULL if the page
352 * table hasn't been allocated.
353 */
354 spinlock_t *ptl; /* Page table lock.
355 * Protects pte page table if 'pte'
356 * is not NULL, otherwise pmd.
357 */
7267ec00
KS
358 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
359 * vm_ops->map_pages() calls
360 * alloc_set_pte() from atomic context.
361 * do_fault_around() pre-allocates
362 * page table to avoid allocation from
363 * atomic context.
364 */
54cb8821 365};
1da177e4 366
c791ace1
DJ
367/* page entry size for vm->huge_fault() */
368enum page_entry_size {
369 PE_SIZE_PTE = 0,
370 PE_SIZE_PMD,
371 PE_SIZE_PUD,
372};
373
1da177e4
LT
374/*
375 * These are the virtual MM functions - opening of an area, closing and
376 * unmapping it (needed to keep files on disk up-to-date etc), pointer
377 * to the functions called when a no-page or a wp-page exception occurs.
378 */
379struct vm_operations_struct {
380 void (*open)(struct vm_area_struct * area);
381 void (*close)(struct vm_area_struct * area);
31383c68 382 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 383 int (*mremap)(struct vm_area_struct * area);
11bac800 384 int (*fault)(struct vm_fault *vmf);
c791ace1 385 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 386 void (*map_pages)(struct vm_fault *vmf,
bae473a4 387 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
388
389 /* notification that a previously read-only page is about to become
390 * writable, if an error is returned it will cause a SIGBUS */
11bac800 391 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 392
dd906184 393 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 394 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 395
28b2ee20
RR
396 /* called by access_process_vm when get_user_pages() fails, typically
397 * for use by special VMAs that can switch between memory and hardware
398 */
399 int (*access)(struct vm_area_struct *vma, unsigned long addr,
400 void *buf, int len, int write);
78d683e8
AL
401
402 /* Called by the /proc/PID/maps code to ask the vma whether it
403 * has a special name. Returning non-NULL will also cause this
404 * vma to be dumped unconditionally. */
405 const char *(*name)(struct vm_area_struct *vma);
406
1da177e4 407#ifdef CONFIG_NUMA
a6020ed7
LS
408 /*
409 * set_policy() op must add a reference to any non-NULL @new mempolicy
410 * to hold the policy upon return. Caller should pass NULL @new to
411 * remove a policy and fall back to surrounding context--i.e. do not
412 * install a MPOL_DEFAULT policy, nor the task or system default
413 * mempolicy.
414 */
1da177e4 415 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
416
417 /*
418 * get_policy() op must add reference [mpol_get()] to any policy at
419 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
420 * in mm/mempolicy.c will do this automatically.
421 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
422 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
423 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
424 * must return NULL--i.e., do not "fallback" to task or system default
425 * policy.
426 */
1da177e4
LT
427 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
428 unsigned long addr);
429#endif
667a0a06
DV
430 /*
431 * Called by vm_normal_page() for special PTEs to find the
432 * page for @addr. This is useful if the default behavior
433 * (using pte_page()) would not find the correct page.
434 */
435 struct page *(*find_special_page)(struct vm_area_struct *vma,
436 unsigned long addr);
1da177e4
LT
437};
438
439struct mmu_gather;
440struct inode;
441
349aef0b
AM
442#define page_private(page) ((page)->private)
443#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 444
5c7fb56e
DW
445#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
446static inline int pmd_devmap(pmd_t pmd)
447{
448 return 0;
449}
a00cc7d9
MW
450static inline int pud_devmap(pud_t pud)
451{
452 return 0;
453}
b59f65fa
KS
454static inline int pgd_devmap(pgd_t pgd)
455{
456 return 0;
457}
5c7fb56e
DW
458#endif
459
1da177e4
LT
460/*
461 * FIXME: take this include out, include page-flags.h in
462 * files which need it (119 of them)
463 */
464#include <linux/page-flags.h>
71e3aac0 465#include <linux/huge_mm.h>
1da177e4
LT
466
467/*
468 * Methods to modify the page usage count.
469 *
470 * What counts for a page usage:
471 * - cache mapping (page->mapping)
472 * - private data (page->private)
473 * - page mapped in a task's page tables, each mapping
474 * is counted separately
475 *
476 * Also, many kernel routines increase the page count before a critical
477 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
478 */
479
480/*
da6052f7 481 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 482 */
7c8ee9a8
NP
483static inline int put_page_testzero(struct page *page)
484{
fe896d18
JK
485 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
486 return page_ref_dec_and_test(page);
7c8ee9a8 487}
1da177e4
LT
488
489/*
7c8ee9a8
NP
490 * Try to grab a ref unless the page has a refcount of zero, return false if
491 * that is the case.
8e0861fa
AK
492 * This can be called when MMU is off so it must not access
493 * any of the virtual mappings.
1da177e4 494 */
7c8ee9a8
NP
495static inline int get_page_unless_zero(struct page *page)
496{
fe896d18 497 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 498}
1da177e4 499
53df8fdc 500extern int page_is_ram(unsigned long pfn);
124fe20d
DW
501
502enum {
503 REGION_INTERSECTS,
504 REGION_DISJOINT,
505 REGION_MIXED,
506};
507
1c29f25b
TK
508int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
509 unsigned long desc);
53df8fdc 510
48667e7a 511/* Support for virtually mapped pages */
b3bdda02
CL
512struct page *vmalloc_to_page(const void *addr);
513unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 514
0738c4bb
PM
515/*
516 * Determine if an address is within the vmalloc range
517 *
518 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
519 * is no special casing required.
520 */
bb00a789 521static inline bool is_vmalloc_addr(const void *x)
9e2779fa 522{
0738c4bb 523#ifdef CONFIG_MMU
9e2779fa
CL
524 unsigned long addr = (unsigned long)x;
525
526 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 527#else
bb00a789 528 return false;
8ca3ed87 529#endif
0738c4bb 530}
81ac3ad9
KH
531#ifdef CONFIG_MMU
532extern int is_vmalloc_or_module_addr(const void *x);
533#else
934831d0 534static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
535{
536 return 0;
537}
538#endif
9e2779fa 539
a7c3e901
MH
540extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
541static inline void *kvmalloc(size_t size, gfp_t flags)
542{
543 return kvmalloc_node(size, flags, NUMA_NO_NODE);
544}
545static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
546{
547 return kvmalloc_node(size, flags | __GFP_ZERO, node);
548}
549static inline void *kvzalloc(size_t size, gfp_t flags)
550{
551 return kvmalloc(size, flags | __GFP_ZERO);
552}
553
752ade68
MH
554static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
555{
556 if (size != 0 && n > SIZE_MAX / size)
557 return NULL;
558
559 return kvmalloc(n * size, flags);
560}
561
39f1f78d
AV
562extern void kvfree(const void *addr);
563
53f9263b
KS
564static inline atomic_t *compound_mapcount_ptr(struct page *page)
565{
566 return &page[1].compound_mapcount;
567}
568
569static inline int compound_mapcount(struct page *page)
570{
5f527c2b 571 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
572 page = compound_head(page);
573 return atomic_read(compound_mapcount_ptr(page)) + 1;
574}
575
70b50f94
AA
576/*
577 * The atomic page->_mapcount, starts from -1: so that transitions
578 * both from it and to it can be tracked, using atomic_inc_and_test
579 * and atomic_add_negative(-1).
580 */
22b751c3 581static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
582{
583 atomic_set(&(page)->_mapcount, -1);
584}
585
b20ce5e0
KS
586int __page_mapcount(struct page *page);
587
70b50f94
AA
588static inline int page_mapcount(struct page *page)
589{
1d148e21 590 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 591
b20ce5e0
KS
592 if (unlikely(PageCompound(page)))
593 return __page_mapcount(page);
594 return atomic_read(&page->_mapcount) + 1;
595}
596
597#ifdef CONFIG_TRANSPARENT_HUGEPAGE
598int total_mapcount(struct page *page);
6d0a07ed 599int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
600#else
601static inline int total_mapcount(struct page *page)
602{
603 return page_mapcount(page);
70b50f94 604}
6d0a07ed
AA
605static inline int page_trans_huge_mapcount(struct page *page,
606 int *total_mapcount)
607{
608 int mapcount = page_mapcount(page);
609 if (total_mapcount)
610 *total_mapcount = mapcount;
611 return mapcount;
612}
b20ce5e0 613#endif
70b50f94 614
b49af68f
CL
615static inline struct page *virt_to_head_page(const void *x)
616{
617 struct page *page = virt_to_page(x);
ccaafd7f 618
1d798ca3 619 return compound_head(page);
b49af68f
CL
620}
621
ddc58f27
KS
622void __put_page(struct page *page);
623
1d7ea732 624void put_pages_list(struct list_head *pages);
1da177e4 625
8dfcc9ba 626void split_page(struct page *page, unsigned int order);
8dfcc9ba 627
33f2ef89
AW
628/*
629 * Compound pages have a destructor function. Provide a
630 * prototype for that function and accessor functions.
f1e61557 631 * These are _only_ valid on the head of a compound page.
33f2ef89 632 */
f1e61557
KS
633typedef void compound_page_dtor(struct page *);
634
635/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
636enum compound_dtor_id {
637 NULL_COMPOUND_DTOR,
638 COMPOUND_PAGE_DTOR,
639#ifdef CONFIG_HUGETLB_PAGE
640 HUGETLB_PAGE_DTOR,
9a982250
KS
641#endif
642#ifdef CONFIG_TRANSPARENT_HUGEPAGE
643 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
644#endif
645 NR_COMPOUND_DTORS,
646};
647extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
648
649static inline void set_compound_page_dtor(struct page *page,
f1e61557 650 enum compound_dtor_id compound_dtor)
33f2ef89 651{
f1e61557
KS
652 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
653 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
654}
655
656static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
657{
f1e61557
KS
658 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
659 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
660}
661
d00181b9 662static inline unsigned int compound_order(struct page *page)
d85f3385 663{
6d777953 664 if (!PageHead(page))
d85f3385 665 return 0;
e4b294c2 666 return page[1].compound_order;
d85f3385
CL
667}
668
f1e61557 669static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 670{
e4b294c2 671 page[1].compound_order = order;
d85f3385
CL
672}
673
9a982250
KS
674void free_compound_page(struct page *page);
675
3dece370 676#ifdef CONFIG_MMU
14fd403f
AA
677/*
678 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
679 * servicing faults for write access. In the normal case, do always want
680 * pte_mkwrite. But get_user_pages can cause write faults for mappings
681 * that do not have writing enabled, when used by access_process_vm.
682 */
683static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
684{
685 if (likely(vma->vm_flags & VM_WRITE))
686 pte = pte_mkwrite(pte);
687 return pte;
688}
8c6e50b0 689
82b0f8c3 690int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 691 struct page *page);
9118c0cb 692int finish_fault(struct vm_fault *vmf);
66a6197c 693int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 694#endif
14fd403f 695
1da177e4
LT
696/*
697 * Multiple processes may "see" the same page. E.g. for untouched
698 * mappings of /dev/null, all processes see the same page full of
699 * zeroes, and text pages of executables and shared libraries have
700 * only one copy in memory, at most, normally.
701 *
702 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
703 * page_count() == 0 means the page is free. page->lru is then used for
704 * freelist management in the buddy allocator.
da6052f7 705 * page_count() > 0 means the page has been allocated.
1da177e4 706 *
da6052f7
NP
707 * Pages are allocated by the slab allocator in order to provide memory
708 * to kmalloc and kmem_cache_alloc. In this case, the management of the
709 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
710 * unless a particular usage is carefully commented. (the responsibility of
711 * freeing the kmalloc memory is the caller's, of course).
1da177e4 712 *
da6052f7
NP
713 * A page may be used by anyone else who does a __get_free_page().
714 * In this case, page_count still tracks the references, and should only
715 * be used through the normal accessor functions. The top bits of page->flags
716 * and page->virtual store page management information, but all other fields
717 * are unused and could be used privately, carefully. The management of this
718 * page is the responsibility of the one who allocated it, and those who have
719 * subsequently been given references to it.
720 *
721 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
722 * managed by the Linux memory manager: I/O, buffers, swapping etc.
723 * The following discussion applies only to them.
724 *
da6052f7
NP
725 * A pagecache page contains an opaque `private' member, which belongs to the
726 * page's address_space. Usually, this is the address of a circular list of
727 * the page's disk buffers. PG_private must be set to tell the VM to call
728 * into the filesystem to release these pages.
1da177e4 729 *
da6052f7
NP
730 * A page may belong to an inode's memory mapping. In this case, page->mapping
731 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 732 * in units of PAGE_SIZE.
1da177e4 733 *
da6052f7
NP
734 * If pagecache pages are not associated with an inode, they are said to be
735 * anonymous pages. These may become associated with the swapcache, and in that
736 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 737 *
da6052f7
NP
738 * In either case (swapcache or inode backed), the pagecache itself holds one
739 * reference to the page. Setting PG_private should also increment the
740 * refcount. The each user mapping also has a reference to the page.
1da177e4 741 *
da6052f7
NP
742 * The pagecache pages are stored in a per-mapping radix tree, which is
743 * rooted at mapping->page_tree, and indexed by offset.
744 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
745 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 746 *
da6052f7 747 * All pagecache pages may be subject to I/O:
1da177e4
LT
748 * - inode pages may need to be read from disk,
749 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
750 * to be written back to the inode on disk,
751 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
752 * modified may need to be swapped out to swap space and (later) to be read
753 * back into memory.
1da177e4
LT
754 */
755
756/*
757 * The zone field is never updated after free_area_init_core()
758 * sets it, so none of the operations on it need to be atomic.
1da177e4 759 */
348f8b6c 760
90572890 761/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 762#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
763#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
764#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 765#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 766
348f8b6c 767/*
25985edc 768 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
769 * sections we define the shift as 0; that plus a 0 mask ensures
770 * the compiler will optimise away reference to them.
771 */
d41dee36
AW
772#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
773#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
774#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 775#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 776
bce54bbf
WD
777/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
778#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 779#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
780#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
781 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 782#else
89689ae7 783#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
784#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
785 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
786#endif
787
bd8029b6 788#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 789
9223b419
CL
790#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
791#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
792#endif
793
d41dee36
AW
794#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
795#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
796#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 797#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 798#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 799
33dd4e0e 800static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 801{
348f8b6c 802 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 803}
1da177e4 804
260ae3f7
DW
805#ifdef CONFIG_ZONE_DEVICE
806static inline bool is_zone_device_page(const struct page *page)
807{
808 return page_zonenum(page) == ZONE_DEVICE;
809}
810#else
811static inline bool is_zone_device_page(const struct page *page)
812{
813 return false;
814}
7b2d55d2 815#endif
5042db43 816
6b368cd4 817#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
df6ad698 818void put_zone_device_private_or_public_page(struct page *page);
6b368cd4
JG
819DECLARE_STATIC_KEY_FALSE(device_private_key);
820#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
821static inline bool is_device_private_page(const struct page *page);
822static inline bool is_device_public_page(const struct page *page);
823#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
df6ad698 824static inline void put_zone_device_private_or_public_page(struct page *page)
5042db43 825{
5042db43 826}
6b368cd4
JG
827#define IS_HMM_ENABLED 0
828static inline bool is_device_private_page(const struct page *page)
829{
830 return false;
831}
832static inline bool is_device_public_page(const struct page *page)
833{
834 return false;
835}
df6ad698 836#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
260ae3f7 837
7b2d55d2 838
3565fce3
DW
839static inline void get_page(struct page *page)
840{
841 page = compound_head(page);
842 /*
843 * Getting a normal page or the head of a compound page
0139aa7b 844 * requires to already have an elevated page->_refcount.
3565fce3 845 */
fe896d18
JK
846 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
847 page_ref_inc(page);
3565fce3
DW
848}
849
850static inline void put_page(struct page *page)
851{
852 page = compound_head(page);
853
7b2d55d2
JG
854 /*
855 * For private device pages we need to catch refcount transition from
856 * 2 to 1, when refcount reach one it means the private device page is
857 * free and we need to inform the device driver through callback. See
858 * include/linux/memremap.h and HMM for details.
859 */
6b368cd4
JG
860 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
861 unlikely(is_device_public_page(page)))) {
df6ad698 862 put_zone_device_private_or_public_page(page);
7b2d55d2
JG
863 return;
864 }
865
3565fce3
DW
866 if (put_page_testzero(page))
867 __put_page(page);
3565fce3
DW
868}
869
9127ab4f
CS
870#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
871#define SECTION_IN_PAGE_FLAGS
872#endif
873
89689ae7 874/*
7a8010cd
VB
875 * The identification function is mainly used by the buddy allocator for
876 * determining if two pages could be buddies. We are not really identifying
877 * the zone since we could be using the section number id if we do not have
878 * node id available in page flags.
879 * We only guarantee that it will return the same value for two combinable
880 * pages in a zone.
89689ae7 881 */
cb2b95e1
AW
882static inline int page_zone_id(struct page *page)
883{
89689ae7 884 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
885}
886
25ba77c1 887static inline int zone_to_nid(struct zone *zone)
89fa3024 888{
d5f541ed
CL
889#ifdef CONFIG_NUMA
890 return zone->node;
891#else
892 return 0;
893#endif
89fa3024
CL
894}
895
89689ae7 896#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 897extern int page_to_nid(const struct page *page);
89689ae7 898#else
33dd4e0e 899static inline int page_to_nid(const struct page *page)
d41dee36 900{
89689ae7 901 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 902}
89689ae7
CL
903#endif
904
57e0a030 905#ifdef CONFIG_NUMA_BALANCING
90572890 906static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 907{
90572890 908 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
909}
910
90572890 911static inline int cpupid_to_pid(int cpupid)
57e0a030 912{
90572890 913 return cpupid & LAST__PID_MASK;
57e0a030 914}
b795854b 915
90572890 916static inline int cpupid_to_cpu(int cpupid)
b795854b 917{
90572890 918 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
919}
920
90572890 921static inline int cpupid_to_nid(int cpupid)
b795854b 922{
90572890 923 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
924}
925
90572890 926static inline bool cpupid_pid_unset(int cpupid)
57e0a030 927{
90572890 928 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
929}
930
90572890 931static inline bool cpupid_cpu_unset(int cpupid)
b795854b 932{
90572890 933 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
934}
935
8c8a743c
PZ
936static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
937{
938 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
939}
940
941#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
942#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
943static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 944{
1ae71d03 945 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 946}
90572890
PZ
947
948static inline int page_cpupid_last(struct page *page)
949{
950 return page->_last_cpupid;
951}
952static inline void page_cpupid_reset_last(struct page *page)
b795854b 953{
1ae71d03 954 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
955}
956#else
90572890 957static inline int page_cpupid_last(struct page *page)
75980e97 958{
90572890 959 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
960}
961
90572890 962extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 963
90572890 964static inline void page_cpupid_reset_last(struct page *page)
75980e97 965{
09940a4f 966 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 967}
90572890
PZ
968#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
969#else /* !CONFIG_NUMA_BALANCING */
970static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 971{
90572890 972 return page_to_nid(page); /* XXX */
57e0a030
MG
973}
974
90572890 975static inline int page_cpupid_last(struct page *page)
57e0a030 976{
90572890 977 return page_to_nid(page); /* XXX */
57e0a030
MG
978}
979
90572890 980static inline int cpupid_to_nid(int cpupid)
b795854b
MG
981{
982 return -1;
983}
984
90572890 985static inline int cpupid_to_pid(int cpupid)
b795854b
MG
986{
987 return -1;
988}
989
90572890 990static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
991{
992 return -1;
993}
994
90572890
PZ
995static inline int cpu_pid_to_cpupid(int nid, int pid)
996{
997 return -1;
998}
999
1000static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1001{
1002 return 1;
1003}
1004
90572890 1005static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1006{
1007}
8c8a743c
PZ
1008
1009static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1010{
1011 return false;
1012}
90572890 1013#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1014
33dd4e0e 1015static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1016{
1017 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1018}
1019
75ef7184
MG
1020static inline pg_data_t *page_pgdat(const struct page *page)
1021{
1022 return NODE_DATA(page_to_nid(page));
1023}
1024
9127ab4f 1025#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1026static inline void set_page_section(struct page *page, unsigned long section)
1027{
1028 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1029 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1030}
1031
aa462abe 1032static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1033{
1034 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1035}
308c05e3 1036#endif
d41dee36 1037
2f1b6248 1038static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1039{
1040 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1041 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1042}
2f1b6248 1043
348f8b6c
DH
1044static inline void set_page_node(struct page *page, unsigned long node)
1045{
1046 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1047 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1048}
89689ae7 1049
2f1b6248 1050static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1051 unsigned long node, unsigned long pfn)
1da177e4 1052{
348f8b6c
DH
1053 set_page_zone(page, zone);
1054 set_page_node(page, node);
9127ab4f 1055#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1056 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1057#endif
1da177e4
LT
1058}
1059
0610c25d
GT
1060#ifdef CONFIG_MEMCG
1061static inline struct mem_cgroup *page_memcg(struct page *page)
1062{
1063 return page->mem_cgroup;
1064}
55779ec7
JW
1065static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1066{
1067 WARN_ON_ONCE(!rcu_read_lock_held());
1068 return READ_ONCE(page->mem_cgroup);
1069}
0610c25d
GT
1070#else
1071static inline struct mem_cgroup *page_memcg(struct page *page)
1072{
1073 return NULL;
1074}
55779ec7
JW
1075static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1076{
1077 WARN_ON_ONCE(!rcu_read_lock_held());
1078 return NULL;
1079}
0610c25d
GT
1080#endif
1081
f6ac2354
CL
1082/*
1083 * Some inline functions in vmstat.h depend on page_zone()
1084 */
1085#include <linux/vmstat.h>
1086
33dd4e0e 1087static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1088{
1dff8083 1089 return page_to_virt(page);
1da177e4
LT
1090}
1091
1092#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1093#define HASHED_PAGE_VIRTUAL
1094#endif
1095
1096#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1097static inline void *page_address(const struct page *page)
1098{
1099 return page->virtual;
1100}
1101static inline void set_page_address(struct page *page, void *address)
1102{
1103 page->virtual = address;
1104}
1da177e4
LT
1105#define page_address_init() do { } while(0)
1106#endif
1107
1108#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1109void *page_address(const struct page *page);
1da177e4
LT
1110void set_page_address(struct page *page, void *virtual);
1111void page_address_init(void);
1112#endif
1113
1114#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1115#define page_address(page) lowmem_page_address(page)
1116#define set_page_address(page, address) do { } while(0)
1117#define page_address_init() do { } while(0)
1118#endif
1119
e39155ea
KS
1120extern void *page_rmapping(struct page *page);
1121extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1122extern struct address_space *page_mapping(struct page *page);
1da177e4 1123
f981c595
MG
1124extern struct address_space *__page_file_mapping(struct page *);
1125
1126static inline
1127struct address_space *page_file_mapping(struct page *page)
1128{
1129 if (unlikely(PageSwapCache(page)))
1130 return __page_file_mapping(page);
1131
1132 return page->mapping;
1133}
1134
f6ab1f7f
HY
1135extern pgoff_t __page_file_index(struct page *page);
1136
1da177e4
LT
1137/*
1138 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1139 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1140 */
1141static inline pgoff_t page_index(struct page *page)
1142{
1143 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1144 return __page_file_index(page);
1da177e4
LT
1145 return page->index;
1146}
1147
1aa8aea5 1148bool page_mapped(struct page *page);
bda807d4 1149struct address_space *page_mapping(struct page *page);
1da177e4 1150
2f064f34
MH
1151/*
1152 * Return true only if the page has been allocated with
1153 * ALLOC_NO_WATERMARKS and the low watermark was not
1154 * met implying that the system is under some pressure.
1155 */
1156static inline bool page_is_pfmemalloc(struct page *page)
1157{
1158 /*
1159 * Page index cannot be this large so this must be
1160 * a pfmemalloc page.
1161 */
1162 return page->index == -1UL;
1163}
1164
1165/*
1166 * Only to be called by the page allocator on a freshly allocated
1167 * page.
1168 */
1169static inline void set_page_pfmemalloc(struct page *page)
1170{
1171 page->index = -1UL;
1172}
1173
1174static inline void clear_page_pfmemalloc(struct page *page)
1175{
1176 page->index = 0;
1177}
1178
1da177e4
LT
1179/*
1180 * Different kinds of faults, as returned by handle_mm_fault().
1181 * Used to decide whether a process gets delivered SIGBUS or
1182 * just gets major/minor fault counters bumped up.
1183 */
d0217ac0 1184
83c54070
NP
1185#define VM_FAULT_OOM 0x0001
1186#define VM_FAULT_SIGBUS 0x0002
1187#define VM_FAULT_MAJOR 0x0004
1188#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1189#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1190#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1191#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1192
83c54070
NP
1193#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1194#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1195#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1196#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1197#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1198#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1199 * and needs fsync() to complete (for
1200 * synchronous page faults in DAX) */
aa50d3a7 1201
33692f27
LT
1202#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1203 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1204 VM_FAULT_FALLBACK)
aa50d3a7 1205
282a8e03
RZ
1206#define VM_FAULT_RESULT_TRACE \
1207 { VM_FAULT_OOM, "OOM" }, \
1208 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1209 { VM_FAULT_MAJOR, "MAJOR" }, \
1210 { VM_FAULT_WRITE, "WRITE" }, \
1211 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1212 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1213 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1214 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1215 { VM_FAULT_LOCKED, "LOCKED" }, \
1216 { VM_FAULT_RETRY, "RETRY" }, \
1217 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1218 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1219 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1220
aa50d3a7
AK
1221/* Encode hstate index for a hwpoisoned large page */
1222#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1223#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1224
1c0fe6e3
NP
1225/*
1226 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1227 */
1228extern void pagefault_out_of_memory(void);
1229
1da177e4
LT
1230#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1231
ddd588b5 1232/*
7bf02ea2 1233 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1234 * various contexts.
1235 */
4b59e6c4 1236#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1237
9af744d7 1238extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1239
7f43add4 1240extern bool can_do_mlock(void);
1da177e4
LT
1241extern int user_shm_lock(size_t, struct user_struct *);
1242extern void user_shm_unlock(size_t, struct user_struct *);
1243
1244/*
1245 * Parameter block passed down to zap_pte_range in exceptional cases.
1246 */
1247struct zap_details {
1da177e4
LT
1248 struct address_space *check_mapping; /* Check page->mapping if set */
1249 pgoff_t first_index; /* Lowest page->index to unmap */
1250 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1251};
1252
df6ad698
JG
1253struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1254 pte_t pte, bool with_public_device);
1255#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1256
28093f9f
GS
1257struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1258 pmd_t pmd);
7e675137 1259
c627f9cc
JS
1260int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1261 unsigned long size);
14f5ff5d 1262void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1263 unsigned long size);
4f74d2c8
LT
1264void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1265 unsigned long start, unsigned long end);
e6473092
MM
1266
1267/**
1268 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1269 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1270 * this handler should only handle pud_trans_huge() puds.
1271 * the pmd_entry or pte_entry callbacks will be used for
1272 * regular PUDs.
e6473092 1273 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1274 * this handler is required to be able to handle
1275 * pmd_trans_huge() pmds. They may simply choose to
1276 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1277 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1278 * @pte_hole: if set, called for each hole at all levels
5dc37642 1279 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1280 * @test_walk: caller specific callback function to determine whether
f7e2355f 1281 * we walk over the current vma or not. Returning 0
fafaa426
NH
1282 * value means "do page table walk over the current vma,"
1283 * and a negative one means "abort current page table walk
f7e2355f 1284 * right now." 1 means "skip the current vma."
fafaa426
NH
1285 * @mm: mm_struct representing the target process of page table walk
1286 * @vma: vma currently walked (NULL if walking outside vmas)
1287 * @private: private data for callbacks' usage
e6473092 1288 *
fafaa426 1289 * (see the comment on walk_page_range() for more details)
e6473092
MM
1290 */
1291struct mm_walk {
a00cc7d9
MW
1292 int (*pud_entry)(pud_t *pud, unsigned long addr,
1293 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1294 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1295 unsigned long next, struct mm_walk *walk);
1296 int (*pte_entry)(pte_t *pte, unsigned long addr,
1297 unsigned long next, struct mm_walk *walk);
1298 int (*pte_hole)(unsigned long addr, unsigned long next,
1299 struct mm_walk *walk);
1300 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1301 unsigned long addr, unsigned long next,
1302 struct mm_walk *walk);
fafaa426
NH
1303 int (*test_walk)(unsigned long addr, unsigned long next,
1304 struct mm_walk *walk);
2165009b 1305 struct mm_struct *mm;
fafaa426 1306 struct vm_area_struct *vma;
2165009b 1307 void *private;
e6473092
MM
1308};
1309
2165009b
DH
1310int walk_page_range(unsigned long addr, unsigned long end,
1311 struct mm_walk *walk);
900fc5f1 1312int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1313void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1314 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1315int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1316 struct vm_area_struct *vma);
1da177e4
LT
1317void unmap_mapping_range(struct address_space *mapping,
1318 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395 1319int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1320 unsigned long *start, unsigned long *end,
09796395 1321 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1322int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1323 unsigned long *pfn);
d87fe660 1324int follow_phys(struct vm_area_struct *vma, unsigned long address,
1325 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1326int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1327 void *buf, int len, int write);
1da177e4
LT
1328
1329static inline void unmap_shared_mapping_range(struct address_space *mapping,
1330 loff_t const holebegin, loff_t const holelen)
1331{
1332 unmap_mapping_range(mapping, holebegin, holelen, 0);
1333}
1334
7caef267 1335extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1336extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1337void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1338void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1339int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1340int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1341int invalidate_inode_page(struct page *page);
1342
7ee1dd3f 1343#ifdef CONFIG_MMU
dcddffd4
KS
1344extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1345 unsigned int flags);
5c723ba5 1346extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1347 unsigned long address, unsigned int fault_flags,
1348 bool *unlocked);
7ee1dd3f 1349#else
dcddffd4
KS
1350static inline int handle_mm_fault(struct vm_area_struct *vma,
1351 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1352{
1353 /* should never happen if there's no MMU */
1354 BUG();
1355 return VM_FAULT_SIGBUS;
1356}
5c723ba5
PZ
1357static inline int fixup_user_fault(struct task_struct *tsk,
1358 struct mm_struct *mm, unsigned long address,
4a9e1cda 1359 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1360{
1361 /* should never happen if there's no MMU */
1362 BUG();
1363 return -EFAULT;
1364}
7ee1dd3f 1365#endif
f33ea7f4 1366
c088e31d
SF
1367extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1368extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1369 int);
1370extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1371extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1372
1373#define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1374 __LINE__)
1375#define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1376 __LINE__)
1377#define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1378#define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1379
1380#ifndef CONFIG_MMU
1381extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1382extern void vmr_do_fput(struct vm_region *, const char[], int);
1383
1384#define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1385 __LINE__)
1386#define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1387#endif /* !CONFIG_MMU */
1388
f307ab6d
LS
1389extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1390 unsigned int gup_flags);
5ddd36b9 1391extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1392 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1393extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1394 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1395
1e987790
DH
1396long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1397 unsigned long start, unsigned long nr_pages,
9beae1ea 1398 unsigned int gup_flags, struct page **pages,
5b56d49f 1399 struct vm_area_struct **vmas, int *locked);
c12d2da5 1400long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1401 unsigned int gup_flags, struct page **pages,
cde70140 1402 struct vm_area_struct **vmas);
c12d2da5 1403long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1404 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1405long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1406 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1407#ifdef CONFIG_FS_DAX
1408long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1409 unsigned int gup_flags, struct page **pages,
1410 struct vm_area_struct **vmas);
1411#else
1412static inline long get_user_pages_longterm(unsigned long start,
1413 unsigned long nr_pages, unsigned int gup_flags,
1414 struct page **pages, struct vm_area_struct **vmas)
1415{
1416 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1417}
1418#endif /* CONFIG_FS_DAX */
1419
d2bf6be8
NP
1420int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1421 struct page **pages);
8025e5dd
JK
1422
1423/* Container for pinned pfns / pages */
1424struct frame_vector {
1425 unsigned int nr_allocated; /* Number of frames we have space for */
1426 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1427 bool got_ref; /* Did we pin pages by getting page ref? */
1428 bool is_pfns; /* Does array contain pages or pfns? */
1429 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1430 * pfns_vector_pages() or pfns_vector_pfns()
1431 * for access */
1432};
1433
1434struct frame_vector *frame_vector_create(unsigned int nr_frames);
1435void frame_vector_destroy(struct frame_vector *vec);
1436int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1437 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1438void put_vaddr_frames(struct frame_vector *vec);
1439int frame_vector_to_pages(struct frame_vector *vec);
1440void frame_vector_to_pfns(struct frame_vector *vec);
1441
1442static inline unsigned int frame_vector_count(struct frame_vector *vec)
1443{
1444 return vec->nr_frames;
1445}
1446
1447static inline struct page **frame_vector_pages(struct frame_vector *vec)
1448{
1449 if (vec->is_pfns) {
1450 int err = frame_vector_to_pages(vec);
1451
1452 if (err)
1453 return ERR_PTR(err);
1454 }
1455 return (struct page **)(vec->ptrs);
1456}
1457
1458static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1459{
1460 if (!vec->is_pfns)
1461 frame_vector_to_pfns(vec);
1462 return (unsigned long *)(vec->ptrs);
1463}
1464
18022c5d
MG
1465struct kvec;
1466int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1467 struct page **pages);
1468int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1469struct page *get_dump_page(unsigned long addr);
1da177e4 1470
cf9a2ae8 1471extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1472extern void do_invalidatepage(struct page *page, unsigned int offset,
1473 unsigned int length);
cf9a2ae8 1474
1da177e4 1475int __set_page_dirty_nobuffers(struct page *page);
76719325 1476int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1477int redirty_page_for_writepage(struct writeback_control *wbc,
1478 struct page *page);
62cccb8c 1479void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1480void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1481 struct bdi_writeback *wb);
b3c97528 1482int set_page_dirty(struct page *page);
1da177e4 1483int set_page_dirty_lock(struct page *page);
736304f3
JK
1484void __cancel_dirty_page(struct page *page);
1485static inline void cancel_dirty_page(struct page *page)
1486{
1487 /* Avoid atomic ops, locking, etc. when not actually needed. */
1488 if (PageDirty(page))
1489 __cancel_dirty_page(page);
1490}
1da177e4 1491int clear_page_dirty_for_io(struct page *page);
b9ea2515 1492
a9090253 1493int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1494
b5330628
ON
1495static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1496{
1497 return !vma->vm_ops;
1498}
1499
b0506e48
MR
1500#ifdef CONFIG_SHMEM
1501/*
1502 * The vma_is_shmem is not inline because it is used only by slow
1503 * paths in userfault.
1504 */
1505bool vma_is_shmem(struct vm_area_struct *vma);
1506#else
1507static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1508#endif
1509
d17af505 1510int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1511
b6a2fea3
OW
1512extern unsigned long move_page_tables(struct vm_area_struct *vma,
1513 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1514 unsigned long new_addr, unsigned long len,
1515 bool need_rmap_locks);
7da4d641
PZ
1516extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1517 unsigned long end, pgprot_t newprot,
4b10e7d5 1518 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1519extern int mprotect_fixup(struct vm_area_struct *vma,
1520 struct vm_area_struct **pprev, unsigned long start,
1521 unsigned long end, unsigned long newflags);
1da177e4 1522
465a454f
PZ
1523/*
1524 * doesn't attempt to fault and will return short.
1525 */
1526int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1527 struct page **pages);
d559db08
KH
1528/*
1529 * per-process(per-mm_struct) statistics.
1530 */
d559db08
KH
1531static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1532{
69c97823
KK
1533 long val = atomic_long_read(&mm->rss_stat.count[member]);
1534
1535#ifdef SPLIT_RSS_COUNTING
1536 /*
1537 * counter is updated in asynchronous manner and may go to minus.
1538 * But it's never be expected number for users.
1539 */
1540 if (val < 0)
1541 val = 0;
172703b0 1542#endif
69c97823
KK
1543 return (unsigned long)val;
1544}
d559db08
KH
1545
1546static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1547{
172703b0 1548 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1549}
1550
1551static inline void inc_mm_counter(struct mm_struct *mm, int member)
1552{
172703b0 1553 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1554}
1555
1556static inline void dec_mm_counter(struct mm_struct *mm, int member)
1557{
172703b0 1558 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1559}
1560
eca56ff9
JM
1561/* Optimized variant when page is already known not to be PageAnon */
1562static inline int mm_counter_file(struct page *page)
1563{
1564 if (PageSwapBacked(page))
1565 return MM_SHMEMPAGES;
1566 return MM_FILEPAGES;
1567}
1568
1569static inline int mm_counter(struct page *page)
1570{
1571 if (PageAnon(page))
1572 return MM_ANONPAGES;
1573 return mm_counter_file(page);
1574}
1575
d559db08
KH
1576static inline unsigned long get_mm_rss(struct mm_struct *mm)
1577{
1578 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1579 get_mm_counter(mm, MM_ANONPAGES) +
1580 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1581}
1582
1583static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1584{
1585 return max(mm->hiwater_rss, get_mm_rss(mm));
1586}
1587
1588static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1589{
1590 return max(mm->hiwater_vm, mm->total_vm);
1591}
1592
1593static inline void update_hiwater_rss(struct mm_struct *mm)
1594{
1595 unsigned long _rss = get_mm_rss(mm);
1596
1597 if ((mm)->hiwater_rss < _rss)
1598 (mm)->hiwater_rss = _rss;
1599}
1600
1601static inline void update_hiwater_vm(struct mm_struct *mm)
1602{
1603 if (mm->hiwater_vm < mm->total_vm)
1604 mm->hiwater_vm = mm->total_vm;
1605}
1606
695f0559
PC
1607static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1608{
1609 mm->hiwater_rss = get_mm_rss(mm);
1610}
1611
d559db08
KH
1612static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1613 struct mm_struct *mm)
1614{
1615 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1616
1617 if (*maxrss < hiwater_rss)
1618 *maxrss = hiwater_rss;
1619}
1620
53bddb4e 1621#if defined(SPLIT_RSS_COUNTING)
05af2e10 1622void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1623#else
05af2e10 1624static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1625{
1626}
1627#endif
465a454f 1628
3565fce3
DW
1629#ifndef __HAVE_ARCH_PTE_DEVMAP
1630static inline int pte_devmap(pte_t pte)
1631{
1632 return 0;
1633}
1634#endif
1635
6d2329f8 1636int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1637
25ca1d6c
NK
1638extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1639 spinlock_t **ptl);
1640static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1641 spinlock_t **ptl)
1642{
1643 pte_t *ptep;
1644 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1645 return ptep;
1646}
c9cfcddf 1647
c2febafc
KS
1648#ifdef __PAGETABLE_P4D_FOLDED
1649static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1650 unsigned long address)
1651{
1652 return 0;
1653}
1654#else
1655int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1656#endif
1657
b4e98d9a 1658#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1659static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1660 unsigned long address)
1661{
1662 return 0;
1663}
b4e98d9a
KS
1664static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1665static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1666
5f22df00 1667#else
c2febafc 1668int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1669
b4e98d9a
KS
1670static inline void mm_inc_nr_puds(struct mm_struct *mm)
1671{
af5b0f6a 1672 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1673}
1674
1675static inline void mm_dec_nr_puds(struct mm_struct *mm)
1676{
af5b0f6a 1677 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1678}
5f22df00
NP
1679#endif
1680
2d2f5119 1681#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1682static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1683 unsigned long address)
1684{
1685 return 0;
1686}
dc6c9a35 1687
dc6c9a35
KS
1688static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1689static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1690
5f22df00 1691#else
1bb3630e 1692int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1693
dc6c9a35
KS
1694static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1695{
af5b0f6a 1696 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1697}
1698
1699static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1700{
af5b0f6a 1701 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1702}
5f22df00
NP
1703#endif
1704
c4812909 1705#ifdef CONFIG_MMU
af5b0f6a 1706static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1707{
af5b0f6a 1708 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1709}
1710
af5b0f6a 1711static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1712{
af5b0f6a 1713 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1714}
1715
1716static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1717{
af5b0f6a 1718 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1719}
1720
1721static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1722{
af5b0f6a 1723 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1724}
1725#else
c4812909 1726
af5b0f6a
KS
1727static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1728static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1729{
1730 return 0;
1731}
1732
1733static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1734static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1735#endif
1736
3ed3a4f0 1737int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1738int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1739
1da177e4
LT
1740/*
1741 * The following ifdef needed to get the 4level-fixup.h header to work.
1742 * Remove it when 4level-fixup.h has been removed.
1743 */
1bb3630e 1744#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1745
1746#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1747static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1748 unsigned long address)
1749{
1750 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1751 NULL : p4d_offset(pgd, address);
1752}
1753
1754static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1755 unsigned long address)
1da177e4 1756{
c2febafc
KS
1757 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1758 NULL : pud_offset(p4d, address);
1da177e4 1759}
505a60e2 1760#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1761
1762static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1763{
1bb3630e
HD
1764 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1765 NULL: pmd_offset(pud, address);
1da177e4 1766}
1bb3630e
HD
1767#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1768
57c1ffce 1769#if USE_SPLIT_PTE_PTLOCKS
597d795a 1770#if ALLOC_SPLIT_PTLOCKS
b35f1819 1771void __init ptlock_cache_init(void);
539edb58
PZ
1772extern bool ptlock_alloc(struct page *page);
1773extern void ptlock_free(struct page *page);
1774
1775static inline spinlock_t *ptlock_ptr(struct page *page)
1776{
1777 return page->ptl;
1778}
597d795a 1779#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1780static inline void ptlock_cache_init(void)
1781{
1782}
1783
49076ec2
KS
1784static inline bool ptlock_alloc(struct page *page)
1785{
49076ec2
KS
1786 return true;
1787}
539edb58 1788
49076ec2
KS
1789static inline void ptlock_free(struct page *page)
1790{
49076ec2
KS
1791}
1792
1793static inline spinlock_t *ptlock_ptr(struct page *page)
1794{
539edb58 1795 return &page->ptl;
49076ec2 1796}
597d795a 1797#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1798
1799static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1800{
1801 return ptlock_ptr(pmd_page(*pmd));
1802}
1803
1804static inline bool ptlock_init(struct page *page)
1805{
1806 /*
1807 * prep_new_page() initialize page->private (and therefore page->ptl)
1808 * with 0. Make sure nobody took it in use in between.
1809 *
1810 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1811 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1812 */
309381fe 1813 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1814 if (!ptlock_alloc(page))
1815 return false;
1816 spin_lock_init(ptlock_ptr(page));
1817 return true;
1818}
1819
1820/* Reset page->mapping so free_pages_check won't complain. */
1821static inline void pte_lock_deinit(struct page *page)
1822{
1823 page->mapping = NULL;
1824 ptlock_free(page);
1825}
1826
57c1ffce 1827#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1828/*
1829 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1830 */
49076ec2
KS
1831static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1832{
1833 return &mm->page_table_lock;
1834}
b35f1819 1835static inline void ptlock_cache_init(void) {}
49076ec2
KS
1836static inline bool ptlock_init(struct page *page) { return true; }
1837static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1838#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1839
b35f1819
KS
1840static inline void pgtable_init(void)
1841{
1842 ptlock_cache_init();
1843 pgtable_cache_init();
1844}
1845
390f44e2 1846static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1847{
706874e9
VD
1848 if (!ptlock_init(page))
1849 return false;
2f569afd 1850 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1851 return true;
2f569afd
MS
1852}
1853
1854static inline void pgtable_page_dtor(struct page *page)
1855{
1856 pte_lock_deinit(page);
1857 dec_zone_page_state(page, NR_PAGETABLE);
1858}
1859
c74df32c
HD
1860#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1861({ \
4c21e2f2 1862 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1863 pte_t *__pte = pte_offset_map(pmd, address); \
1864 *(ptlp) = __ptl; \
1865 spin_lock(__ptl); \
1866 __pte; \
1867})
1868
1869#define pte_unmap_unlock(pte, ptl) do { \
1870 spin_unlock(ptl); \
1871 pte_unmap(pte); \
1872} while (0)
1873
3ed3a4f0
KS
1874#define pte_alloc(mm, pmd, address) \
1875 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1876
1877#define pte_alloc_map(mm, pmd, address) \
1878 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1879
c74df32c 1880#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1881 (pte_alloc(mm, pmd, address) ? \
1882 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1883
1bb3630e 1884#define pte_alloc_kernel(pmd, address) \
8ac1f832 1885 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1886 NULL: pte_offset_kernel(pmd, address))
1da177e4 1887
e009bb30
KS
1888#if USE_SPLIT_PMD_PTLOCKS
1889
634391ac
MS
1890static struct page *pmd_to_page(pmd_t *pmd)
1891{
1892 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1893 return virt_to_page((void *)((unsigned long) pmd & mask));
1894}
1895
e009bb30
KS
1896static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1897{
634391ac 1898 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1899}
1900
1901static inline bool pgtable_pmd_page_ctor(struct page *page)
1902{
e009bb30
KS
1903#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1904 page->pmd_huge_pte = NULL;
1905#endif
49076ec2 1906 return ptlock_init(page);
e009bb30
KS
1907}
1908
1909static inline void pgtable_pmd_page_dtor(struct page *page)
1910{
1911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1912 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1913#endif
49076ec2 1914 ptlock_free(page);
e009bb30
KS
1915}
1916
634391ac 1917#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1918
1919#else
1920
9a86cb7b
KS
1921static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1922{
1923 return &mm->page_table_lock;
1924}
1925
e009bb30
KS
1926static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1927static inline void pgtable_pmd_page_dtor(struct page *page) {}
1928
c389a250 1929#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1930
e009bb30
KS
1931#endif
1932
9a86cb7b
KS
1933static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1934{
1935 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1936 spin_lock(ptl);
1937 return ptl;
1938}
1939
a00cc7d9
MW
1940/*
1941 * No scalability reason to split PUD locks yet, but follow the same pattern
1942 * as the PMD locks to make it easier if we decide to. The VM should not be
1943 * considered ready to switch to split PUD locks yet; there may be places
1944 * which need to be converted from page_table_lock.
1945 */
1946static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1947{
1948 return &mm->page_table_lock;
1949}
1950
1951static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1952{
1953 spinlock_t *ptl = pud_lockptr(mm, pud);
1954
1955 spin_lock(ptl);
1956 return ptl;
1957}
62906027 1958
a00cc7d9 1959extern void __init pagecache_init(void);
1da177e4 1960extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1961extern void free_area_init_node(int nid, unsigned long * zones_size,
1962 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1963extern void free_initmem(void);
1964
69afade7
JL
1965/*
1966 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1967 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1968 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1969 * Return pages freed into the buddy system.
1970 */
11199692 1971extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1972 int poison, char *s);
c3d5f5f0 1973
cfa11e08
JL
1974#ifdef CONFIG_HIGHMEM
1975/*
1976 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1977 * and totalram_pages.
1978 */
1979extern void free_highmem_page(struct page *page);
1980#endif
69afade7 1981
c3d5f5f0 1982extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1983extern void mem_init_print_info(const char *str);
69afade7 1984
4b50bcc7 1985extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1986
69afade7
JL
1987/* Free the reserved page into the buddy system, so it gets managed. */
1988static inline void __free_reserved_page(struct page *page)
1989{
1990 ClearPageReserved(page);
1991 init_page_count(page);
1992 __free_page(page);
1993}
1994
1995static inline void free_reserved_page(struct page *page)
1996{
1997 __free_reserved_page(page);
1998 adjust_managed_page_count(page, 1);
1999}
2000
2001static inline void mark_page_reserved(struct page *page)
2002{
2003 SetPageReserved(page);
2004 adjust_managed_page_count(page, -1);
2005}
2006
2007/*
2008 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2009 * The freed pages will be poisoned with pattern "poison" if it's within
2010 * range [0, UCHAR_MAX].
2011 * Return pages freed into the buddy system.
69afade7
JL
2012 */
2013static inline unsigned long free_initmem_default(int poison)
2014{
2015 extern char __init_begin[], __init_end[];
2016
11199692 2017 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2018 poison, "unused kernel");
2019}
2020
7ee3d4e8
JL
2021static inline unsigned long get_num_physpages(void)
2022{
2023 int nid;
2024 unsigned long phys_pages = 0;
2025
2026 for_each_online_node(nid)
2027 phys_pages += node_present_pages(nid);
2028
2029 return phys_pages;
2030}
2031
0ee332c1 2032#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2033/*
0ee332c1 2034 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2035 * zones, allocate the backing mem_map and account for memory holes in a more
2036 * architecture independent manner. This is a substitute for creating the
2037 * zone_sizes[] and zholes_size[] arrays and passing them to
2038 * free_area_init_node()
2039 *
2040 * An architecture is expected to register range of page frames backed by
0ee332c1 2041 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2042 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2043 * usage, an architecture is expected to do something like
2044 *
2045 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2046 * max_highmem_pfn};
2047 * for_each_valid_physical_page_range()
0ee332c1 2048 * memblock_add_node(base, size, nid)
c713216d
MG
2049 * free_area_init_nodes(max_zone_pfns);
2050 *
0ee332c1
TH
2051 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2052 * registered physical page range. Similarly
2053 * sparse_memory_present_with_active_regions() calls memory_present() for
2054 * each range when SPARSEMEM is enabled.
c713216d
MG
2055 *
2056 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2057 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2058 */
2059extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2060unsigned long node_map_pfn_alignment(void);
32996250
YL
2061unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2062 unsigned long end_pfn);
c713216d
MG
2063extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2064 unsigned long end_pfn);
2065extern void get_pfn_range_for_nid(unsigned int nid,
2066 unsigned long *start_pfn, unsigned long *end_pfn);
2067extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2068extern void free_bootmem_with_active_regions(int nid,
2069 unsigned long max_low_pfn);
2070extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2071
0ee332c1 2072#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2073
0ee332c1 2074#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2075 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2076static inline int __early_pfn_to_nid(unsigned long pfn,
2077 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2078{
2079 return 0;
2080}
2081#else
2082/* please see mm/page_alloc.c */
2083extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2084/* there is a per-arch backend function. */
8a942fde
MG
2085extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2086 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2087#endif
2088
afa11cd3 2089#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2090void zero_resv_unavail(void);
2091#else
2092static inline void zero_resv_unavail(void) {}
2093#endif
2094
0e0b864e 2095extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
2096extern void memmap_init_zone(unsigned long, int, unsigned long,
2097 unsigned long, enum memmap_context);
bc75d33f 2098extern void setup_per_zone_wmarks(void);
1b79acc9 2099extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2100extern void mem_init(void);
8feae131 2101extern void __init mmap_init(void);
9af744d7 2102extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2103extern long si_mem_available(void);
1da177e4
LT
2104extern void si_meminfo(struct sysinfo * val);
2105extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2106#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2107extern unsigned long arch_reserved_kernel_pages(void);
2108#endif
1da177e4 2109
a8e99259
MH
2110extern __printf(3, 4)
2111void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2112
e7c8d5c9 2113extern void setup_per_cpu_pageset(void);
e7c8d5c9 2114
112067f0 2115extern void zone_pcp_update(struct zone *zone);
340175b7 2116extern void zone_pcp_reset(struct zone *zone);
112067f0 2117
75f7ad8e
PS
2118/* page_alloc.c */
2119extern int min_free_kbytes;
795ae7a0 2120extern int watermark_scale_factor;
75f7ad8e 2121
8feae131 2122/* nommu.c */
33e5d769 2123extern atomic_long_t mmap_pages_allocated;
7e660872 2124extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2125
6b2dbba8 2126/* interval_tree.c */
6b2dbba8 2127void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2128 struct rb_root_cached *root);
9826a516
ML
2129void vma_interval_tree_insert_after(struct vm_area_struct *node,
2130 struct vm_area_struct *prev,
f808c13f 2131 struct rb_root_cached *root);
6b2dbba8 2132void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2133 struct rb_root_cached *root);
2134struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2135 unsigned long start, unsigned long last);
2136struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2137 unsigned long start, unsigned long last);
2138
2139#define vma_interval_tree_foreach(vma, root, start, last) \
2140 for (vma = vma_interval_tree_iter_first(root, start, last); \
2141 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2142
bf181b9f 2143void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2144 struct rb_root_cached *root);
bf181b9f 2145void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2146 struct rb_root_cached *root);
2147struct anon_vma_chain *
2148anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2149 unsigned long start, unsigned long last);
bf181b9f
ML
2150struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2151 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2152#ifdef CONFIG_DEBUG_VM_RB
2153void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2154#endif
bf181b9f
ML
2155
2156#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2157 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2158 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2159
1da177e4 2160/* mmap.c */
34b4e4aa 2161extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2162extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2163 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2164 struct vm_area_struct *expand);
2165static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2166 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2167{
2168 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2169}
1da177e4
LT
2170extern struct vm_area_struct *vma_merge(struct mm_struct *,
2171 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2172 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2173 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2174extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2175extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2176 unsigned long addr, int new_below);
2177extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2178 unsigned long addr, int new_below);
1da177e4
LT
2179extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2180extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2181 struct rb_node **, struct rb_node *);
a8fb5618 2182extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2183extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2184 unsigned long addr, unsigned long len, pgoff_t pgoff,
2185 bool *need_rmap_locks);
1da177e4 2186extern void exit_mmap(struct mm_struct *);
925d1c40 2187
9c599024
CG
2188static inline int check_data_rlimit(unsigned long rlim,
2189 unsigned long new,
2190 unsigned long start,
2191 unsigned long end_data,
2192 unsigned long start_data)
2193{
2194 if (rlim < RLIM_INFINITY) {
2195 if (((new - start) + (end_data - start_data)) > rlim)
2196 return -ENOSPC;
2197 }
2198
2199 return 0;
2200}
2201
7906d00c
AA
2202extern int mm_take_all_locks(struct mm_struct *mm);
2203extern void mm_drop_all_locks(struct mm_struct *mm);
2204
38646013
JS
2205extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2206extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2207extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2208
84638335
KK
2209extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2210extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2211
2eefd878
DS
2212extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2213 const struct vm_special_mapping *sm);
3935ed6a
SS
2214extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2215 unsigned long addr, unsigned long len,
a62c34bd
AL
2216 unsigned long flags,
2217 const struct vm_special_mapping *spec);
2218/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2219extern int install_special_mapping(struct mm_struct *mm,
2220 unsigned long addr, unsigned long len,
2221 unsigned long flags, struct page **pages);
1da177e4
LT
2222
2223extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2224
0165ab44 2225extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2226 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2227 struct list_head *uf);
1fcfd8db 2228extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2229 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2230 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2231 struct list_head *uf);
2232extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2233 struct list_head *uf);
1da177e4 2234
1fcfd8db
ON
2235static inline unsigned long
2236do_mmap_pgoff(struct file *file, unsigned long addr,
2237 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2238 unsigned long pgoff, unsigned long *populate,
2239 struct list_head *uf)
1fcfd8db 2240{
897ab3e0 2241 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2242}
2243
bebeb3d6
ML
2244#ifdef CONFIG_MMU
2245extern int __mm_populate(unsigned long addr, unsigned long len,
2246 int ignore_errors);
2247static inline void mm_populate(unsigned long addr, unsigned long len)
2248{
2249 /* Ignore errors */
2250 (void) __mm_populate(addr, len, 1);
2251}
2252#else
2253static inline void mm_populate(unsigned long addr, unsigned long len) {}
2254#endif
2255
e4eb1ff6 2256/* These take the mm semaphore themselves */
5d22fc25 2257extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2258extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2259extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2260extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2261 unsigned long, unsigned long,
2262 unsigned long, unsigned long);
1da177e4 2263
db4fbfb9
ML
2264struct vm_unmapped_area_info {
2265#define VM_UNMAPPED_AREA_TOPDOWN 1
2266 unsigned long flags;
2267 unsigned long length;
2268 unsigned long low_limit;
2269 unsigned long high_limit;
2270 unsigned long align_mask;
2271 unsigned long align_offset;
2272};
2273
2274extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2275extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2276
2277/*
2278 * Search for an unmapped address range.
2279 *
2280 * We are looking for a range that:
2281 * - does not intersect with any VMA;
2282 * - is contained within the [low_limit, high_limit) interval;
2283 * - is at least the desired size.
2284 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2285 */
2286static inline unsigned long
2287vm_unmapped_area(struct vm_unmapped_area_info *info)
2288{
cdd7875e 2289 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2290 return unmapped_area_topdown(info);
cdd7875e
BP
2291 else
2292 return unmapped_area(info);
db4fbfb9
ML
2293}
2294
85821aab 2295/* truncate.c */
1da177e4 2296extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2297extern void truncate_inode_pages_range(struct address_space *,
2298 loff_t lstart, loff_t lend);
91b0abe3 2299extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2300
2301/* generic vm_area_ops exported for stackable file systems */
11bac800 2302extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2303extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2304 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2305extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2306
2307/* mm/page-writeback.c */
2b69c828 2308int __must_check write_one_page(struct page *page);
1cf6e7d8 2309void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2310
2311/* readahead.c */
2312#define VM_MAX_READAHEAD 128 /* kbytes */
2313#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2314
1da177e4 2315int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2316 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2317
2318void page_cache_sync_readahead(struct address_space *mapping,
2319 struct file_ra_state *ra,
2320 struct file *filp,
2321 pgoff_t offset,
2322 unsigned long size);
2323
2324void page_cache_async_readahead(struct address_space *mapping,
2325 struct file_ra_state *ra,
2326 struct file *filp,
2327 struct page *pg,
2328 pgoff_t offset,
2329 unsigned long size);
2330
1be7107f 2331extern unsigned long stack_guard_gap;
d05f3169 2332/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2333extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2334
2335/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2336extern int expand_downwards(struct vm_area_struct *vma,
2337 unsigned long address);
8ca3eb08 2338#if VM_GROWSUP
46dea3d0 2339extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2340#else
fee7e49d 2341 #define expand_upwards(vma, address) (0)
9ab88515 2342#endif
1da177e4
LT
2343
2344/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2345extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2346extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2347 struct vm_area_struct **pprev);
2348
2349/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2350 NULL if none. Assume start_addr < end_addr. */
2351static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2352{
2353 struct vm_area_struct * vma = find_vma(mm,start_addr);
2354
2355 if (vma && end_addr <= vma->vm_start)
2356 vma = NULL;
2357 return vma;
2358}
2359
1be7107f
HD
2360static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2361{
2362 unsigned long vm_start = vma->vm_start;
2363
2364 if (vma->vm_flags & VM_GROWSDOWN) {
2365 vm_start -= stack_guard_gap;
2366 if (vm_start > vma->vm_start)
2367 vm_start = 0;
2368 }
2369 return vm_start;
2370}
2371
2372static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2373{
2374 unsigned long vm_end = vma->vm_end;
2375
2376 if (vma->vm_flags & VM_GROWSUP) {
2377 vm_end += stack_guard_gap;
2378 if (vm_end < vma->vm_end)
2379 vm_end = -PAGE_SIZE;
2380 }
2381 return vm_end;
2382}
2383
1da177e4
LT
2384static inline unsigned long vma_pages(struct vm_area_struct *vma)
2385{
2386 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2387}
2388
640708a2
PE
2389/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2390static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2391 unsigned long vm_start, unsigned long vm_end)
2392{
2393 struct vm_area_struct *vma = find_vma(mm, vm_start);
2394
2395 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2396 vma = NULL;
2397
2398 return vma;
2399}
2400
bad849b3 2401#ifdef CONFIG_MMU
804af2cf 2402pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2403void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2404#else
2405static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2406{
2407 return __pgprot(0);
2408}
64e45507
PF
2409static inline void vma_set_page_prot(struct vm_area_struct *vma)
2410{
2411 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2412}
bad849b3
DH
2413#endif
2414
5877231f 2415#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2416unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2417 unsigned long start, unsigned long end);
2418#endif
2419
deceb6cd 2420struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2421int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2422 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2423int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2424int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2425 unsigned long pfn);
1745cbc5
AL
2426int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2427 unsigned long pfn, pgprot_t pgprot);
423bad60 2428int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2429 pfn_t pfn);
b2770da6
RZ
2430int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2431 pfn_t pfn);
b4cbb197
LT
2432int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2433
deceb6cd 2434
240aadee
ML
2435struct page *follow_page_mask(struct vm_area_struct *vma,
2436 unsigned long address, unsigned int foll_flags,
2437 unsigned int *page_mask);
2438
2439static inline struct page *follow_page(struct vm_area_struct *vma,
2440 unsigned long address, unsigned int foll_flags)
2441{
2442 unsigned int unused_page_mask;
2443 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2444}
2445
deceb6cd
HD
2446#define FOLL_WRITE 0x01 /* check pte is writable */
2447#define FOLL_TOUCH 0x02 /* mark page accessed */
2448#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2449#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2450#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2451#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2452 * and return without waiting upon it */
84d33df2 2453#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2454#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2455#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2456#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2457#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2458#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2459#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2460#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2461#define FOLL_COW 0x4000 /* internal GUP flag */
4cc2a00a 2462#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2463
9a291a7c
JM
2464static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2465{
2466 if (vm_fault & VM_FAULT_OOM)
2467 return -ENOMEM;
2468 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2469 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2470 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2471 return -EFAULT;
2472 return 0;
2473}
2474
2f569afd 2475typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2476 void *data);
2477extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2478 unsigned long size, pte_fn_t fn, void *data);
2479
1da177e4 2480
8823b1db
LA
2481#ifdef CONFIG_PAGE_POISONING
2482extern bool page_poisoning_enabled(void);
2483extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2484extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2485#else
2486static inline bool page_poisoning_enabled(void) { return false; }
2487static inline void kernel_poison_pages(struct page *page, int numpages,
2488 int enable) { }
1414c7f4 2489static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2490#endif
2491
12d6f21e 2492#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2493extern bool _debug_pagealloc_enabled;
2494extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2495
2496static inline bool debug_pagealloc_enabled(void)
2497{
2498 return _debug_pagealloc_enabled;
2499}
2500
2501static inline void
2502kernel_map_pages(struct page *page, int numpages, int enable)
2503{
2504 if (!debug_pagealloc_enabled())
2505 return;
2506
2507 __kernel_map_pages(page, numpages, enable);
2508}
8a235efa
RW
2509#ifdef CONFIG_HIBERNATION
2510extern bool kernel_page_present(struct page *page);
40b44137
JK
2511#endif /* CONFIG_HIBERNATION */
2512#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2513static inline void
9858db50 2514kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2515#ifdef CONFIG_HIBERNATION
2516static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2517#endif /* CONFIG_HIBERNATION */
2518static inline bool debug_pagealloc_enabled(void)
2519{
2520 return false;
2521}
2522#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2523
a6c19dfe 2524#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2525extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2526extern int in_gate_area_no_mm(unsigned long addr);
2527extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2528#else
a6c19dfe
AL
2529static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2530{
2531 return NULL;
2532}
2533static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2534static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2535{
2536 return 0;
2537}
1da177e4
LT
2538#endif /* __HAVE_ARCH_GATE_AREA */
2539
44a70ade
MH
2540extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2541
146732ce
JT
2542#ifdef CONFIG_SYSCTL
2543extern int sysctl_drop_caches;
8d65af78 2544int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2545 void __user *, size_t *, loff_t *);
146732ce
JT
2546#endif
2547
cb731d6c
VD
2548void drop_slab(void);
2549void drop_slab_node(int nid);
9d0243bc 2550
7a9166e3
LY
2551#ifndef CONFIG_MMU
2552#define randomize_va_space 0
2553#else
a62eaf15 2554extern int randomize_va_space;
7a9166e3 2555#endif
a62eaf15 2556
045e72ac 2557const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2558void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2559
9bdac914
YL
2560void sparse_mem_maps_populate_node(struct page **map_map,
2561 unsigned long pnum_begin,
2562 unsigned long pnum_end,
2563 unsigned long map_count,
2564 int nodeid);
2565
98f3cfc1 2566struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111 2567pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2568p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2569pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2570pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2571pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2572void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2573struct vmem_altmap;
2574void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2575 struct vmem_altmap *altmap);
2576static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2577{
2578 return __vmemmap_alloc_block_buf(size, node, NULL);
2579}
2580
8f6aac41 2581void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2582int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2583 int node);
2584int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2585void vmemmap_populate_print_last(void);
0197518c 2586#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2587void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2588#endif
46723bfa 2589void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2590 unsigned long nr_pages);
6a46079c 2591
82ba011b
AK
2592enum mf_flags {
2593 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2594 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2595 MF_MUST_KILL = 1 << 2,
cf870c70 2596 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2597};
cd42f4a3 2598extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2599extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2600extern int unpoison_memory(unsigned long pfn);
ead07f6a 2601extern int get_hwpoison_page(struct page *page);
4e41a30c 2602#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2603extern int sysctl_memory_failure_early_kill;
2604extern int sysctl_memory_failure_recovery;
facb6011 2605extern void shake_page(struct page *p, int access);
293c07e3 2606extern atomic_long_t num_poisoned_pages;
facb6011 2607extern int soft_offline_page(struct page *page, int flags);
6a46079c 2608
cc637b17
XX
2609
2610/*
2611 * Error handlers for various types of pages.
2612 */
cc3e2af4 2613enum mf_result {
cc637b17
XX
2614 MF_IGNORED, /* Error: cannot be handled */
2615 MF_FAILED, /* Error: handling failed */
2616 MF_DELAYED, /* Will be handled later */
2617 MF_RECOVERED, /* Successfully recovered */
2618};
2619
2620enum mf_action_page_type {
2621 MF_MSG_KERNEL,
2622 MF_MSG_KERNEL_HIGH_ORDER,
2623 MF_MSG_SLAB,
2624 MF_MSG_DIFFERENT_COMPOUND,
2625 MF_MSG_POISONED_HUGE,
2626 MF_MSG_HUGE,
2627 MF_MSG_FREE_HUGE,
8e88be0d 2628 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2629 MF_MSG_UNMAP_FAILED,
2630 MF_MSG_DIRTY_SWAPCACHE,
2631 MF_MSG_CLEAN_SWAPCACHE,
2632 MF_MSG_DIRTY_MLOCKED_LRU,
2633 MF_MSG_CLEAN_MLOCKED_LRU,
2634 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2635 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2636 MF_MSG_DIRTY_LRU,
2637 MF_MSG_CLEAN_LRU,
2638 MF_MSG_TRUNCATED_LRU,
2639 MF_MSG_BUDDY,
2640 MF_MSG_BUDDY_2ND,
2641 MF_MSG_UNKNOWN,
2642};
2643
47ad8475
AA
2644#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2645extern void clear_huge_page(struct page *page,
c79b57e4 2646 unsigned long addr_hint,
47ad8475
AA
2647 unsigned int pages_per_huge_page);
2648extern void copy_user_huge_page(struct page *dst, struct page *src,
2649 unsigned long addr, struct vm_area_struct *vma,
2650 unsigned int pages_per_huge_page);
fa4d75c1
MK
2651extern long copy_huge_page_from_user(struct page *dst_page,
2652 const void __user *usr_src,
810a56b9
MK
2653 unsigned int pages_per_huge_page,
2654 bool allow_pagefault);
47ad8475
AA
2655#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2656
e30825f1 2657extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2658
c0a32fc5
SG
2659#ifdef CONFIG_DEBUG_PAGEALLOC
2660extern unsigned int _debug_guardpage_minorder;
e30825f1 2661extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2662
2663static inline unsigned int debug_guardpage_minorder(void)
2664{
2665 return _debug_guardpage_minorder;
2666}
2667
e30825f1
JK
2668static inline bool debug_guardpage_enabled(void)
2669{
2670 return _debug_guardpage_enabled;
2671}
2672
c0a32fc5
SG
2673static inline bool page_is_guard(struct page *page)
2674{
e30825f1
JK
2675 struct page_ext *page_ext;
2676
2677 if (!debug_guardpage_enabled())
2678 return false;
2679
2680 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2681 if (unlikely(!page_ext))
2682 return false;
2683
e30825f1 2684 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2685}
2686#else
2687static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2688static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2689static inline bool page_is_guard(struct page *page) { return false; }
2690#endif /* CONFIG_DEBUG_PAGEALLOC */
2691
f9872caf
CS
2692#if MAX_NUMNODES > 1
2693void __init setup_nr_node_ids(void);
2694#else
2695static inline void setup_nr_node_ids(void) {}
2696#endif
2697
1da177e4
LT
2698#endif /* __KERNEL__ */
2699#endif /* _LINUX_MM_H */