]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/mm.h
mm: thp: tail page refcounting fix
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
b0d40c92 18#include <linux/shrinker.h>
1da177e4
LT
19
20struct mempolicy;
21struct anon_vma;
4e950f6f 22struct file_ra_state;
e8edc6e0 23struct user_struct;
4e950f6f 24struct writeback_control;
1da177e4
LT
25
26#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
27extern unsigned long max_mapnr;
28#endif
29
30extern unsigned long num_physpages;
4481374c 31extern unsigned long totalram_pages;
1da177e4 32extern void * high_memory;
1da177e4
LT
33extern int page_cluster;
34
35#ifdef CONFIG_SYSCTL
36extern int sysctl_legacy_va_layout;
37#else
38#define sysctl_legacy_va_layout 0
39#endif
40
41#include <asm/page.h>
42#include <asm/pgtable.h>
43#include <asm/processor.h>
1da177e4 44
1da177e4
LT
45#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
46
27ac792c
AR
47/* to align the pointer to the (next) page boundary */
48#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
49
1da177e4
LT
50/*
51 * Linux kernel virtual memory manager primitives.
52 * The idea being to have a "virtual" mm in the same way
53 * we have a virtual fs - giving a cleaner interface to the
54 * mm details, and allowing different kinds of memory mappings
55 * (from shared memory to executable loading to arbitrary
56 * mmap() functions).
57 */
58
c43692e8
CL
59extern struct kmem_cache *vm_area_cachep;
60
1da177e4 61#ifndef CONFIG_MMU
8feae131
DH
62extern struct rb_root nommu_region_tree;
63extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
64
65extern unsigned int kobjsize(const void *objp);
66#endif
67
68/*
605d9288 69 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
70 */
71#define VM_READ 0x00000001 /* currently active flags */
72#define VM_WRITE 0x00000002
73#define VM_EXEC 0x00000004
74#define VM_SHARED 0x00000008
75
7e2cff42 76/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
77#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
78#define VM_MAYWRITE 0x00000020
79#define VM_MAYEXEC 0x00000040
80#define VM_MAYSHARE 0x00000080
81
82#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 83#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 84#define VM_GROWSUP 0x00000200
8ca3eb08
TL
85#else
86#define VM_GROWSUP 0x00000000
a664b2d8 87#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
8ca3eb08 88#endif
6aab341e 89#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
90#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
91
92#define VM_EXECUTABLE 0x00001000
93#define VM_LOCKED 0x00002000
94#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 102#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 103#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 104#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
105#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
106#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 107#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 108#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
109#else
110#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
111#endif
895791da 112#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 113#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 114
d0217ac0 115#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 116#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 117#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 118#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 119#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 120
a8bef8ff
MG
121/* Bits set in the VMA until the stack is in its final location */
122#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
123
1da177e4
LT
124#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
125#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
126#endif
127
128#ifdef CONFIG_STACK_GROWSUP
129#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
130#else
131#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
132#endif
133
134#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
135#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
136#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
137#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
138#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
139
b291f000 140/*
78f11a25
AA
141 * Special vmas that are non-mergable, non-mlock()able.
142 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000
NP
143 */
144#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
145
1da177e4
LT
146/*
147 * mapping from the currently active vm_flags protection bits (the
148 * low four bits) to a page protection mask..
149 */
150extern pgprot_t protection_map[16];
151
d0217ac0
NP
152#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
153#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 154#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 155#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 156#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 157#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
d0217ac0 158
6bd9cd50 159/*
160 * This interface is used by x86 PAT code to identify a pfn mapping that is
161 * linear over entire vma. This is to optimize PAT code that deals with
162 * marking the physical region with a particular prot. This is not for generic
163 * mm use. Note also that this check will not work if the pfn mapping is
164 * linear for a vma starting at physical address 0. In which case PAT code
165 * falls back to slow path of reserving physical range page by page.
166 */
3c8bb73a 167static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
168{
ca16d140 169 return !!(vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 170}
171
172static inline int is_pfn_mapping(struct vm_area_struct *vma)
173{
ca16d140 174 return !!(vma->vm_flags & VM_PFNMAP);
3c8bb73a 175}
d0217ac0 176
54cb8821 177/*
d0217ac0 178 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
179 * ->fault function. The vma's ->fault is responsible for returning a bitmask
180 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 181 *
d0217ac0
NP
182 * pgoff should be used in favour of virtual_address, if possible. If pgoff
183 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
184 * mapping support.
54cb8821 185 */
d0217ac0
NP
186struct vm_fault {
187 unsigned int flags; /* FAULT_FLAG_xxx flags */
188 pgoff_t pgoff; /* Logical page offset based on vma */
189 void __user *virtual_address; /* Faulting virtual address */
190
191 struct page *page; /* ->fault handlers should return a
83c54070 192 * page here, unless VM_FAULT_NOPAGE
d0217ac0 193 * is set (which is also implied by
83c54070 194 * VM_FAULT_ERROR).
d0217ac0 195 */
54cb8821 196};
1da177e4
LT
197
198/*
199 * These are the virtual MM functions - opening of an area, closing and
200 * unmapping it (needed to keep files on disk up-to-date etc), pointer
201 * to the functions called when a no-page or a wp-page exception occurs.
202 */
203struct vm_operations_struct {
204 void (*open)(struct vm_area_struct * area);
205 void (*close)(struct vm_area_struct * area);
d0217ac0 206 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
207
208 /* notification that a previously read-only page is about to become
209 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 210 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
211
212 /* called by access_process_vm when get_user_pages() fails, typically
213 * for use by special VMAs that can switch between memory and hardware
214 */
215 int (*access)(struct vm_area_struct *vma, unsigned long addr,
216 void *buf, int len, int write);
1da177e4 217#ifdef CONFIG_NUMA
a6020ed7
LS
218 /*
219 * set_policy() op must add a reference to any non-NULL @new mempolicy
220 * to hold the policy upon return. Caller should pass NULL @new to
221 * remove a policy and fall back to surrounding context--i.e. do not
222 * install a MPOL_DEFAULT policy, nor the task or system default
223 * mempolicy.
224 */
1da177e4 225 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
226
227 /*
228 * get_policy() op must add reference [mpol_get()] to any policy at
229 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
230 * in mm/mempolicy.c will do this automatically.
231 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
232 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
233 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
234 * must return NULL--i.e., do not "fallback" to task or system default
235 * policy.
236 */
1da177e4
LT
237 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
238 unsigned long addr);
7b2259b3
CL
239 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
240 const nodemask_t *to, unsigned long flags);
1da177e4
LT
241#endif
242};
243
244struct mmu_gather;
245struct inode;
246
349aef0b
AM
247#define page_private(page) ((page)->private)
248#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 249
1da177e4
LT
250/*
251 * FIXME: take this include out, include page-flags.h in
252 * files which need it (119 of them)
253 */
254#include <linux/page-flags.h>
71e3aac0 255#include <linux/huge_mm.h>
1da177e4
LT
256
257/*
258 * Methods to modify the page usage count.
259 *
260 * What counts for a page usage:
261 * - cache mapping (page->mapping)
262 * - private data (page->private)
263 * - page mapped in a task's page tables, each mapping
264 * is counted separately
265 *
266 * Also, many kernel routines increase the page count before a critical
267 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
268 */
269
270/*
da6052f7 271 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 272 */
7c8ee9a8
NP
273static inline int put_page_testzero(struct page *page)
274{
725d704e 275 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 276 return atomic_dec_and_test(&page->_count);
7c8ee9a8 277}
1da177e4
LT
278
279/*
7c8ee9a8
NP
280 * Try to grab a ref unless the page has a refcount of zero, return false if
281 * that is the case.
1da177e4 282 */
7c8ee9a8
NP
283static inline int get_page_unless_zero(struct page *page)
284{
8dc04efb 285 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 286}
1da177e4 287
53df8fdc
WF
288extern int page_is_ram(unsigned long pfn);
289
48667e7a 290/* Support for virtually mapped pages */
b3bdda02
CL
291struct page *vmalloc_to_page(const void *addr);
292unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 293
0738c4bb
PM
294/*
295 * Determine if an address is within the vmalloc range
296 *
297 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
298 * is no special casing required.
299 */
9e2779fa
CL
300static inline int is_vmalloc_addr(const void *x)
301{
0738c4bb 302#ifdef CONFIG_MMU
9e2779fa
CL
303 unsigned long addr = (unsigned long)x;
304
305 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
306#else
307 return 0;
8ca3ed87 308#endif
0738c4bb 309}
81ac3ad9
KH
310#ifdef CONFIG_MMU
311extern int is_vmalloc_or_module_addr(const void *x);
312#else
934831d0 313static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
314{
315 return 0;
316}
317#endif
9e2779fa 318
e9da73d6
AA
319static inline void compound_lock(struct page *page)
320{
321#ifdef CONFIG_TRANSPARENT_HUGEPAGE
322 bit_spin_lock(PG_compound_lock, &page->flags);
323#endif
324}
325
326static inline void compound_unlock(struct page *page)
327{
328#ifdef CONFIG_TRANSPARENT_HUGEPAGE
329 bit_spin_unlock(PG_compound_lock, &page->flags);
330#endif
331}
332
333static inline unsigned long compound_lock_irqsave(struct page *page)
334{
335 unsigned long uninitialized_var(flags);
336#ifdef CONFIG_TRANSPARENT_HUGEPAGE
337 local_irq_save(flags);
338 compound_lock(page);
339#endif
340 return flags;
341}
342
343static inline void compound_unlock_irqrestore(struct page *page,
344 unsigned long flags)
345{
346#ifdef CONFIG_TRANSPARENT_HUGEPAGE
347 compound_unlock(page);
348 local_irq_restore(flags);
349#endif
350}
351
d85f3385
CL
352static inline struct page *compound_head(struct page *page)
353{
6d777953 354 if (unlikely(PageTail(page)))
d85f3385
CL
355 return page->first_page;
356 return page;
357}
358
70b50f94
AA
359/*
360 * The atomic page->_mapcount, starts from -1: so that transitions
361 * both from it and to it can be tracked, using atomic_inc_and_test
362 * and atomic_add_negative(-1).
363 */
364static inline void reset_page_mapcount(struct page *page)
365{
366 atomic_set(&(page)->_mapcount, -1);
367}
368
369static inline int page_mapcount(struct page *page)
370{
371 return atomic_read(&(page)->_mapcount) + 1;
372}
373
4c21e2f2 374static inline int page_count(struct page *page)
1da177e4 375{
d85f3385 376 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
377}
378
70b50f94
AA
379extern bool __get_page_tail(struct page *page);
380
1da177e4
LT
381static inline void get_page(struct page *page)
382{
70b50f94
AA
383 if (unlikely(PageTail(page)))
384 if (likely(__get_page_tail(page)))
385 return;
91807063
AA
386 /*
387 * Getting a normal page or the head of a compound page
70b50f94 388 * requires to already have an elevated page->_count.
91807063 389 */
70b50f94 390 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
391 atomic_inc(&page->_count);
392}
393
b49af68f
CL
394static inline struct page *virt_to_head_page(const void *x)
395{
396 struct page *page = virt_to_page(x);
397 return compound_head(page);
398}
399
7835e98b
NP
400/*
401 * Setup the page count before being freed into the page allocator for
402 * the first time (boot or memory hotplug)
403 */
404static inline void init_page_count(struct page *page)
405{
406 atomic_set(&page->_count, 1);
407}
408
5f24ce5f
AA
409/*
410 * PageBuddy() indicate that the page is free and in the buddy system
411 * (see mm/page_alloc.c).
ef2b4b95
AA
412 *
413 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
414 * -2 so that an underflow of the page_mapcount() won't be mistaken
415 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
416 * efficiently by most CPU architectures.
5f24ce5f 417 */
ef2b4b95
AA
418#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
419
5f24ce5f
AA
420static inline int PageBuddy(struct page *page)
421{
ef2b4b95 422 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
423}
424
425static inline void __SetPageBuddy(struct page *page)
426{
427 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 428 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
429}
430
431static inline void __ClearPageBuddy(struct page *page)
432{
433 VM_BUG_ON(!PageBuddy(page));
434 atomic_set(&page->_mapcount, -1);
435}
436
1da177e4 437void put_page(struct page *page);
1d7ea732 438void put_pages_list(struct list_head *pages);
1da177e4 439
8dfcc9ba 440void split_page(struct page *page, unsigned int order);
748446bb 441int split_free_page(struct page *page);
8dfcc9ba 442
33f2ef89
AW
443/*
444 * Compound pages have a destructor function. Provide a
445 * prototype for that function and accessor functions.
446 * These are _only_ valid on the head of a PG_compound page.
447 */
448typedef void compound_page_dtor(struct page *);
449
450static inline void set_compound_page_dtor(struct page *page,
451 compound_page_dtor *dtor)
452{
453 page[1].lru.next = (void *)dtor;
454}
455
456static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
457{
458 return (compound_page_dtor *)page[1].lru.next;
459}
460
d85f3385
CL
461static inline int compound_order(struct page *page)
462{
6d777953 463 if (!PageHead(page))
d85f3385
CL
464 return 0;
465 return (unsigned long)page[1].lru.prev;
466}
467
37c2ac78
AA
468static inline int compound_trans_order(struct page *page)
469{
470 int order;
471 unsigned long flags;
472
473 if (!PageHead(page))
474 return 0;
475
476 flags = compound_lock_irqsave(page);
477 order = compound_order(page);
478 compound_unlock_irqrestore(page, flags);
479 return order;
480}
481
d85f3385
CL
482static inline void set_compound_order(struct page *page, unsigned long order)
483{
484 page[1].lru.prev = (void *)order;
485}
486
3dece370 487#ifdef CONFIG_MMU
14fd403f
AA
488/*
489 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
490 * servicing faults for write access. In the normal case, do always want
491 * pte_mkwrite. But get_user_pages can cause write faults for mappings
492 * that do not have writing enabled, when used by access_process_vm.
493 */
494static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
495{
496 if (likely(vma->vm_flags & VM_WRITE))
497 pte = pte_mkwrite(pte);
498 return pte;
499}
3dece370 500#endif
14fd403f 501
1da177e4
LT
502/*
503 * Multiple processes may "see" the same page. E.g. for untouched
504 * mappings of /dev/null, all processes see the same page full of
505 * zeroes, and text pages of executables and shared libraries have
506 * only one copy in memory, at most, normally.
507 *
508 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
509 * page_count() == 0 means the page is free. page->lru is then used for
510 * freelist management in the buddy allocator.
da6052f7 511 * page_count() > 0 means the page has been allocated.
1da177e4 512 *
da6052f7
NP
513 * Pages are allocated by the slab allocator in order to provide memory
514 * to kmalloc and kmem_cache_alloc. In this case, the management of the
515 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
516 * unless a particular usage is carefully commented. (the responsibility of
517 * freeing the kmalloc memory is the caller's, of course).
1da177e4 518 *
da6052f7
NP
519 * A page may be used by anyone else who does a __get_free_page().
520 * In this case, page_count still tracks the references, and should only
521 * be used through the normal accessor functions. The top bits of page->flags
522 * and page->virtual store page management information, but all other fields
523 * are unused and could be used privately, carefully. The management of this
524 * page is the responsibility of the one who allocated it, and those who have
525 * subsequently been given references to it.
526 *
527 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
528 * managed by the Linux memory manager: I/O, buffers, swapping etc.
529 * The following discussion applies only to them.
530 *
da6052f7
NP
531 * A pagecache page contains an opaque `private' member, which belongs to the
532 * page's address_space. Usually, this is the address of a circular list of
533 * the page's disk buffers. PG_private must be set to tell the VM to call
534 * into the filesystem to release these pages.
1da177e4 535 *
da6052f7
NP
536 * A page may belong to an inode's memory mapping. In this case, page->mapping
537 * is the pointer to the inode, and page->index is the file offset of the page,
538 * in units of PAGE_CACHE_SIZE.
1da177e4 539 *
da6052f7
NP
540 * If pagecache pages are not associated with an inode, they are said to be
541 * anonymous pages. These may become associated with the swapcache, and in that
542 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 543 *
da6052f7
NP
544 * In either case (swapcache or inode backed), the pagecache itself holds one
545 * reference to the page. Setting PG_private should also increment the
546 * refcount. The each user mapping also has a reference to the page.
1da177e4 547 *
da6052f7
NP
548 * The pagecache pages are stored in a per-mapping radix tree, which is
549 * rooted at mapping->page_tree, and indexed by offset.
550 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
551 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 552 *
da6052f7 553 * All pagecache pages may be subject to I/O:
1da177e4
LT
554 * - inode pages may need to be read from disk,
555 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
556 * to be written back to the inode on disk,
557 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
558 * modified may need to be swapped out to swap space and (later) to be read
559 * back into memory.
1da177e4
LT
560 */
561
562/*
563 * The zone field is never updated after free_area_init_core()
564 * sets it, so none of the operations on it need to be atomic.
1da177e4 565 */
348f8b6c 566
d41dee36
AW
567
568/*
569 * page->flags layout:
570 *
571 * There are three possibilities for how page->flags get
572 * laid out. The first is for the normal case, without
573 * sparsemem. The second is for sparsemem when there is
574 * plenty of space for node and section. The last is when
575 * we have run out of space and have to fall back to an
576 * alternate (slower) way of determining the node.
577 *
308c05e3
CL
578 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
579 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
580 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 581 */
308c05e3 582#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
583#define SECTIONS_WIDTH SECTIONS_SHIFT
584#else
585#define SECTIONS_WIDTH 0
586#endif
587
588#define ZONES_WIDTH ZONES_SHIFT
589
9223b419 590#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
591#define NODES_WIDTH NODES_SHIFT
592#else
308c05e3
CL
593#ifdef CONFIG_SPARSEMEM_VMEMMAP
594#error "Vmemmap: No space for nodes field in page flags"
595#endif
d41dee36
AW
596#define NODES_WIDTH 0
597#endif
598
599/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 600#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
601#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
602#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
603
604/*
605 * We are going to use the flags for the page to node mapping if its in
606 * there. This includes the case where there is no node, so it is implicit.
607 */
89689ae7
CL
608#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
609#define NODE_NOT_IN_PAGE_FLAGS
610#endif
d41dee36 611
348f8b6c 612/*
25985edc 613 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
614 * sections we define the shift as 0; that plus a 0 mask ensures
615 * the compiler will optimise away reference to them.
616 */
d41dee36
AW
617#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
618#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
619#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 620
bce54bbf
WD
621/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
622#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 623#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
624#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
625 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 626#else
89689ae7 627#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
628#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
629 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
630#endif
631
bd8029b6 632#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 633
9223b419
CL
634#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
635#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
636#endif
637
d41dee36
AW
638#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
639#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
640#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 641#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 642
33dd4e0e 643static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 644{
348f8b6c 645 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 646}
1da177e4 647
89689ae7
CL
648/*
649 * The identification function is only used by the buddy allocator for
650 * determining if two pages could be buddies. We are not really
651 * identifying a zone since we could be using a the section number
652 * id if we have not node id available in page flags.
653 * We guarantee only that it will return the same value for two
654 * combinable pages in a zone.
655 */
cb2b95e1
AW
656static inline int page_zone_id(struct page *page)
657{
89689ae7 658 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
659}
660
25ba77c1 661static inline int zone_to_nid(struct zone *zone)
89fa3024 662{
d5f541ed
CL
663#ifdef CONFIG_NUMA
664 return zone->node;
665#else
666 return 0;
667#endif
89fa3024
CL
668}
669
89689ae7 670#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 671extern int page_to_nid(const struct page *page);
89689ae7 672#else
33dd4e0e 673static inline int page_to_nid(const struct page *page)
d41dee36 674{
89689ae7 675 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 676}
89689ae7
CL
677#endif
678
33dd4e0e 679static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
680{
681 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
682}
683
308c05e3 684#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
685static inline void set_page_section(struct page *page, unsigned long section)
686{
687 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
688 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
689}
690
aa462abe 691static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
692{
693 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
694}
308c05e3 695#endif
d41dee36 696
2f1b6248 697static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
698{
699 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
700 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
701}
2f1b6248 702
348f8b6c
DH
703static inline void set_page_node(struct page *page, unsigned long node)
704{
705 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
706 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 707}
89689ae7 708
2f1b6248 709static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 710 unsigned long node, unsigned long pfn)
1da177e4 711{
348f8b6c
DH
712 set_page_zone(page, zone);
713 set_page_node(page, node);
bf4e8902 714#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 715 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 716#endif
1da177e4
LT
717}
718
f6ac2354
CL
719/*
720 * Some inline functions in vmstat.h depend on page_zone()
721 */
722#include <linux/vmstat.h>
723
33dd4e0e 724static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 725{
aa462abe 726 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
727}
728
729#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
730#define HASHED_PAGE_VIRTUAL
731#endif
732
733#if defined(WANT_PAGE_VIRTUAL)
734#define page_address(page) ((page)->virtual)
735#define set_page_address(page, address) \
736 do { \
737 (page)->virtual = (address); \
738 } while(0)
739#define page_address_init() do { } while(0)
740#endif
741
742#if defined(HASHED_PAGE_VIRTUAL)
f9918794 743void *page_address(const struct page *page);
1da177e4
LT
744void set_page_address(struct page *page, void *virtual);
745void page_address_init(void);
746#endif
747
748#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
749#define page_address(page) lowmem_page_address(page)
750#define set_page_address(page, address) do { } while(0)
751#define page_address_init() do { } while(0)
752#endif
753
754/*
755 * On an anonymous page mapped into a user virtual memory area,
756 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
757 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
758 *
759 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
760 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
761 * and then page->mapping points, not to an anon_vma, but to a private
762 * structure which KSM associates with that merged page. See ksm.h.
763 *
764 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
765 *
766 * Please note that, confusingly, "page_mapping" refers to the inode
767 * address_space which maps the page from disk; whereas "page_mapped"
768 * refers to user virtual address space into which the page is mapped.
769 */
770#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
771#define PAGE_MAPPING_KSM 2
772#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
773
774extern struct address_space swapper_space;
775static inline struct address_space *page_mapping(struct page *page)
776{
777 struct address_space *mapping = page->mapping;
778
b5fab14e 779 VM_BUG_ON(PageSlab(page));
1da177e4
LT
780 if (unlikely(PageSwapCache(page)))
781 mapping = &swapper_space;
e20e8779 782 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
783 mapping = NULL;
784 return mapping;
785}
786
3ca7b3c5
HD
787/* Neutral page->mapping pointer to address_space or anon_vma or other */
788static inline void *page_rmapping(struct page *page)
789{
790 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
791}
792
1da177e4
LT
793static inline int PageAnon(struct page *page)
794{
795 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
796}
797
798/*
799 * Return the pagecache index of the passed page. Regular pagecache pages
800 * use ->index whereas swapcache pages use ->private
801 */
802static inline pgoff_t page_index(struct page *page)
803{
804 if (unlikely(PageSwapCache(page)))
4c21e2f2 805 return page_private(page);
1da177e4
LT
806 return page->index;
807}
808
1da177e4
LT
809/*
810 * Return true if this page is mapped into pagetables.
811 */
812static inline int page_mapped(struct page *page)
813{
814 return atomic_read(&(page)->_mapcount) >= 0;
815}
816
1da177e4
LT
817/*
818 * Different kinds of faults, as returned by handle_mm_fault().
819 * Used to decide whether a process gets delivered SIGBUS or
820 * just gets major/minor fault counters bumped up.
821 */
d0217ac0 822
83c54070 823#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 824
83c54070
NP
825#define VM_FAULT_OOM 0x0001
826#define VM_FAULT_SIGBUS 0x0002
827#define VM_FAULT_MAJOR 0x0004
828#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
829#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
830#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 831
83c54070
NP
832#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
833#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 834#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 835
aa50d3a7
AK
836#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
837
838#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
839 VM_FAULT_HWPOISON_LARGE)
840
841/* Encode hstate index for a hwpoisoned large page */
842#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
843#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 844
1c0fe6e3
NP
845/*
846 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
847 */
848extern void pagefault_out_of_memory(void);
849
1da177e4
LT
850#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
851
ddd588b5 852/*
7bf02ea2 853 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
854 * various contexts.
855 */
856#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
857
7bf02ea2
DR
858extern void show_free_areas(unsigned int flags);
859extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 860
3f96b79a 861int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 862struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
863int shmem_zero_setup(struct vm_area_struct *);
864
e8edc6e0 865extern int can_do_mlock(void);
1da177e4
LT
866extern int user_shm_lock(size_t, struct user_struct *);
867extern void user_shm_unlock(size_t, struct user_struct *);
868
869/*
870 * Parameter block passed down to zap_pte_range in exceptional cases.
871 */
872struct zap_details {
873 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
874 struct address_space *check_mapping; /* Check page->mapping if set */
875 pgoff_t first_index; /* Lowest page->index to unmap */
876 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
877};
878
7e675137
NP
879struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
880 pte_t pte);
881
c627f9cc
JS
882int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
883 unsigned long size);
ee39b37b 884unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 885 unsigned long size, struct zap_details *);
d16dfc55 886unsigned long unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
887 struct vm_area_struct *start_vma, unsigned long start_addr,
888 unsigned long end_addr, unsigned long *nr_accounted,
889 struct zap_details *);
e6473092
MM
890
891/**
892 * mm_walk - callbacks for walk_page_range
893 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
894 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
895 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
896 * this handler is required to be able to handle
897 * pmd_trans_huge() pmds. They may simply choose to
898 * split_huge_page() instead of handling it explicitly.
e6473092
MM
899 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
900 * @pte_hole: if set, called for each hole at all levels
5dc37642 901 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
902 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
903 * is used.
e6473092
MM
904 *
905 * (see walk_page_range for more details)
906 */
907struct mm_walk {
2165009b
DH
908 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
909 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
910 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
911 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
912 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
913 int (*hugetlb_entry)(pte_t *, unsigned long,
914 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
915 struct mm_struct *mm;
916 void *private;
e6473092
MM
917};
918
2165009b
DH
919int walk_page_range(unsigned long addr, unsigned long end,
920 struct mm_walk *walk);
42b77728 921void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 922 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
923int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
924 struct vm_area_struct *vma);
1da177e4
LT
925void unmap_mapping_range(struct address_space *mapping,
926 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
927int follow_pfn(struct vm_area_struct *vma, unsigned long address,
928 unsigned long *pfn);
d87fe660 929int follow_phys(struct vm_area_struct *vma, unsigned long address,
930 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
931int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
932 void *buf, int len, int write);
1da177e4
LT
933
934static inline void unmap_shared_mapping_range(struct address_space *mapping,
935 loff_t const holebegin, loff_t const holelen)
936{
937 unmap_mapping_range(mapping, holebegin, holelen, 0);
938}
939
25d9e2d1 940extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 941extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 942extern int vmtruncate(struct inode *inode, loff_t offset);
943extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 944
750b4987 945int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 946int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 947
83f78668
WF
948int invalidate_inode_page(struct page *page);
949
7ee1dd3f 950#ifdef CONFIG_MMU
83c54070 951extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 952 unsigned long address, unsigned int flags);
5c723ba5
PZ
953extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
954 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
955#else
956static inline int handle_mm_fault(struct mm_struct *mm,
957 struct vm_area_struct *vma, unsigned long address,
d06063cc 958 unsigned int flags)
7ee1dd3f
DH
959{
960 /* should never happen if there's no MMU */
961 BUG();
962 return VM_FAULT_SIGBUS;
963}
5c723ba5
PZ
964static inline int fixup_user_fault(struct task_struct *tsk,
965 struct mm_struct *mm, unsigned long address,
966 unsigned int fault_flags)
967{
968 /* should never happen if there's no MMU */
969 BUG();
970 return -EFAULT;
971}
7ee1dd3f 972#endif
f33ea7f4 973
1da177e4
LT
974extern int make_pages_present(unsigned long addr, unsigned long end);
975extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
976extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
977 void *buf, int len, int write);
1da177e4 978
0014bd99
HY
979int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
980 unsigned long start, int len, unsigned int foll_flags,
981 struct page **pages, struct vm_area_struct **vmas,
982 int *nonblocking);
d2bf6be8 983int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 984 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
985 struct page **pages, struct vm_area_struct **vmas);
986int get_user_pages_fast(unsigned long start, int nr_pages, int write,
987 struct page **pages);
f3e8fccd 988struct page *get_dump_page(unsigned long addr);
1da177e4 989
cf9a2ae8
DH
990extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
991extern void do_invalidatepage(struct page *page, unsigned long offset);
992
1da177e4 993int __set_page_dirty_nobuffers(struct page *page);
76719325 994int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
995int redirty_page_for_writepage(struct writeback_control *wbc,
996 struct page *page);
e3a7cca1 997void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 998void account_page_writeback(struct page *page);
b3c97528 999int set_page_dirty(struct page *page);
1da177e4
LT
1000int set_page_dirty_lock(struct page *page);
1001int clear_page_dirty_for_io(struct page *page);
1002
39aa3cb3 1003/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1004static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1005{
1006 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1007}
1008
a09a79f6
MP
1009static inline int stack_guard_page_start(struct vm_area_struct *vma,
1010 unsigned long addr)
1011{
1012 return (vma->vm_flags & VM_GROWSDOWN) &&
1013 (vma->vm_start == addr) &&
1014 !vma_growsdown(vma->vm_prev, addr);
1015}
1016
1017/* Is the vma a continuation of the stack vma below it? */
1018static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1019{
1020 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1021}
1022
1023static inline int stack_guard_page_end(struct vm_area_struct *vma,
1024 unsigned long addr)
1025{
1026 return (vma->vm_flags & VM_GROWSUP) &&
1027 (vma->vm_end == addr) &&
1028 !vma_growsup(vma->vm_next, addr);
1029}
1030
b6a2fea3
OW
1031extern unsigned long move_page_tables(struct vm_area_struct *vma,
1032 unsigned long old_addr, struct vm_area_struct *new_vma,
1033 unsigned long new_addr, unsigned long len);
1da177e4
LT
1034extern unsigned long do_mremap(unsigned long addr,
1035 unsigned long old_len, unsigned long new_len,
1036 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1037extern int mprotect_fixup(struct vm_area_struct *vma,
1038 struct vm_area_struct **pprev, unsigned long start,
1039 unsigned long end, unsigned long newflags);
1da177e4 1040
465a454f
PZ
1041/*
1042 * doesn't attempt to fault and will return short.
1043 */
1044int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1045 struct page **pages);
d559db08
KH
1046/*
1047 * per-process(per-mm_struct) statistics.
1048 */
d559db08
KH
1049static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1050{
1051 atomic_long_set(&mm->rss_stat.count[member], value);
1052}
1053
172703b0 1054#if defined(SPLIT_RSS_COUNTING)
34e55232 1055unsigned long get_mm_counter(struct mm_struct *mm, int member);
172703b0 1056#else
d559db08
KH
1057static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1058{
172703b0 1059 return atomic_long_read(&mm->rss_stat.count[member]);
d559db08 1060}
172703b0 1061#endif
d559db08
KH
1062
1063static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1064{
172703b0 1065 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1066}
1067
1068static inline void inc_mm_counter(struct mm_struct *mm, int member)
1069{
172703b0 1070 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1071}
1072
1073static inline void dec_mm_counter(struct mm_struct *mm, int member)
1074{
172703b0 1075 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1076}
1077
d559db08
KH
1078static inline unsigned long get_mm_rss(struct mm_struct *mm)
1079{
1080 return get_mm_counter(mm, MM_FILEPAGES) +
1081 get_mm_counter(mm, MM_ANONPAGES);
1082}
1083
1084static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1085{
1086 return max(mm->hiwater_rss, get_mm_rss(mm));
1087}
1088
1089static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1090{
1091 return max(mm->hiwater_vm, mm->total_vm);
1092}
1093
1094static inline void update_hiwater_rss(struct mm_struct *mm)
1095{
1096 unsigned long _rss = get_mm_rss(mm);
1097
1098 if ((mm)->hiwater_rss < _rss)
1099 (mm)->hiwater_rss = _rss;
1100}
1101
1102static inline void update_hiwater_vm(struct mm_struct *mm)
1103{
1104 if (mm->hiwater_vm < mm->total_vm)
1105 mm->hiwater_vm = mm->total_vm;
1106}
1107
1108static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1109 struct mm_struct *mm)
1110{
1111 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1112
1113 if (*maxrss < hiwater_rss)
1114 *maxrss = hiwater_rss;
1115}
1116
53bddb4e 1117#if defined(SPLIT_RSS_COUNTING)
34e55232 1118void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1119#else
1120static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1121{
1122}
1123#endif
465a454f 1124
4e950f6f 1125int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1126
25ca1d6c
NK
1127extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1128 spinlock_t **ptl);
1129static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1130 spinlock_t **ptl)
1131{
1132 pte_t *ptep;
1133 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1134 return ptep;
1135}
c9cfcddf 1136
5f22df00
NP
1137#ifdef __PAGETABLE_PUD_FOLDED
1138static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1139 unsigned long address)
1140{
1141 return 0;
1142}
1143#else
1bb3630e 1144int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1145#endif
1146
1147#ifdef __PAGETABLE_PMD_FOLDED
1148static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1149 unsigned long address)
1150{
1151 return 0;
1152}
1153#else
1bb3630e 1154int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1155#endif
1156
8ac1f832
AA
1157int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1158 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1159int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1160
1da177e4
LT
1161/*
1162 * The following ifdef needed to get the 4level-fixup.h header to work.
1163 * Remove it when 4level-fixup.h has been removed.
1164 */
1bb3630e 1165#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1166static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1167{
1bb3630e
HD
1168 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1169 NULL: pud_offset(pgd, address);
1da177e4
LT
1170}
1171
1172static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1173{
1bb3630e
HD
1174 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1175 NULL: pmd_offset(pud, address);
1da177e4 1176}
1bb3630e
HD
1177#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1178
f7d0b926 1179#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1180/*
1181 * We tuck a spinlock to guard each pagetable page into its struct page,
1182 * at page->private, with BUILD_BUG_ON to make sure that this will not
1183 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1184 * When freeing, reset page->mapping so free_pages_check won't complain.
1185 */
349aef0b 1186#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1187#define pte_lock_init(_page) do { \
1188 spin_lock_init(__pte_lockptr(_page)); \
1189} while (0)
1190#define pte_lock_deinit(page) ((page)->mapping = NULL)
1191#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1192#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1193/*
1194 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1195 */
1196#define pte_lock_init(page) do {} while (0)
1197#define pte_lock_deinit(page) do {} while (0)
1198#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1199#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1200
2f569afd
MS
1201static inline void pgtable_page_ctor(struct page *page)
1202{
1203 pte_lock_init(page);
1204 inc_zone_page_state(page, NR_PAGETABLE);
1205}
1206
1207static inline void pgtable_page_dtor(struct page *page)
1208{
1209 pte_lock_deinit(page);
1210 dec_zone_page_state(page, NR_PAGETABLE);
1211}
1212
c74df32c
HD
1213#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1214({ \
4c21e2f2 1215 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1216 pte_t *__pte = pte_offset_map(pmd, address); \
1217 *(ptlp) = __ptl; \
1218 spin_lock(__ptl); \
1219 __pte; \
1220})
1221
1222#define pte_unmap_unlock(pte, ptl) do { \
1223 spin_unlock(ptl); \
1224 pte_unmap(pte); \
1225} while (0)
1226
8ac1f832
AA
1227#define pte_alloc_map(mm, vma, pmd, address) \
1228 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1229 pmd, address))? \
1230 NULL: pte_offset_map(pmd, address))
1bb3630e 1231
c74df32c 1232#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1233 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1234 pmd, address))? \
c74df32c
HD
1235 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1236
1bb3630e 1237#define pte_alloc_kernel(pmd, address) \
8ac1f832 1238 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1239 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1240
1241extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1242extern void free_area_init_node(int nid, unsigned long * zones_size,
1243 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1244#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1245/*
1246 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1247 * zones, allocate the backing mem_map and account for memory holes in a more
1248 * architecture independent manner. This is a substitute for creating the
1249 * zone_sizes[] and zholes_size[] arrays and passing them to
1250 * free_area_init_node()
1251 *
1252 * An architecture is expected to register range of page frames backed by
1253 * physical memory with add_active_range() before calling
1254 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1255 * usage, an architecture is expected to do something like
1256 *
1257 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1258 * max_highmem_pfn};
1259 * for_each_valid_physical_page_range()
1260 * add_active_range(node_id, start_pfn, end_pfn)
1261 * free_area_init_nodes(max_zone_pfns);
1262 *
1263 * If the architecture guarantees that there are no holes in the ranges
1264 * registered with add_active_range(), free_bootmem_active_regions()
1265 * will call free_bootmem_node() for each registered physical page range.
1266 * Similarly sparse_memory_present_with_active_regions() calls
1267 * memory_present() for each range when SPARSEMEM is enabled.
1268 *
1269 * See mm/page_alloc.c for more information on each function exposed by
1270 * CONFIG_ARCH_POPULATES_NODE_MAP
1271 */
1272extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1273extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1274 unsigned long end_pfn);
cc1050ba
YL
1275extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1276 unsigned long end_pfn);
c713216d 1277extern void remove_all_active_ranges(void);
32996250 1278void sort_node_map(void);
1e01979c 1279unsigned long node_map_pfn_alignment(void);
32996250
YL
1280unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1281 unsigned long end_pfn);
c713216d
MG
1282extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1283 unsigned long end_pfn);
1284extern void get_pfn_range_for_nid(unsigned int nid,
1285 unsigned long *start_pfn, unsigned long *end_pfn);
1286extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1287extern void free_bootmem_with_active_regions(int nid,
1288 unsigned long max_low_pfn);
08677214
YL
1289int add_from_early_node_map(struct range *range, int az,
1290 int nr_range, int nid);
edbe7d23
YL
1291u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1292 u64 goal, u64 limit);
d52d53b8 1293typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1294extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1295extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1296#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1297
1298#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1299 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1300static inline int __early_pfn_to_nid(unsigned long pfn)
1301{
1302 return 0;
1303}
1304#else
1305/* please see mm/page_alloc.c */
1306extern int __meminit early_pfn_to_nid(unsigned long pfn);
1307#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1308/* there is a per-arch backend function. */
1309extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1310#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1311#endif
1312
0e0b864e 1313extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1314extern void memmap_init_zone(unsigned long, int, unsigned long,
1315 unsigned long, enum memmap_context);
bc75d33f 1316extern void setup_per_zone_wmarks(void);
1b79acc9 1317extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1318extern void mem_init(void);
8feae131 1319extern void __init mmap_init(void);
b2b755b5 1320extern void show_mem(unsigned int flags);
1da177e4
LT
1321extern void si_meminfo(struct sysinfo * val);
1322extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1323extern int after_bootmem;
1da177e4 1324
3ee9a4f0
JP
1325extern __printf(3, 4)
1326void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1327
e7c8d5c9 1328extern void setup_per_cpu_pageset(void);
e7c8d5c9 1329
112067f0
SL
1330extern void zone_pcp_update(struct zone *zone);
1331
8feae131 1332/* nommu.c */
33e5d769 1333extern atomic_long_t mmap_pages_allocated;
7e660872 1334extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1335
1da177e4
LT
1336/* prio_tree.c */
1337void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1338void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1339void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1340struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1341 struct prio_tree_iter *iter);
1342
1343#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1344 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1345 (vma = vma_prio_tree_next(vma, iter)); )
1346
1347static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1348 struct list_head *list)
1349{
1350 vma->shared.vm_set.parent = NULL;
1351 list_add_tail(&vma->shared.vm_set.list, list);
1352}
1353
1354/* mmap.c */
34b4e4aa 1355extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1356extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1357 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1358extern struct vm_area_struct *vma_merge(struct mm_struct *,
1359 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1360 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1361 struct mempolicy *);
1362extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1363extern int split_vma(struct mm_struct *,
1364 struct vm_area_struct *, unsigned long addr, int new_below);
1365extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1366extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1367 struct rb_node **, struct rb_node *);
a8fb5618 1368extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1369extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1370 unsigned long addr, unsigned long len, pgoff_t pgoff);
1371extern void exit_mmap(struct mm_struct *);
925d1c40 1372
7906d00c
AA
1373extern int mm_take_all_locks(struct mm_struct *mm);
1374extern void mm_drop_all_locks(struct mm_struct *mm);
1375
925d1c40
MH
1376/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1377extern void added_exe_file_vma(struct mm_struct *mm);
1378extern void removed_exe_file_vma(struct mm_struct *mm);
38646013
JS
1379extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1380extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1381
119f657c 1382extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1383extern int install_special_mapping(struct mm_struct *mm,
1384 unsigned long addr, unsigned long len,
1385 unsigned long flags, struct page **pages);
1da177e4
LT
1386
1387extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1388
1389extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1390 unsigned long len, unsigned long prot,
1391 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1392extern unsigned long mmap_region(struct file *file, unsigned long addr,
1393 unsigned long len, unsigned long flags,
ca16d140 1394 vm_flags_t vm_flags, unsigned long pgoff);
1da177e4
LT
1395
1396static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1397 unsigned long len, unsigned long prot,
1398 unsigned long flag, unsigned long offset)
1399{
1400 unsigned long ret = -EINVAL;
1401 if ((offset + PAGE_ALIGN(len)) < offset)
1402 goto out;
1403 if (!(offset & ~PAGE_MASK))
1404 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1405out:
1406 return ret;
1407}
1408
1409extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1410
1411extern unsigned long do_brk(unsigned long, unsigned long);
1412
85821aab 1413/* truncate.c */
1da177e4 1414extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1415extern void truncate_inode_pages_range(struct address_space *,
1416 loff_t lstart, loff_t lend);
1da177e4
LT
1417
1418/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1419extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1420
1421/* mm/page-writeback.c */
1422int write_one_page(struct page *page, int wait);
1cf6e7d8 1423void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1424
1425/* readahead.c */
1426#define VM_MAX_READAHEAD 128 /* kbytes */
1427#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1428
1da177e4 1429int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1430 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1431
1432void page_cache_sync_readahead(struct address_space *mapping,
1433 struct file_ra_state *ra,
1434 struct file *filp,
1435 pgoff_t offset,
1436 unsigned long size);
1437
1438void page_cache_async_readahead(struct address_space *mapping,
1439 struct file_ra_state *ra,
1440 struct file *filp,
1441 struct page *pg,
1442 pgoff_t offset,
1443 unsigned long size);
1444
1da177e4 1445unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1446unsigned long ra_submit(struct file_ra_state *ra,
1447 struct address_space *mapping,
1448 struct file *filp);
1da177e4 1449
d05f3169 1450/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1451extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1452
1453/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1454extern int expand_downwards(struct vm_area_struct *vma,
1455 unsigned long address);
8ca3eb08 1456#if VM_GROWSUP
46dea3d0 1457extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1458#else
1459 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1460#endif
1da177e4
LT
1461
1462/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1463extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1464extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1465 struct vm_area_struct **pprev);
1466
1467/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1468 NULL if none. Assume start_addr < end_addr. */
1469static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1470{
1471 struct vm_area_struct * vma = find_vma(mm,start_addr);
1472
1473 if (vma && end_addr <= vma->vm_start)
1474 vma = NULL;
1475 return vma;
1476}
1477
1478static inline unsigned long vma_pages(struct vm_area_struct *vma)
1479{
1480 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1481}
1482
bad849b3 1483#ifdef CONFIG_MMU
804af2cf 1484pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1485#else
1486static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1487{
1488 return __pgprot(0);
1489}
1490#endif
1491
deceb6cd 1492struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1493int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1494 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1495int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1496int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1497 unsigned long pfn);
423bad60
NP
1498int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1499 unsigned long pfn);
deceb6cd 1500
6aab341e 1501struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1502 unsigned int foll_flags);
1503#define FOLL_WRITE 0x01 /* check pte is writable */
1504#define FOLL_TOUCH 0x02 /* mark page accessed */
1505#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1506#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1507#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1508#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1509 * and return without waiting upon it */
110d74a9 1510#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1511#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1512#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1513
2f569afd 1514typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1515 void *data);
1516extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1517 unsigned long size, pte_fn_t fn, void *data);
1518
1da177e4 1519#ifdef CONFIG_PROC_FS
ab50b8ed 1520void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1521#else
ab50b8ed 1522static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1523 unsigned long flags, struct file *file, long pages)
1524{
1525}
1526#endif /* CONFIG_PROC_FS */
1527
12d6f21e
IM
1528#ifdef CONFIG_DEBUG_PAGEALLOC
1529extern int debug_pagealloc_enabled;
1530
1531extern void kernel_map_pages(struct page *page, int numpages, int enable);
1532
1533static inline void enable_debug_pagealloc(void)
1534{
1535 debug_pagealloc_enabled = 1;
1536}
8a235efa
RW
1537#ifdef CONFIG_HIBERNATION
1538extern bool kernel_page_present(struct page *page);
1539#endif /* CONFIG_HIBERNATION */
12d6f21e 1540#else
1da177e4 1541static inline void
9858db50 1542kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1543static inline void enable_debug_pagealloc(void)
1544{
1545}
8a235efa
RW
1546#ifdef CONFIG_HIBERNATION
1547static inline bool kernel_page_present(struct page *page) { return true; }
1548#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1549#endif
1550
31db58b3 1551extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1552#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1553int in_gate_area_no_mm(unsigned long addr);
83b964bb 1554int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1555#else
cae5d390
SW
1556int in_gate_area_no_mm(unsigned long addr);
1557#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1558#endif /* __HAVE_ARCH_GATE_AREA */
1559
8d65af78 1560int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1561 void __user *, size_t *, loff_t *);
a09ed5e0 1562unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1563 unsigned long nr_pages_scanned,
1564 unsigned long lru_pages);
9d0243bc 1565
7a9166e3
LY
1566#ifndef CONFIG_MMU
1567#define randomize_va_space 0
1568#else
a62eaf15 1569extern int randomize_va_space;
7a9166e3 1570#endif
a62eaf15 1571
045e72ac 1572const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1573void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1574
9bdac914
YL
1575void sparse_mem_maps_populate_node(struct page **map_map,
1576 unsigned long pnum_begin,
1577 unsigned long pnum_end,
1578 unsigned long map_count,
1579 int nodeid);
1580
98f3cfc1 1581struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1582pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1583pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1584pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1585pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1586void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1587void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1588void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1589int vmemmap_populate_basepages(struct page *start_page,
1590 unsigned long pages, int node);
1591int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1592void vmemmap_populate_print_last(void);
8f6aac41 1593
6a46079c 1594
82ba011b
AK
1595enum mf_flags {
1596 MF_COUNT_INCREASED = 1 << 0,
1597};
6a46079c 1598extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1599extern int __memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1600extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1601extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1602extern int sysctl_memory_failure_early_kill;
1603extern int sysctl_memory_failure_recovery;
facb6011 1604extern void shake_page(struct page *p, int access);
6a46079c 1605extern atomic_long_t mce_bad_pages;
facb6011 1606extern int soft_offline_page(struct page *page, int flags);
6a46079c 1607
718a3821
WF
1608extern void dump_page(struct page *page);
1609
47ad8475
AA
1610#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1611extern void clear_huge_page(struct page *page,
1612 unsigned long addr,
1613 unsigned int pages_per_huge_page);
1614extern void copy_user_huge_page(struct page *dst, struct page *src,
1615 unsigned long addr, struct vm_area_struct *vma,
1616 unsigned int pages_per_huge_page);
1617#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1618
1da177e4
LT
1619#endif /* __KERNEL__ */
1620#endif /* _LINUX_MM_H */