]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/mm.h
mm/memory: also print a_ops->readpage in print_bad_pte()
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
1da177e4 30
fccc9987 31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 32extern unsigned long max_mapnr;
fccc9987
JL
33
34static inline void set_max_mapnr(unsigned long limit)
35{
36 max_mapnr = limit;
37}
38#else
39static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
40#endif
41
4481374c 42extern unsigned long totalram_pages;
1da177e4 43extern void * high_memory;
1da177e4
LT
44extern int page_cluster;
45
46#ifdef CONFIG_SYSCTL
47extern int sysctl_legacy_va_layout;
48#else
49#define sysctl_legacy_va_layout 0
50#endif
51
52#include <asm/page.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
1da177e4 55
79442ed1
TC
56#ifndef __pa_symbol
57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58#endif
59
593befa6
DD
60/*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67#ifndef mm_forbids_zeropage
68#define mm_forbids_zeropage(X) (0)
69#endif
70
c9b1d098 71extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 72extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 73
49f0ce5f
JM
74extern int sysctl_overcommit_memory;
75extern int sysctl_overcommit_ratio;
76extern unsigned long sysctl_overcommit_kbytes;
77
78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
1da177e4
LT
83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
27ac792c
AR
85/* to align the pointer to the (next) page boundary */
86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
0fa73b86
AM
88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
1da177e4
LT
91/*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
c43692e8
CL
100extern struct kmem_cache *vm_area_cachep;
101
1da177e4 102#ifndef CONFIG_MMU
8feae131
DH
103extern struct rb_root nommu_region_tree;
104extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
105
106extern unsigned int kobjsize(const void *objp);
107#endif
108
109/*
605d9288 110 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 111 */
cc2383ec
KK
112#define VM_NONE 0x00000000
113
1da177e4
LT
114#define VM_READ 0x00000001 /* currently active flags */
115#define VM_WRITE 0x00000002
116#define VM_EXEC 0x00000004
117#define VM_SHARED 0x00000008
118
7e2cff42 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121#define VM_MAYWRITE 0x00000020
122#define VM_MAYEXEC 0x00000040
123#define VM_MAYSHARE 0x00000080
124
125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
1da177e4
LT
129#define VM_LOCKED 0x00002000
130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 141#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 142#define VM_ARCH_2 0x02000000
0103bd16 143#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 144
d9104d1c
CG
145#ifdef CONFIG_MEM_SOFT_DIRTY
146# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
147#else
148# define VM_SOFTDIRTY 0
149#endif
150
b379d790 151#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
152#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
153#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 154#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 155
cc2383ec
KK
156#if defined(CONFIG_X86)
157# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
158#elif defined(CONFIG_PPC)
159# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
160#elif defined(CONFIG_PARISC)
161# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
162#elif defined(CONFIG_METAG)
163# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
164#elif defined(CONFIG_IA64)
165# define VM_GROWSUP VM_ARCH_1
166#elif !defined(CONFIG_MMU)
167# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
168#endif
169
4aae7e43
QR
170#if defined(CONFIG_X86)
171/* MPX specific bounds table or bounds directory */
172# define VM_MPX VM_ARCH_2
173#endif
174
cc2383ec
KK
175#ifndef VM_GROWSUP
176# define VM_GROWSUP VM_NONE
177#endif
178
a8bef8ff
MG
179/* Bits set in the VMA until the stack is in its final location */
180#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
181
1da177e4
LT
182#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
183#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184#endif
185
186#ifdef CONFIG_STACK_GROWSUP
187#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188#else
189#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190#endif
191
b291f000 192/*
78f11a25
AA
193 * Special vmas that are non-mergable, non-mlock()able.
194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 195 */
9050d7eb 196#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 197
a0715cc2
AT
198/* This mask defines which mm->def_flags a process can inherit its parent */
199#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
200
1da177e4
LT
201/*
202 * mapping from the currently active vm_flags protection bits (the
203 * low four bits) to a page protection mask..
204 */
205extern pgprot_t protection_map[16];
206
d0217ac0 207#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
208#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
209#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
210#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
211#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
212#define FAULT_FLAG_TRIED 0x20 /* Second try */
213#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 214
54cb8821 215/*
d0217ac0 216 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
217 * ->fault function. The vma's ->fault is responsible for returning a bitmask
218 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 219 *
9b4bdd2f 220 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 221 */
d0217ac0
NP
222struct vm_fault {
223 unsigned int flags; /* FAULT_FLAG_xxx flags */
224 pgoff_t pgoff; /* Logical page offset based on vma */
225 void __user *virtual_address; /* Faulting virtual address */
226
2e4cdab0 227 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 228 struct page *page; /* ->fault handlers should return a
83c54070 229 * page here, unless VM_FAULT_NOPAGE
d0217ac0 230 * is set (which is also implied by
83c54070 231 * VM_FAULT_ERROR).
d0217ac0 232 */
8c6e50b0
KS
233 /* for ->map_pages() only */
234 pgoff_t max_pgoff; /* map pages for offset from pgoff till
235 * max_pgoff inclusive */
236 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 237};
1da177e4
LT
238
239/*
240 * These are the virtual MM functions - opening of an area, closing and
241 * unmapping it (needed to keep files on disk up-to-date etc), pointer
242 * to the functions called when a no-page or a wp-page exception occurs.
243 */
244struct vm_operations_struct {
245 void (*open)(struct vm_area_struct * area);
246 void (*close)(struct vm_area_struct * area);
d0217ac0 247 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 248 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
249
250 /* notification that a previously read-only page is about to become
251 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 252 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
253
254 /* called by access_process_vm when get_user_pages() fails, typically
255 * for use by special VMAs that can switch between memory and hardware
256 */
257 int (*access)(struct vm_area_struct *vma, unsigned long addr,
258 void *buf, int len, int write);
78d683e8
AL
259
260 /* Called by the /proc/PID/maps code to ask the vma whether it
261 * has a special name. Returning non-NULL will also cause this
262 * vma to be dumped unconditionally. */
263 const char *(*name)(struct vm_area_struct *vma);
264
1da177e4 265#ifdef CONFIG_NUMA
a6020ed7
LS
266 /*
267 * set_policy() op must add a reference to any non-NULL @new mempolicy
268 * to hold the policy upon return. Caller should pass NULL @new to
269 * remove a policy and fall back to surrounding context--i.e. do not
270 * install a MPOL_DEFAULT policy, nor the task or system default
271 * mempolicy.
272 */
1da177e4 273 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
274
275 /*
276 * get_policy() op must add reference [mpol_get()] to any policy at
277 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
278 * in mm/mempolicy.c will do this automatically.
279 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
280 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
281 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
282 * must return NULL--i.e., do not "fallback" to task or system default
283 * policy.
284 */
1da177e4
LT
285 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
286 unsigned long addr);
287#endif
667a0a06
DV
288 /*
289 * Called by vm_normal_page() for special PTEs to find the
290 * page for @addr. This is useful if the default behavior
291 * (using pte_page()) would not find the correct page.
292 */
293 struct page *(*find_special_page)(struct vm_area_struct *vma,
294 unsigned long addr);
1da177e4
LT
295};
296
297struct mmu_gather;
298struct inode;
299
349aef0b
AM
300#define page_private(page) ((page)->private)
301#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 302
b12c4ad1
MK
303/* It's valid only if the page is free path or free_list */
304static inline void set_freepage_migratetype(struct page *page, int migratetype)
305{
95e34412 306 page->index = migratetype;
b12c4ad1
MK
307}
308
309/* It's valid only if the page is free path or free_list */
310static inline int get_freepage_migratetype(struct page *page)
311{
95e34412 312 return page->index;
b12c4ad1
MK
313}
314
1da177e4
LT
315/*
316 * FIXME: take this include out, include page-flags.h in
317 * files which need it (119 of them)
318 */
319#include <linux/page-flags.h>
71e3aac0 320#include <linux/huge_mm.h>
1da177e4
LT
321
322/*
323 * Methods to modify the page usage count.
324 *
325 * What counts for a page usage:
326 * - cache mapping (page->mapping)
327 * - private data (page->private)
328 * - page mapped in a task's page tables, each mapping
329 * is counted separately
330 *
331 * Also, many kernel routines increase the page count before a critical
332 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
333 */
334
335/*
da6052f7 336 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 337 */
7c8ee9a8
NP
338static inline int put_page_testzero(struct page *page)
339{
309381fe 340 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 341 return atomic_dec_and_test(&page->_count);
7c8ee9a8 342}
1da177e4
LT
343
344/*
7c8ee9a8
NP
345 * Try to grab a ref unless the page has a refcount of zero, return false if
346 * that is the case.
8e0861fa
AK
347 * This can be called when MMU is off so it must not access
348 * any of the virtual mappings.
1da177e4 349 */
7c8ee9a8
NP
350static inline int get_page_unless_zero(struct page *page)
351{
8dc04efb 352 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 353}
1da177e4 354
8e0861fa
AK
355/*
356 * Try to drop a ref unless the page has a refcount of one, return false if
357 * that is the case.
358 * This is to make sure that the refcount won't become zero after this drop.
359 * This can be called when MMU is off so it must not access
360 * any of the virtual mappings.
361 */
362static inline int put_page_unless_one(struct page *page)
363{
364 return atomic_add_unless(&page->_count, -1, 1);
365}
366
53df8fdc 367extern int page_is_ram(unsigned long pfn);
67cf13ce 368extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 369
48667e7a 370/* Support for virtually mapped pages */
b3bdda02
CL
371struct page *vmalloc_to_page(const void *addr);
372unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 373
0738c4bb
PM
374/*
375 * Determine if an address is within the vmalloc range
376 *
377 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
378 * is no special casing required.
379 */
9e2779fa
CL
380static inline int is_vmalloc_addr(const void *x)
381{
0738c4bb 382#ifdef CONFIG_MMU
9e2779fa
CL
383 unsigned long addr = (unsigned long)x;
384
385 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
386#else
387 return 0;
8ca3ed87 388#endif
0738c4bb 389}
81ac3ad9
KH
390#ifdef CONFIG_MMU
391extern int is_vmalloc_or_module_addr(const void *x);
392#else
934831d0 393static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
394{
395 return 0;
396}
397#endif
9e2779fa 398
39f1f78d
AV
399extern void kvfree(const void *addr);
400
e9da73d6
AA
401static inline void compound_lock(struct page *page)
402{
403#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 404 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
405 bit_spin_lock(PG_compound_lock, &page->flags);
406#endif
407}
408
409static inline void compound_unlock(struct page *page)
410{
411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 412 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
413 bit_spin_unlock(PG_compound_lock, &page->flags);
414#endif
415}
416
417static inline unsigned long compound_lock_irqsave(struct page *page)
418{
419 unsigned long uninitialized_var(flags);
420#ifdef CONFIG_TRANSPARENT_HUGEPAGE
421 local_irq_save(flags);
422 compound_lock(page);
423#endif
424 return flags;
425}
426
427static inline void compound_unlock_irqrestore(struct page *page,
428 unsigned long flags)
429{
430#ifdef CONFIG_TRANSPARENT_HUGEPAGE
431 compound_unlock(page);
432 local_irq_restore(flags);
433#endif
434}
435
d2ee40ea
JZ
436static inline struct page *compound_head_by_tail(struct page *tail)
437{
438 struct page *head = tail->first_page;
439
440 /*
441 * page->first_page may be a dangling pointer to an old
442 * compound page, so recheck that it is still a tail
443 * page before returning.
444 */
445 smp_rmb();
446 if (likely(PageTail(tail)))
447 return head;
448 return tail;
449}
450
ccaafd7f
JK
451/*
452 * Since either compound page could be dismantled asynchronously in THP
453 * or we access asynchronously arbitrary positioned struct page, there
454 * would be tail flag race. To handle this race, we should call
455 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
456 */
d85f3385
CL
457static inline struct page *compound_head(struct page *page)
458{
d2ee40ea
JZ
459 if (unlikely(PageTail(page)))
460 return compound_head_by_tail(page);
d85f3385
CL
461 return page;
462}
463
ccaafd7f
JK
464/*
465 * If we access compound page synchronously such as access to
466 * allocated page, there is no need to handle tail flag race, so we can
467 * check tail flag directly without any synchronization primitive.
468 */
469static inline struct page *compound_head_fast(struct page *page)
470{
471 if (unlikely(PageTail(page)))
472 return page->first_page;
473 return page;
474}
475
70b50f94
AA
476/*
477 * The atomic page->_mapcount, starts from -1: so that transitions
478 * both from it and to it can be tracked, using atomic_inc_and_test
479 * and atomic_add_negative(-1).
480 */
22b751c3 481static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
482{
483 atomic_set(&(page)->_mapcount, -1);
484}
485
486static inline int page_mapcount(struct page *page)
487{
1d148e21
WY
488 VM_BUG_ON_PAGE(PageSlab(page), page);
489 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
490}
491
4c21e2f2 492static inline int page_count(struct page *page)
1da177e4 493{
d85f3385 494 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
495}
496
44518d2b
AA
497static inline bool __compound_tail_refcounted(struct page *page)
498{
8d63d99a 499 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
500}
501
502/*
503 * This takes a head page as parameter and tells if the
504 * tail page reference counting can be skipped.
505 *
506 * For this to be safe, PageSlab and PageHeadHuge must remain true on
507 * any given page where they return true here, until all tail pins
508 * have been released.
509 */
510static inline bool compound_tail_refcounted(struct page *page)
511{
309381fe 512 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
513 return __compound_tail_refcounted(page);
514}
515
b35a35b5
AA
516static inline void get_huge_page_tail(struct page *page)
517{
518 /*
5eaf1a9e 519 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 520 */
309381fe
SL
521 VM_BUG_ON_PAGE(!PageTail(page), page);
522 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
523 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 524 if (compound_tail_refcounted(page->first_page))
44518d2b 525 atomic_inc(&page->_mapcount);
b35a35b5
AA
526}
527
70b50f94
AA
528extern bool __get_page_tail(struct page *page);
529
1da177e4
LT
530static inline void get_page(struct page *page)
531{
70b50f94
AA
532 if (unlikely(PageTail(page)))
533 if (likely(__get_page_tail(page)))
534 return;
91807063
AA
535 /*
536 * Getting a normal page or the head of a compound page
70b50f94 537 * requires to already have an elevated page->_count.
91807063 538 */
309381fe 539 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
540 atomic_inc(&page->_count);
541}
542
b49af68f
CL
543static inline struct page *virt_to_head_page(const void *x)
544{
545 struct page *page = virt_to_page(x);
ccaafd7f
JK
546
547 /*
548 * We don't need to worry about synchronization of tail flag
549 * when we call virt_to_head_page() since it is only called for
550 * already allocated page and this page won't be freed until
551 * this virt_to_head_page() is finished. So use _fast variant.
552 */
553 return compound_head_fast(page);
b49af68f
CL
554}
555
7835e98b
NP
556/*
557 * Setup the page count before being freed into the page allocator for
558 * the first time (boot or memory hotplug)
559 */
560static inline void init_page_count(struct page *page)
561{
562 atomic_set(&page->_count, 1);
563}
564
1da177e4 565void put_page(struct page *page);
1d7ea732 566void put_pages_list(struct list_head *pages);
1da177e4 567
8dfcc9ba 568void split_page(struct page *page, unsigned int order);
748446bb 569int split_free_page(struct page *page);
8dfcc9ba 570
33f2ef89
AW
571/*
572 * Compound pages have a destructor function. Provide a
573 * prototype for that function and accessor functions.
574 * These are _only_ valid on the head of a PG_compound page.
575 */
33f2ef89
AW
576
577static inline void set_compound_page_dtor(struct page *page,
578 compound_page_dtor *dtor)
579{
e4b294c2 580 page[1].compound_dtor = dtor;
33f2ef89
AW
581}
582
583static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
584{
e4b294c2 585 return page[1].compound_dtor;
33f2ef89
AW
586}
587
d85f3385
CL
588static inline int compound_order(struct page *page)
589{
6d777953 590 if (!PageHead(page))
d85f3385 591 return 0;
e4b294c2 592 return page[1].compound_order;
d85f3385
CL
593}
594
595static inline void set_compound_order(struct page *page, unsigned long order)
596{
e4b294c2 597 page[1].compound_order = order;
d85f3385
CL
598}
599
3dece370 600#ifdef CONFIG_MMU
14fd403f
AA
601/*
602 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
603 * servicing faults for write access. In the normal case, do always want
604 * pte_mkwrite. But get_user_pages can cause write faults for mappings
605 * that do not have writing enabled, when used by access_process_vm.
606 */
607static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
608{
609 if (likely(vma->vm_flags & VM_WRITE))
610 pte = pte_mkwrite(pte);
611 return pte;
612}
8c6e50b0
KS
613
614void do_set_pte(struct vm_area_struct *vma, unsigned long address,
615 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 616#endif
14fd403f 617
1da177e4
LT
618/*
619 * Multiple processes may "see" the same page. E.g. for untouched
620 * mappings of /dev/null, all processes see the same page full of
621 * zeroes, and text pages of executables and shared libraries have
622 * only one copy in memory, at most, normally.
623 *
624 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
625 * page_count() == 0 means the page is free. page->lru is then used for
626 * freelist management in the buddy allocator.
da6052f7 627 * page_count() > 0 means the page has been allocated.
1da177e4 628 *
da6052f7
NP
629 * Pages are allocated by the slab allocator in order to provide memory
630 * to kmalloc and kmem_cache_alloc. In this case, the management of the
631 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
632 * unless a particular usage is carefully commented. (the responsibility of
633 * freeing the kmalloc memory is the caller's, of course).
1da177e4 634 *
da6052f7
NP
635 * A page may be used by anyone else who does a __get_free_page().
636 * In this case, page_count still tracks the references, and should only
637 * be used through the normal accessor functions. The top bits of page->flags
638 * and page->virtual store page management information, but all other fields
639 * are unused and could be used privately, carefully. The management of this
640 * page is the responsibility of the one who allocated it, and those who have
641 * subsequently been given references to it.
642 *
643 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
644 * managed by the Linux memory manager: I/O, buffers, swapping etc.
645 * The following discussion applies only to them.
646 *
da6052f7
NP
647 * A pagecache page contains an opaque `private' member, which belongs to the
648 * page's address_space. Usually, this is the address of a circular list of
649 * the page's disk buffers. PG_private must be set to tell the VM to call
650 * into the filesystem to release these pages.
1da177e4 651 *
da6052f7
NP
652 * A page may belong to an inode's memory mapping. In this case, page->mapping
653 * is the pointer to the inode, and page->index is the file offset of the page,
654 * in units of PAGE_CACHE_SIZE.
1da177e4 655 *
da6052f7
NP
656 * If pagecache pages are not associated with an inode, they are said to be
657 * anonymous pages. These may become associated with the swapcache, and in that
658 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 659 *
da6052f7
NP
660 * In either case (swapcache or inode backed), the pagecache itself holds one
661 * reference to the page. Setting PG_private should also increment the
662 * refcount. The each user mapping also has a reference to the page.
1da177e4 663 *
da6052f7
NP
664 * The pagecache pages are stored in a per-mapping radix tree, which is
665 * rooted at mapping->page_tree, and indexed by offset.
666 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
667 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 668 *
da6052f7 669 * All pagecache pages may be subject to I/O:
1da177e4
LT
670 * - inode pages may need to be read from disk,
671 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
672 * to be written back to the inode on disk,
673 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
674 * modified may need to be swapped out to swap space and (later) to be read
675 * back into memory.
1da177e4
LT
676 */
677
678/*
679 * The zone field is never updated after free_area_init_core()
680 * sets it, so none of the operations on it need to be atomic.
1da177e4 681 */
348f8b6c 682
90572890 683/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 684#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
685#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
686#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 687#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 688
348f8b6c 689/*
25985edc 690 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
691 * sections we define the shift as 0; that plus a 0 mask ensures
692 * the compiler will optimise away reference to them.
693 */
d41dee36
AW
694#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
695#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
696#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 697#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 698
bce54bbf
WD
699/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
700#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 701#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
702#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
703 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 704#else
89689ae7 705#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
706#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
707 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
708#endif
709
bd8029b6 710#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 711
9223b419
CL
712#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
713#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
714#endif
715
d41dee36
AW
716#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
717#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
718#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 719#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 720#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 721
33dd4e0e 722static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 723{
348f8b6c 724 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 725}
1da177e4 726
9127ab4f
CS
727#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
728#define SECTION_IN_PAGE_FLAGS
729#endif
730
89689ae7 731/*
7a8010cd
VB
732 * The identification function is mainly used by the buddy allocator for
733 * determining if two pages could be buddies. We are not really identifying
734 * the zone since we could be using the section number id if we do not have
735 * node id available in page flags.
736 * We only guarantee that it will return the same value for two combinable
737 * pages in a zone.
89689ae7 738 */
cb2b95e1
AW
739static inline int page_zone_id(struct page *page)
740{
89689ae7 741 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
742}
743
25ba77c1 744static inline int zone_to_nid(struct zone *zone)
89fa3024 745{
d5f541ed
CL
746#ifdef CONFIG_NUMA
747 return zone->node;
748#else
749 return 0;
750#endif
89fa3024
CL
751}
752
89689ae7 753#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 754extern int page_to_nid(const struct page *page);
89689ae7 755#else
33dd4e0e 756static inline int page_to_nid(const struct page *page)
d41dee36 757{
89689ae7 758 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 759}
89689ae7
CL
760#endif
761
57e0a030 762#ifdef CONFIG_NUMA_BALANCING
90572890 763static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 764{
90572890 765 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
766}
767
90572890 768static inline int cpupid_to_pid(int cpupid)
57e0a030 769{
90572890 770 return cpupid & LAST__PID_MASK;
57e0a030 771}
b795854b 772
90572890 773static inline int cpupid_to_cpu(int cpupid)
b795854b 774{
90572890 775 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
776}
777
90572890 778static inline int cpupid_to_nid(int cpupid)
b795854b 779{
90572890 780 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
781}
782
90572890 783static inline bool cpupid_pid_unset(int cpupid)
57e0a030 784{
90572890 785 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
786}
787
90572890 788static inline bool cpupid_cpu_unset(int cpupid)
b795854b 789{
90572890 790 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
791}
792
8c8a743c
PZ
793static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
794{
795 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
796}
797
798#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
799#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
800static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 801{
1ae71d03 802 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 803}
90572890
PZ
804
805static inline int page_cpupid_last(struct page *page)
806{
807 return page->_last_cpupid;
808}
809static inline void page_cpupid_reset_last(struct page *page)
b795854b 810{
1ae71d03 811 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
812}
813#else
90572890 814static inline int page_cpupid_last(struct page *page)
75980e97 815{
90572890 816 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
817}
818
90572890 819extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 820
90572890 821static inline void page_cpupid_reset_last(struct page *page)
75980e97 822{
90572890 823 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 824
90572890
PZ
825 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
826 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 827}
90572890
PZ
828#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
829#else /* !CONFIG_NUMA_BALANCING */
830static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 831{
90572890 832 return page_to_nid(page); /* XXX */
57e0a030
MG
833}
834
90572890 835static inline int page_cpupid_last(struct page *page)
57e0a030 836{
90572890 837 return page_to_nid(page); /* XXX */
57e0a030
MG
838}
839
90572890 840static inline int cpupid_to_nid(int cpupid)
b795854b
MG
841{
842 return -1;
843}
844
90572890 845static inline int cpupid_to_pid(int cpupid)
b795854b
MG
846{
847 return -1;
848}
849
90572890 850static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
851{
852 return -1;
853}
854
90572890
PZ
855static inline int cpu_pid_to_cpupid(int nid, int pid)
856{
857 return -1;
858}
859
860static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
861{
862 return 1;
863}
864
90572890 865static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
866{
867}
8c8a743c
PZ
868
869static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
870{
871 return false;
872}
90572890 873#endif /* CONFIG_NUMA_BALANCING */
57e0a030 874
33dd4e0e 875static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
876{
877 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
878}
879
9127ab4f 880#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
881static inline void set_page_section(struct page *page, unsigned long section)
882{
883 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
884 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
885}
886
aa462abe 887static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
888{
889 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
890}
308c05e3 891#endif
d41dee36 892
2f1b6248 893static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
894{
895 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
896 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
897}
2f1b6248 898
348f8b6c
DH
899static inline void set_page_node(struct page *page, unsigned long node)
900{
901 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
902 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 903}
89689ae7 904
2f1b6248 905static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 906 unsigned long node, unsigned long pfn)
1da177e4 907{
348f8b6c
DH
908 set_page_zone(page, zone);
909 set_page_node(page, node);
9127ab4f 910#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 911 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 912#endif
1da177e4
LT
913}
914
f6ac2354
CL
915/*
916 * Some inline functions in vmstat.h depend on page_zone()
917 */
918#include <linux/vmstat.h>
919
33dd4e0e 920static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 921{
aa462abe 922 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
923}
924
925#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
926#define HASHED_PAGE_VIRTUAL
927#endif
928
929#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
930static inline void *page_address(const struct page *page)
931{
932 return page->virtual;
933}
934static inline void set_page_address(struct page *page, void *address)
935{
936 page->virtual = address;
937}
1da177e4
LT
938#define page_address_init() do { } while(0)
939#endif
940
941#if defined(HASHED_PAGE_VIRTUAL)
f9918794 942void *page_address(const struct page *page);
1da177e4
LT
943void set_page_address(struct page *page, void *virtual);
944void page_address_init(void);
945#endif
946
947#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
948#define page_address(page) lowmem_page_address(page)
949#define set_page_address(page, address) do { } while(0)
950#define page_address_init() do { } while(0)
951#endif
952
e39155ea
KS
953extern void *page_rmapping(struct page *page);
954extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 955extern struct address_space *page_mapping(struct page *page);
1da177e4 956
f981c595
MG
957extern struct address_space *__page_file_mapping(struct page *);
958
959static inline
960struct address_space *page_file_mapping(struct page *page)
961{
962 if (unlikely(PageSwapCache(page)))
963 return __page_file_mapping(page);
964
965 return page->mapping;
966}
967
1da177e4
LT
968/*
969 * Return the pagecache index of the passed page. Regular pagecache pages
970 * use ->index whereas swapcache pages use ->private
971 */
972static inline pgoff_t page_index(struct page *page)
973{
974 if (unlikely(PageSwapCache(page)))
4c21e2f2 975 return page_private(page);
1da177e4
LT
976 return page->index;
977}
978
f981c595
MG
979extern pgoff_t __page_file_index(struct page *page);
980
981/*
982 * Return the file index of the page. Regular pagecache pages use ->index
983 * whereas swapcache pages use swp_offset(->private)
984 */
985static inline pgoff_t page_file_index(struct page *page)
986{
987 if (unlikely(PageSwapCache(page)))
988 return __page_file_index(page);
989
990 return page->index;
991}
992
1da177e4
LT
993/*
994 * Return true if this page is mapped into pagetables.
995 */
996static inline int page_mapped(struct page *page)
997{
998 return atomic_read(&(page)->_mapcount) >= 0;
999}
1000
1da177e4
LT
1001/*
1002 * Different kinds of faults, as returned by handle_mm_fault().
1003 * Used to decide whether a process gets delivered SIGBUS or
1004 * just gets major/minor fault counters bumped up.
1005 */
d0217ac0 1006
83c54070 1007#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1008
83c54070
NP
1009#define VM_FAULT_OOM 0x0001
1010#define VM_FAULT_SIGBUS 0x0002
1011#define VM_FAULT_MAJOR 0x0004
1012#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1013#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1014#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1015#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1016
83c54070
NP
1017#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1018#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1019#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1020#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1021
aa50d3a7
AK
1022#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1023
33692f27
LT
1024#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1025 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1026 VM_FAULT_FALLBACK)
aa50d3a7
AK
1027
1028/* Encode hstate index for a hwpoisoned large page */
1029#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1030#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1031
1c0fe6e3
NP
1032/*
1033 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1034 */
1035extern void pagefault_out_of_memory(void);
1036
1da177e4
LT
1037#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1038
ddd588b5 1039/*
7bf02ea2 1040 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1041 * various contexts.
1042 */
4b59e6c4 1043#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1044
7bf02ea2
DR
1045extern void show_free_areas(unsigned int flags);
1046extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1047
1da177e4 1048int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1049#ifdef CONFIG_SHMEM
1050bool shmem_mapping(struct address_space *mapping);
1051#else
1052static inline bool shmem_mapping(struct address_space *mapping)
1053{
1054 return false;
1055}
1056#endif
1da177e4 1057
e8edc6e0 1058extern int can_do_mlock(void);
1da177e4
LT
1059extern int user_shm_lock(size_t, struct user_struct *);
1060extern void user_shm_unlock(size_t, struct user_struct *);
1061
1062/*
1063 * Parameter block passed down to zap_pte_range in exceptional cases.
1064 */
1065struct zap_details {
1da177e4
LT
1066 struct address_space *check_mapping; /* Check page->mapping if set */
1067 pgoff_t first_index; /* Lowest page->index to unmap */
1068 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1069};
1070
7e675137
NP
1071struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1072 pte_t pte);
1073
c627f9cc
JS
1074int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1075 unsigned long size);
14f5ff5d 1076void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1077 unsigned long size, struct zap_details *);
4f74d2c8
LT
1078void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1079 unsigned long start, unsigned long end);
e6473092
MM
1080
1081/**
1082 * mm_walk - callbacks for walk_page_range
e6473092 1083 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1084 * this handler is required to be able to handle
1085 * pmd_trans_huge() pmds. They may simply choose to
1086 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1087 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1088 * @pte_hole: if set, called for each hole at all levels
5dc37642 1089 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1090 * @test_walk: caller specific callback function to determine whether
1091 * we walk over the current vma or not. A positive returned
1092 * value means "do page table walk over the current vma,"
1093 * and a negative one means "abort current page table walk
1094 * right now." 0 means "skip the current vma."
1095 * @mm: mm_struct representing the target process of page table walk
1096 * @vma: vma currently walked (NULL if walking outside vmas)
1097 * @private: private data for callbacks' usage
e6473092 1098 *
fafaa426 1099 * (see the comment on walk_page_range() for more details)
e6473092
MM
1100 */
1101struct mm_walk {
0f157a5b
AM
1102 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1103 unsigned long next, struct mm_walk *walk);
1104 int (*pte_entry)(pte_t *pte, unsigned long addr,
1105 unsigned long next, struct mm_walk *walk);
1106 int (*pte_hole)(unsigned long addr, unsigned long next,
1107 struct mm_walk *walk);
1108 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1109 unsigned long addr, unsigned long next,
1110 struct mm_walk *walk);
fafaa426
NH
1111 int (*test_walk)(unsigned long addr, unsigned long next,
1112 struct mm_walk *walk);
2165009b 1113 struct mm_struct *mm;
fafaa426 1114 struct vm_area_struct *vma;
2165009b 1115 void *private;
e6473092
MM
1116};
1117
2165009b
DH
1118int walk_page_range(unsigned long addr, unsigned long end,
1119 struct mm_walk *walk);
900fc5f1 1120int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1121void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1122 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1123int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1124 struct vm_area_struct *vma);
1da177e4
LT
1125void unmap_mapping_range(struct address_space *mapping,
1126 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1127int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1128 unsigned long *pfn);
d87fe660 1129int follow_phys(struct vm_area_struct *vma, unsigned long address,
1130 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1131int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1132 void *buf, int len, int write);
1da177e4
LT
1133
1134static inline void unmap_shared_mapping_range(struct address_space *mapping,
1135 loff_t const holebegin, loff_t const holelen)
1136{
1137 unmap_mapping_range(mapping, holebegin, holelen, 0);
1138}
1139
7caef267 1140extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1141extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1142void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1143void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1144int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1145int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1146int invalidate_inode_page(struct page *page);
1147
7ee1dd3f 1148#ifdef CONFIG_MMU
83c54070 1149extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1150 unsigned long address, unsigned int flags);
5c723ba5
PZ
1151extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1152 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1153#else
1154static inline int handle_mm_fault(struct mm_struct *mm,
1155 struct vm_area_struct *vma, unsigned long address,
d06063cc 1156 unsigned int flags)
7ee1dd3f
DH
1157{
1158 /* should never happen if there's no MMU */
1159 BUG();
1160 return VM_FAULT_SIGBUS;
1161}
5c723ba5
PZ
1162static inline int fixup_user_fault(struct task_struct *tsk,
1163 struct mm_struct *mm, unsigned long address,
1164 unsigned int fault_flags)
1165{
1166 /* should never happen if there's no MMU */
1167 BUG();
1168 return -EFAULT;
1169}
7ee1dd3f 1170#endif
f33ea7f4 1171
1da177e4 1172extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1173extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1174 void *buf, int len, int write);
1da177e4 1175
28a35716
ML
1176long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1177 unsigned long start, unsigned long nr_pages,
1178 unsigned int foll_flags, struct page **pages,
1179 struct vm_area_struct **vmas, int *nonblocking);
1180long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1181 unsigned long start, unsigned long nr_pages,
1182 int write, int force, struct page **pages,
1183 struct vm_area_struct **vmas);
f0818f47
AA
1184long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1185 unsigned long start, unsigned long nr_pages,
1186 int write, int force, struct page **pages,
1187 int *locked);
0fd71a56
AA
1188long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1189 unsigned long start, unsigned long nr_pages,
1190 int write, int force, struct page **pages,
1191 unsigned int gup_flags);
f0818f47
AA
1192long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1193 unsigned long start, unsigned long nr_pages,
1194 int write, int force, struct page **pages);
d2bf6be8
NP
1195int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1196 struct page **pages);
18022c5d
MG
1197struct kvec;
1198int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1199 struct page **pages);
1200int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1201struct page *get_dump_page(unsigned long addr);
1da177e4 1202
cf9a2ae8 1203extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1204extern void do_invalidatepage(struct page *page, unsigned int offset,
1205 unsigned int length);
cf9a2ae8 1206
1da177e4 1207int __set_page_dirty_nobuffers(struct page *page);
76719325 1208int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1209int redirty_page_for_writepage(struct writeback_control *wbc,
1210 struct page *page);
e3a7cca1 1211void account_page_dirtied(struct page *page, struct address_space *mapping);
b9ea2515 1212void account_page_cleaned(struct page *page, struct address_space *mapping);
b3c97528 1213int set_page_dirty(struct page *page);
1da177e4
LT
1214int set_page_dirty_lock(struct page *page);
1215int clear_page_dirty_for_io(struct page *page);
b9ea2515 1216
a9090253 1217int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1218
39aa3cb3 1219/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1220static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1221{
1222 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1223}
1224
a09a79f6
MP
1225static inline int stack_guard_page_start(struct vm_area_struct *vma,
1226 unsigned long addr)
1227{
1228 return (vma->vm_flags & VM_GROWSDOWN) &&
1229 (vma->vm_start == addr) &&
1230 !vma_growsdown(vma->vm_prev, addr);
1231}
1232
1233/* Is the vma a continuation of the stack vma below it? */
1234static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1235{
1236 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1237}
1238
1239static inline int stack_guard_page_end(struct vm_area_struct *vma,
1240 unsigned long addr)
1241{
1242 return (vma->vm_flags & VM_GROWSUP) &&
1243 (vma->vm_end == addr) &&
1244 !vma_growsup(vma->vm_next, addr);
1245}
1246
58cb6548
ON
1247extern struct task_struct *task_of_stack(struct task_struct *task,
1248 struct vm_area_struct *vma, bool in_group);
b7643757 1249
b6a2fea3
OW
1250extern unsigned long move_page_tables(struct vm_area_struct *vma,
1251 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1252 unsigned long new_addr, unsigned long len,
1253 bool need_rmap_locks);
7da4d641
PZ
1254extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1255 unsigned long end, pgprot_t newprot,
4b10e7d5 1256 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1257extern int mprotect_fixup(struct vm_area_struct *vma,
1258 struct vm_area_struct **pprev, unsigned long start,
1259 unsigned long end, unsigned long newflags);
1da177e4 1260
465a454f
PZ
1261/*
1262 * doesn't attempt to fault and will return short.
1263 */
1264int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1265 struct page **pages);
d559db08
KH
1266/*
1267 * per-process(per-mm_struct) statistics.
1268 */
d559db08
KH
1269static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1270{
69c97823
KK
1271 long val = atomic_long_read(&mm->rss_stat.count[member]);
1272
1273#ifdef SPLIT_RSS_COUNTING
1274 /*
1275 * counter is updated in asynchronous manner and may go to minus.
1276 * But it's never be expected number for users.
1277 */
1278 if (val < 0)
1279 val = 0;
172703b0 1280#endif
69c97823
KK
1281 return (unsigned long)val;
1282}
d559db08
KH
1283
1284static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1285{
172703b0 1286 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1287}
1288
1289static inline void inc_mm_counter(struct mm_struct *mm, int member)
1290{
172703b0 1291 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1292}
1293
1294static inline void dec_mm_counter(struct mm_struct *mm, int member)
1295{
172703b0 1296 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1297}
1298
d559db08
KH
1299static inline unsigned long get_mm_rss(struct mm_struct *mm)
1300{
1301 return get_mm_counter(mm, MM_FILEPAGES) +
1302 get_mm_counter(mm, MM_ANONPAGES);
1303}
1304
1305static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1306{
1307 return max(mm->hiwater_rss, get_mm_rss(mm));
1308}
1309
1310static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1311{
1312 return max(mm->hiwater_vm, mm->total_vm);
1313}
1314
1315static inline void update_hiwater_rss(struct mm_struct *mm)
1316{
1317 unsigned long _rss = get_mm_rss(mm);
1318
1319 if ((mm)->hiwater_rss < _rss)
1320 (mm)->hiwater_rss = _rss;
1321}
1322
1323static inline void update_hiwater_vm(struct mm_struct *mm)
1324{
1325 if (mm->hiwater_vm < mm->total_vm)
1326 mm->hiwater_vm = mm->total_vm;
1327}
1328
695f0559
PC
1329static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1330{
1331 mm->hiwater_rss = get_mm_rss(mm);
1332}
1333
d559db08
KH
1334static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1335 struct mm_struct *mm)
1336{
1337 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1338
1339 if (*maxrss < hiwater_rss)
1340 *maxrss = hiwater_rss;
1341}
1342
53bddb4e 1343#if defined(SPLIT_RSS_COUNTING)
05af2e10 1344void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1345#else
05af2e10 1346static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1347{
1348}
1349#endif
465a454f 1350
4e950f6f 1351int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1352
25ca1d6c
NK
1353extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1354 spinlock_t **ptl);
1355static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1356 spinlock_t **ptl)
1357{
1358 pte_t *ptep;
1359 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1360 return ptep;
1361}
c9cfcddf 1362
5f22df00
NP
1363#ifdef __PAGETABLE_PUD_FOLDED
1364static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1365 unsigned long address)
1366{
1367 return 0;
1368}
1369#else
1bb3630e 1370int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1371#endif
1372
2d2f5119 1373#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1374static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1375 unsigned long address)
1376{
1377 return 0;
1378}
dc6c9a35 1379
2d2f5119
KS
1380static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1381
dc6c9a35
KS
1382static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1383{
1384 return 0;
1385}
1386
1387static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1388static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1389
5f22df00 1390#else
1bb3630e 1391int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1392
2d2f5119
KS
1393static inline void mm_nr_pmds_init(struct mm_struct *mm)
1394{
1395 atomic_long_set(&mm->nr_pmds, 0);
1396}
1397
dc6c9a35
KS
1398static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1399{
1400 return atomic_long_read(&mm->nr_pmds);
1401}
1402
1403static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1404{
1405 atomic_long_inc(&mm->nr_pmds);
1406}
1407
1408static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1409{
1410 atomic_long_dec(&mm->nr_pmds);
1411}
5f22df00
NP
1412#endif
1413
8ac1f832
AA
1414int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1415 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1416int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1417
1da177e4
LT
1418/*
1419 * The following ifdef needed to get the 4level-fixup.h header to work.
1420 * Remove it when 4level-fixup.h has been removed.
1421 */
1bb3630e 1422#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1423static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1424{
1bb3630e
HD
1425 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1426 NULL: pud_offset(pgd, address);
1da177e4
LT
1427}
1428
1429static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1430{
1bb3630e
HD
1431 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1432 NULL: pmd_offset(pud, address);
1da177e4 1433}
1bb3630e
HD
1434#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1435
57c1ffce 1436#if USE_SPLIT_PTE_PTLOCKS
597d795a 1437#if ALLOC_SPLIT_PTLOCKS
b35f1819 1438void __init ptlock_cache_init(void);
539edb58
PZ
1439extern bool ptlock_alloc(struct page *page);
1440extern void ptlock_free(struct page *page);
1441
1442static inline spinlock_t *ptlock_ptr(struct page *page)
1443{
1444 return page->ptl;
1445}
597d795a 1446#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1447static inline void ptlock_cache_init(void)
1448{
1449}
1450
49076ec2
KS
1451static inline bool ptlock_alloc(struct page *page)
1452{
49076ec2
KS
1453 return true;
1454}
539edb58 1455
49076ec2
KS
1456static inline void ptlock_free(struct page *page)
1457{
49076ec2
KS
1458}
1459
1460static inline spinlock_t *ptlock_ptr(struct page *page)
1461{
539edb58 1462 return &page->ptl;
49076ec2 1463}
597d795a 1464#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1465
1466static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1467{
1468 return ptlock_ptr(pmd_page(*pmd));
1469}
1470
1471static inline bool ptlock_init(struct page *page)
1472{
1473 /*
1474 * prep_new_page() initialize page->private (and therefore page->ptl)
1475 * with 0. Make sure nobody took it in use in between.
1476 *
1477 * It can happen if arch try to use slab for page table allocation:
1478 * slab code uses page->slab_cache and page->first_page (for tail
1479 * pages), which share storage with page->ptl.
1480 */
309381fe 1481 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1482 if (!ptlock_alloc(page))
1483 return false;
1484 spin_lock_init(ptlock_ptr(page));
1485 return true;
1486}
1487
1488/* Reset page->mapping so free_pages_check won't complain. */
1489static inline void pte_lock_deinit(struct page *page)
1490{
1491 page->mapping = NULL;
1492 ptlock_free(page);
1493}
1494
57c1ffce 1495#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1496/*
1497 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1498 */
49076ec2
KS
1499static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1500{
1501 return &mm->page_table_lock;
1502}
b35f1819 1503static inline void ptlock_cache_init(void) {}
49076ec2
KS
1504static inline bool ptlock_init(struct page *page) { return true; }
1505static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1506#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1507
b35f1819
KS
1508static inline void pgtable_init(void)
1509{
1510 ptlock_cache_init();
1511 pgtable_cache_init();
1512}
1513
390f44e2 1514static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1515{
2f569afd 1516 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1517 return ptlock_init(page);
2f569afd
MS
1518}
1519
1520static inline void pgtable_page_dtor(struct page *page)
1521{
1522 pte_lock_deinit(page);
1523 dec_zone_page_state(page, NR_PAGETABLE);
1524}
1525
c74df32c
HD
1526#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1527({ \
4c21e2f2 1528 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1529 pte_t *__pte = pte_offset_map(pmd, address); \
1530 *(ptlp) = __ptl; \
1531 spin_lock(__ptl); \
1532 __pte; \
1533})
1534
1535#define pte_unmap_unlock(pte, ptl) do { \
1536 spin_unlock(ptl); \
1537 pte_unmap(pte); \
1538} while (0)
1539
8ac1f832
AA
1540#define pte_alloc_map(mm, vma, pmd, address) \
1541 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1542 pmd, address))? \
1543 NULL: pte_offset_map(pmd, address))
1bb3630e 1544
c74df32c 1545#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1546 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1547 pmd, address))? \
c74df32c
HD
1548 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1549
1bb3630e 1550#define pte_alloc_kernel(pmd, address) \
8ac1f832 1551 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1552 NULL: pte_offset_kernel(pmd, address))
1da177e4 1553
e009bb30
KS
1554#if USE_SPLIT_PMD_PTLOCKS
1555
634391ac
MS
1556static struct page *pmd_to_page(pmd_t *pmd)
1557{
1558 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1559 return virt_to_page((void *)((unsigned long) pmd & mask));
1560}
1561
e009bb30
KS
1562static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1563{
634391ac 1564 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1565}
1566
1567static inline bool pgtable_pmd_page_ctor(struct page *page)
1568{
e009bb30
KS
1569#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1570 page->pmd_huge_pte = NULL;
1571#endif
49076ec2 1572 return ptlock_init(page);
e009bb30
KS
1573}
1574
1575static inline void pgtable_pmd_page_dtor(struct page *page)
1576{
1577#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1578 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1579#endif
49076ec2 1580 ptlock_free(page);
e009bb30
KS
1581}
1582
634391ac 1583#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1584
1585#else
1586
9a86cb7b
KS
1587static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1588{
1589 return &mm->page_table_lock;
1590}
1591
e009bb30
KS
1592static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1593static inline void pgtable_pmd_page_dtor(struct page *page) {}
1594
c389a250 1595#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1596
e009bb30
KS
1597#endif
1598
9a86cb7b
KS
1599static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1600{
1601 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1602 spin_lock(ptl);
1603 return ptl;
1604}
1605
1da177e4 1606extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1607extern void free_area_init_node(int nid, unsigned long * zones_size,
1608 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1609extern void free_initmem(void);
1610
69afade7
JL
1611/*
1612 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1613 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1614 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1615 * Return pages freed into the buddy system.
1616 */
11199692 1617extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1618 int poison, char *s);
c3d5f5f0 1619
cfa11e08
JL
1620#ifdef CONFIG_HIGHMEM
1621/*
1622 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1623 * and totalram_pages.
1624 */
1625extern void free_highmem_page(struct page *page);
1626#endif
69afade7 1627
c3d5f5f0 1628extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1629extern void mem_init_print_info(const char *str);
69afade7
JL
1630
1631/* Free the reserved page into the buddy system, so it gets managed. */
1632static inline void __free_reserved_page(struct page *page)
1633{
1634 ClearPageReserved(page);
1635 init_page_count(page);
1636 __free_page(page);
1637}
1638
1639static inline void free_reserved_page(struct page *page)
1640{
1641 __free_reserved_page(page);
1642 adjust_managed_page_count(page, 1);
1643}
1644
1645static inline void mark_page_reserved(struct page *page)
1646{
1647 SetPageReserved(page);
1648 adjust_managed_page_count(page, -1);
1649}
1650
1651/*
1652 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1653 * The freed pages will be poisoned with pattern "poison" if it's within
1654 * range [0, UCHAR_MAX].
1655 * Return pages freed into the buddy system.
69afade7
JL
1656 */
1657static inline unsigned long free_initmem_default(int poison)
1658{
1659 extern char __init_begin[], __init_end[];
1660
11199692 1661 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1662 poison, "unused kernel");
1663}
1664
7ee3d4e8
JL
1665static inline unsigned long get_num_physpages(void)
1666{
1667 int nid;
1668 unsigned long phys_pages = 0;
1669
1670 for_each_online_node(nid)
1671 phys_pages += node_present_pages(nid);
1672
1673 return phys_pages;
1674}
1675
0ee332c1 1676#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1677/*
0ee332c1 1678 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1679 * zones, allocate the backing mem_map and account for memory holes in a more
1680 * architecture independent manner. This is a substitute for creating the
1681 * zone_sizes[] and zholes_size[] arrays and passing them to
1682 * free_area_init_node()
1683 *
1684 * An architecture is expected to register range of page frames backed by
0ee332c1 1685 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1686 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1687 * usage, an architecture is expected to do something like
1688 *
1689 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1690 * max_highmem_pfn};
1691 * for_each_valid_physical_page_range()
0ee332c1 1692 * memblock_add_node(base, size, nid)
c713216d
MG
1693 * free_area_init_nodes(max_zone_pfns);
1694 *
0ee332c1
TH
1695 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1696 * registered physical page range. Similarly
1697 * sparse_memory_present_with_active_regions() calls memory_present() for
1698 * each range when SPARSEMEM is enabled.
c713216d
MG
1699 *
1700 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1701 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1702 */
1703extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1704unsigned long node_map_pfn_alignment(void);
32996250
YL
1705unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1706 unsigned long end_pfn);
c713216d
MG
1707extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1708 unsigned long end_pfn);
1709extern void get_pfn_range_for_nid(unsigned int nid,
1710 unsigned long *start_pfn, unsigned long *end_pfn);
1711extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1712extern void free_bootmem_with_active_regions(int nid,
1713 unsigned long max_low_pfn);
1714extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1715
0ee332c1 1716#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1717
0ee332c1 1718#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1719 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1720static inline int __early_pfn_to_nid(unsigned long pfn)
1721{
1722 return 0;
1723}
1724#else
1725/* please see mm/page_alloc.c */
1726extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1727/* there is a per-arch backend function. */
1728extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1729#endif
1730
0e0b864e 1731extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1732extern void memmap_init_zone(unsigned long, int, unsigned long,
1733 unsigned long, enum memmap_context);
bc75d33f 1734extern void setup_per_zone_wmarks(void);
1b79acc9 1735extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1736extern void mem_init(void);
8feae131 1737extern void __init mmap_init(void);
b2b755b5 1738extern void show_mem(unsigned int flags);
1da177e4
LT
1739extern void si_meminfo(struct sysinfo * val);
1740extern void si_meminfo_node(struct sysinfo *val, int nid);
1741
3ee9a4f0
JP
1742extern __printf(3, 4)
1743void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1744
e7c8d5c9 1745extern void setup_per_cpu_pageset(void);
e7c8d5c9 1746
112067f0 1747extern void zone_pcp_update(struct zone *zone);
340175b7 1748extern void zone_pcp_reset(struct zone *zone);
112067f0 1749
75f7ad8e
PS
1750/* page_alloc.c */
1751extern int min_free_kbytes;
1752
8feae131 1753/* nommu.c */
33e5d769 1754extern atomic_long_t mmap_pages_allocated;
7e660872 1755extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1756
6b2dbba8 1757/* interval_tree.c */
6b2dbba8
ML
1758void vma_interval_tree_insert(struct vm_area_struct *node,
1759 struct rb_root *root);
9826a516
ML
1760void vma_interval_tree_insert_after(struct vm_area_struct *node,
1761 struct vm_area_struct *prev,
1762 struct rb_root *root);
6b2dbba8
ML
1763void vma_interval_tree_remove(struct vm_area_struct *node,
1764 struct rb_root *root);
1765struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1766 unsigned long start, unsigned long last);
1767struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1768 unsigned long start, unsigned long last);
1769
1770#define vma_interval_tree_foreach(vma, root, start, last) \
1771 for (vma = vma_interval_tree_iter_first(root, start, last); \
1772 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1773
bf181b9f
ML
1774void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1775 struct rb_root *root);
1776void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1777 struct rb_root *root);
1778struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1779 struct rb_root *root, unsigned long start, unsigned long last);
1780struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1781 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1782#ifdef CONFIG_DEBUG_VM_RB
1783void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1784#endif
bf181b9f
ML
1785
1786#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1787 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1788 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1789
1da177e4 1790/* mmap.c */
34b4e4aa 1791extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1792extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1793 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1794extern struct vm_area_struct *vma_merge(struct mm_struct *,
1795 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1796 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1797 struct mempolicy *);
1798extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1799extern int split_vma(struct mm_struct *,
1800 struct vm_area_struct *, unsigned long addr, int new_below);
1801extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1802extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1803 struct rb_node **, struct rb_node *);
a8fb5618 1804extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1805extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1806 unsigned long addr, unsigned long len, pgoff_t pgoff,
1807 bool *need_rmap_locks);
1da177e4 1808extern void exit_mmap(struct mm_struct *);
925d1c40 1809
9c599024
CG
1810static inline int check_data_rlimit(unsigned long rlim,
1811 unsigned long new,
1812 unsigned long start,
1813 unsigned long end_data,
1814 unsigned long start_data)
1815{
1816 if (rlim < RLIM_INFINITY) {
1817 if (((new - start) + (end_data - start_data)) > rlim)
1818 return -ENOSPC;
1819 }
1820
1821 return 0;
1822}
1823
7906d00c
AA
1824extern int mm_take_all_locks(struct mm_struct *mm);
1825extern void mm_drop_all_locks(struct mm_struct *mm);
1826
38646013
JS
1827extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1828extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1829
119f657c 1830extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1831extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1832 unsigned long addr, unsigned long len,
a62c34bd
AL
1833 unsigned long flags,
1834 const struct vm_special_mapping *spec);
1835/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1836extern int install_special_mapping(struct mm_struct *mm,
1837 unsigned long addr, unsigned long len,
1838 unsigned long flags, struct page **pages);
1da177e4
LT
1839
1840extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1841
0165ab44 1842extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1843 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1844extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1845 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1846 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1847extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1848
bebeb3d6
ML
1849#ifdef CONFIG_MMU
1850extern int __mm_populate(unsigned long addr, unsigned long len,
1851 int ignore_errors);
1852static inline void mm_populate(unsigned long addr, unsigned long len)
1853{
1854 /* Ignore errors */
1855 (void) __mm_populate(addr, len, 1);
1856}
1857#else
1858static inline void mm_populate(unsigned long addr, unsigned long len) {}
1859#endif
1860
e4eb1ff6
LT
1861/* These take the mm semaphore themselves */
1862extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1863extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1864extern unsigned long vm_mmap(struct file *, unsigned long,
1865 unsigned long, unsigned long,
1866 unsigned long, unsigned long);
1da177e4 1867
db4fbfb9
ML
1868struct vm_unmapped_area_info {
1869#define VM_UNMAPPED_AREA_TOPDOWN 1
1870 unsigned long flags;
1871 unsigned long length;
1872 unsigned long low_limit;
1873 unsigned long high_limit;
1874 unsigned long align_mask;
1875 unsigned long align_offset;
1876};
1877
1878extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1879extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1880
1881/*
1882 * Search for an unmapped address range.
1883 *
1884 * We are looking for a range that:
1885 * - does not intersect with any VMA;
1886 * - is contained within the [low_limit, high_limit) interval;
1887 * - is at least the desired size.
1888 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1889 */
1890static inline unsigned long
1891vm_unmapped_area(struct vm_unmapped_area_info *info)
1892{
cdd7875e 1893 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1894 return unmapped_area_topdown(info);
cdd7875e
BP
1895 else
1896 return unmapped_area(info);
db4fbfb9
ML
1897}
1898
85821aab 1899/* truncate.c */
1da177e4 1900extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1901extern void truncate_inode_pages_range(struct address_space *,
1902 loff_t lstart, loff_t lend);
91b0abe3 1903extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1904
1905/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1906extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1907extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1908extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1909
1910/* mm/page-writeback.c */
1911int write_one_page(struct page *page, int wait);
1cf6e7d8 1912void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1913
1914/* readahead.c */
1915#define VM_MAX_READAHEAD 128 /* kbytes */
1916#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1917
1da177e4 1918int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1919 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1920
1921void page_cache_sync_readahead(struct address_space *mapping,
1922 struct file_ra_state *ra,
1923 struct file *filp,
1924 pgoff_t offset,
1925 unsigned long size);
1926
1927void page_cache_async_readahead(struct address_space *mapping,
1928 struct file_ra_state *ra,
1929 struct file *filp,
1930 struct page *pg,
1931 pgoff_t offset,
1932 unsigned long size);
1933
1da177e4
LT
1934unsigned long max_sane_readahead(unsigned long nr);
1935
d05f3169 1936/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1937extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1938
1939/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1940extern int expand_downwards(struct vm_area_struct *vma,
1941 unsigned long address);
8ca3eb08 1942#if VM_GROWSUP
46dea3d0 1943extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1944#else
fee7e49d 1945 #define expand_upwards(vma, address) (0)
9ab88515 1946#endif
1da177e4
LT
1947
1948/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1949extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1950extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1951 struct vm_area_struct **pprev);
1952
1953/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1954 NULL if none. Assume start_addr < end_addr. */
1955static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1956{
1957 struct vm_area_struct * vma = find_vma(mm,start_addr);
1958
1959 if (vma && end_addr <= vma->vm_start)
1960 vma = NULL;
1961 return vma;
1962}
1963
1964static inline unsigned long vma_pages(struct vm_area_struct *vma)
1965{
1966 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1967}
1968
640708a2
PE
1969/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1970static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1971 unsigned long vm_start, unsigned long vm_end)
1972{
1973 struct vm_area_struct *vma = find_vma(mm, vm_start);
1974
1975 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1976 vma = NULL;
1977
1978 return vma;
1979}
1980
bad849b3 1981#ifdef CONFIG_MMU
804af2cf 1982pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 1983void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
1984#else
1985static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1986{
1987 return __pgprot(0);
1988}
64e45507
PF
1989static inline void vma_set_page_prot(struct vm_area_struct *vma)
1990{
1991 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1992}
bad849b3
DH
1993#endif
1994
5877231f 1995#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 1996unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1997 unsigned long start, unsigned long end);
1998#endif
1999
deceb6cd 2000struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2001int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2002 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2003int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2004int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2005 unsigned long pfn);
423bad60
NP
2006int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2007 unsigned long pfn);
b4cbb197
LT
2008int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2009
deceb6cd 2010
240aadee
ML
2011struct page *follow_page_mask(struct vm_area_struct *vma,
2012 unsigned long address, unsigned int foll_flags,
2013 unsigned int *page_mask);
2014
2015static inline struct page *follow_page(struct vm_area_struct *vma,
2016 unsigned long address, unsigned int foll_flags)
2017{
2018 unsigned int unused_page_mask;
2019 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2020}
2021
deceb6cd
HD
2022#define FOLL_WRITE 0x01 /* check pte is writable */
2023#define FOLL_TOUCH 0x02 /* mark page accessed */
2024#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2025#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2026#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2027#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2028 * and return without waiting upon it */
84d33df2 2029#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2030#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2031#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2032#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2033#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2034#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2035
2f569afd 2036typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2037 void *data);
2038extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2039 unsigned long size, pte_fn_t fn, void *data);
2040
1da177e4 2041#ifdef CONFIG_PROC_FS
ab50b8ed 2042void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2043#else
ab50b8ed 2044static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2045 unsigned long flags, struct file *file, long pages)
2046{
44de9d0c 2047 mm->total_vm += pages;
1da177e4
LT
2048}
2049#endif /* CONFIG_PROC_FS */
2050
12d6f21e 2051#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2052extern bool _debug_pagealloc_enabled;
2053extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2054
2055static inline bool debug_pagealloc_enabled(void)
2056{
2057 return _debug_pagealloc_enabled;
2058}
2059
2060static inline void
2061kernel_map_pages(struct page *page, int numpages, int enable)
2062{
2063 if (!debug_pagealloc_enabled())
2064 return;
2065
2066 __kernel_map_pages(page, numpages, enable);
2067}
8a235efa
RW
2068#ifdef CONFIG_HIBERNATION
2069extern bool kernel_page_present(struct page *page);
2070#endif /* CONFIG_HIBERNATION */
12d6f21e 2071#else
1da177e4 2072static inline void
9858db50 2073kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2074#ifdef CONFIG_HIBERNATION
2075static inline bool kernel_page_present(struct page *page) { return true; }
2076#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2077#endif
2078
a6c19dfe 2079#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2080extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2081extern int in_gate_area_no_mm(unsigned long addr);
2082extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2083#else
a6c19dfe
AL
2084static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2085{
2086 return NULL;
2087}
2088static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2089static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2090{
2091 return 0;
2092}
1da177e4
LT
2093#endif /* __HAVE_ARCH_GATE_AREA */
2094
146732ce
JT
2095#ifdef CONFIG_SYSCTL
2096extern int sysctl_drop_caches;
8d65af78 2097int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2098 void __user *, size_t *, loff_t *);
146732ce
JT
2099#endif
2100
cb731d6c
VD
2101void drop_slab(void);
2102void drop_slab_node(int nid);
9d0243bc 2103
7a9166e3
LY
2104#ifndef CONFIG_MMU
2105#define randomize_va_space 0
2106#else
a62eaf15 2107extern int randomize_va_space;
7a9166e3 2108#endif
a62eaf15 2109
045e72ac 2110const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2111void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2112
9bdac914
YL
2113void sparse_mem_maps_populate_node(struct page **map_map,
2114 unsigned long pnum_begin,
2115 unsigned long pnum_end,
2116 unsigned long map_count,
2117 int nodeid);
2118
98f3cfc1 2119struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2120pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2121pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2122pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2123pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2124void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2125void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2126void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2127int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2128 int node);
2129int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2130void vmemmap_populate_print_last(void);
0197518c 2131#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2132void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2133#endif
46723bfa
YI
2134void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2135 unsigned long size);
6a46079c 2136
82ba011b
AK
2137enum mf_flags {
2138 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2139 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2140 MF_MUST_KILL = 1 << 2,
cf870c70 2141 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2142};
cd42f4a3 2143extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2144extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2145extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2146extern int sysctl_memory_failure_early_kill;
2147extern int sysctl_memory_failure_recovery;
facb6011 2148extern void shake_page(struct page *p, int access);
293c07e3 2149extern atomic_long_t num_poisoned_pages;
facb6011 2150extern int soft_offline_page(struct page *page, int flags);
6a46079c 2151
47ad8475
AA
2152#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2153extern void clear_huge_page(struct page *page,
2154 unsigned long addr,
2155 unsigned int pages_per_huge_page);
2156extern void copy_user_huge_page(struct page *dst, struct page *src,
2157 unsigned long addr, struct vm_area_struct *vma,
2158 unsigned int pages_per_huge_page);
2159#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2160
e30825f1
JK
2161extern struct page_ext_operations debug_guardpage_ops;
2162extern struct page_ext_operations page_poisoning_ops;
2163
c0a32fc5
SG
2164#ifdef CONFIG_DEBUG_PAGEALLOC
2165extern unsigned int _debug_guardpage_minorder;
e30825f1 2166extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2167
2168static inline unsigned int debug_guardpage_minorder(void)
2169{
2170 return _debug_guardpage_minorder;
2171}
2172
e30825f1
JK
2173static inline bool debug_guardpage_enabled(void)
2174{
2175 return _debug_guardpage_enabled;
2176}
2177
c0a32fc5
SG
2178static inline bool page_is_guard(struct page *page)
2179{
e30825f1
JK
2180 struct page_ext *page_ext;
2181
2182 if (!debug_guardpage_enabled())
2183 return false;
2184
2185 page_ext = lookup_page_ext(page);
2186 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2187}
2188#else
2189static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2190static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2191static inline bool page_is_guard(struct page *page) { return false; }
2192#endif /* CONFIG_DEBUG_PAGEALLOC */
2193
f9872caf
CS
2194#if MAX_NUMNODES > 1
2195void __init setup_nr_node_ids(void);
2196#else
2197static inline void setup_nr_node_ids(void) {}
2198#endif
2199
1da177e4
LT
2200#endif /* __KERNEL__ */
2201#endif /* _LINUX_MM_H */