]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/mm.h
mm: make page ref count overflow check tighter and more explicit
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
1da177e4
LT
28
29struct mempolicy;
30struct anon_vma;
bf181b9f 31struct anon_vma_chain;
4e950f6f 32struct file_ra_state;
e8edc6e0 33struct user_struct;
4e950f6f 34struct writeback_control;
682aa8e1 35struct bdi_writeback;
1da177e4 36
597b7305
MH
37void init_mm_internals(void);
38
fccc9987 39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 40extern unsigned long max_mapnr;
fccc9987
JL
41
42static inline void set_max_mapnr(unsigned long limit)
43{
44 max_mapnr = limit;
45}
46#else
47static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
48#endif
49
4481374c 50extern unsigned long totalram_pages;
1da177e4 51extern void * high_memory;
1da177e4
LT
52extern int page_cluster;
53
54#ifdef CONFIG_SYSCTL
55extern int sysctl_legacy_va_layout;
56#else
57#define sysctl_legacy_va_layout 0
58#endif
59
d07e2259
DC
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61extern const int mmap_rnd_bits_min;
62extern const int mmap_rnd_bits_max;
63extern int mmap_rnd_bits __read_mostly;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66extern const int mmap_rnd_compat_bits_min;
67extern const int mmap_rnd_compat_bits_max;
68extern int mmap_rnd_compat_bits __read_mostly;
69#endif
70
1da177e4
LT
71#include <asm/page.h>
72#include <asm/pgtable.h>
73#include <asm/processor.h>
1da177e4 74
79442ed1
TC
75#ifndef __pa_symbol
76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77#endif
78
1dff8083
AB
79#ifndef page_to_virt
80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81#endif
82
568c5fe5
LA
83#ifndef lm_alias
84#define lm_alias(x) __va(__pa_symbol(x))
85#endif
86
593befa6
DD
87/*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94#ifndef mm_forbids_zeropage
95#define mm_forbids_zeropage(X) (0)
96#endif
97
a4a3ede2
PT
98/*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103#ifndef mm_zero_struct_page
104#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105#endif
106
ea606cf5
AR
107/*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123#define MAPCOUNT_ELF_CORE_MARGIN (5)
124#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126extern int sysctl_max_map_count;
127
c9b1d098 128extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 129extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 130
49f0ce5f
JM
131extern int sysctl_overcommit_memory;
132extern int sysctl_overcommit_ratio;
133extern unsigned long sysctl_overcommit_kbytes;
134
135extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
1da177e4
LT
140#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
27ac792c
AR
142/* to align the pointer to the (next) page boundary */
143#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
0fa73b86 145/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 146#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 147
1da177e4
LT
148/*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
0d2c7e02 157struct vm_area_struct *vm_area_alloc(struct mm_struct *);
e88c5cf9
LT
158struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
159void vm_area_free(struct vm_area_struct *);
c43692e8 160
1da177e4 161#ifndef CONFIG_MMU
8feae131
DH
162extern struct rb_root nommu_region_tree;
163extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
164
165extern unsigned int kobjsize(const void *objp);
166#endif
167
168/*
605d9288 169 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 170 * When changing, update also include/trace/events/mmflags.h
1da177e4 171 */
cc2383ec
KK
172#define VM_NONE 0x00000000
173
1da177e4
LT
174#define VM_READ 0x00000001 /* currently active flags */
175#define VM_WRITE 0x00000002
176#define VM_EXEC 0x00000004
177#define VM_SHARED 0x00000008
178
7e2cff42 179/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
180#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
181#define VM_MAYWRITE 0x00000020
182#define VM_MAYEXEC 0x00000040
183#define VM_MAYSHARE 0x00000080
184
185#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 186#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 187#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 188#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 189#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 190
1da177e4
LT
191#define VM_LOCKED 0x00002000
192#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
193
194 /* Used by sys_madvise() */
195#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
196#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
197
198#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
199#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 200#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 201#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 202#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 203#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 204#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 205#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 206#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 207#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 208
d9104d1c
CG
209#ifdef CONFIG_MEM_SOFT_DIRTY
210# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
211#else
212# define VM_SOFTDIRTY 0
213#endif
214
b379d790 215#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
216#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
217#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 218#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 219
63c17fb8
DH
220#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
221#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 225#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
226#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
227#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
228#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
229#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 230#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
231#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
232
cc2383ec
KK
233#if defined(CONFIG_X86)
234# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
235#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
236# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
237# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
238# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
239# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
240# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
241#endif
cc2383ec
KK
242#elif defined(CONFIG_PPC)
243# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
244#elif defined(CONFIG_PARISC)
245# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
246#elif defined(CONFIG_METAG)
247# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
248#elif defined(CONFIG_IA64)
249# define VM_GROWSUP VM_ARCH_1
250#elif !defined(CONFIG_MMU)
251# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
252#endif
253
df3735c5 254#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 255/* MPX specific bounds table or bounds directory */
fa87b91c 256# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
257#else
258# define VM_MPX VM_NONE
4aae7e43
QR
259#endif
260
cc2383ec
KK
261#ifndef VM_GROWSUP
262# define VM_GROWSUP VM_NONE
263#endif
264
a8bef8ff
MG
265/* Bits set in the VMA until the stack is in its final location */
266#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
267
1da177e4
LT
268#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
269#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
270#endif
271
272#ifdef CONFIG_STACK_GROWSUP
30bdbb78 273#define VM_STACK VM_GROWSUP
1da177e4 274#else
30bdbb78 275#define VM_STACK VM_GROWSDOWN
1da177e4
LT
276#endif
277
30bdbb78
KK
278#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
279
b291f000 280/*
78f11a25
AA
281 * Special vmas that are non-mergable, non-mlock()able.
282 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 283 */
9050d7eb 284#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 285
a0715cc2
AT
286/* This mask defines which mm->def_flags a process can inherit its parent */
287#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
288
de60f5f1
EM
289/* This mask is used to clear all the VMA flags used by mlock */
290#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
291
1da177e4
LT
292/*
293 * mapping from the currently active vm_flags protection bits (the
294 * low four bits) to a page protection mask..
295 */
296extern pgprot_t protection_map[16];
297
d0217ac0 298#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
299#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
300#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
301#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
302#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
303#define FAULT_FLAG_TRIED 0x20 /* Second try */
304#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 305#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 306#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 307
282a8e03
RZ
308#define FAULT_FLAG_TRACE \
309 { FAULT_FLAG_WRITE, "WRITE" }, \
310 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
311 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
312 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
313 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
314 { FAULT_FLAG_TRIED, "TRIED" }, \
315 { FAULT_FLAG_USER, "USER" }, \
316 { FAULT_FLAG_REMOTE, "REMOTE" }, \
317 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
318
54cb8821 319/*
d0217ac0 320 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
321 * ->fault function. The vma's ->fault is responsible for returning a bitmask
322 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 323 *
c20cd45e
MH
324 * MM layer fills up gfp_mask for page allocations but fault handler might
325 * alter it if its implementation requires a different allocation context.
326 *
9b4bdd2f 327 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 328 */
d0217ac0 329struct vm_fault {
82b0f8c3 330 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 331 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 332 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 333 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 334 unsigned long address; /* Faulting virtual address */
82b0f8c3 335 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 336 * the 'address' */
a2d58167
DJ
337 pud_t *pud; /* Pointer to pud entry matching
338 * the 'address'
339 */
2994302b 340 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 341
3917048d
JK
342 struct page *cow_page; /* Page handler may use for COW fault */
343 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 344 struct page *page; /* ->fault handlers should return a
83c54070 345 * page here, unless VM_FAULT_NOPAGE
d0217ac0 346 * is set (which is also implied by
83c54070 347 * VM_FAULT_ERROR).
d0217ac0 348 */
82b0f8c3 349 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
350 pte_t *pte; /* Pointer to pte entry matching
351 * the 'address'. NULL if the page
352 * table hasn't been allocated.
353 */
354 spinlock_t *ptl; /* Page table lock.
355 * Protects pte page table if 'pte'
356 * is not NULL, otherwise pmd.
357 */
7267ec00
KS
358 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
359 * vm_ops->map_pages() calls
360 * alloc_set_pte() from atomic context.
361 * do_fault_around() pre-allocates
362 * page table to avoid allocation from
363 * atomic context.
364 */
54cb8821 365};
1da177e4 366
c791ace1
DJ
367/* page entry size for vm->huge_fault() */
368enum page_entry_size {
369 PE_SIZE_PTE = 0,
370 PE_SIZE_PMD,
371 PE_SIZE_PUD,
372};
373
1da177e4
LT
374/*
375 * These are the virtual MM functions - opening of an area, closing and
376 * unmapping it (needed to keep files on disk up-to-date etc), pointer
377 * to the functions called when a no-page or a wp-page exception occurs.
378 */
379struct vm_operations_struct {
380 void (*open)(struct vm_area_struct * area);
381 void (*close)(struct vm_area_struct * area);
31383c68 382 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 383 int (*mremap)(struct vm_area_struct * area);
11bac800 384 int (*fault)(struct vm_fault *vmf);
c791ace1 385 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 386 void (*map_pages)(struct vm_fault *vmf,
bae473a4 387 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
388
389 /* notification that a previously read-only page is about to become
390 * writable, if an error is returned it will cause a SIGBUS */
11bac800 391 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 392
dd906184 393 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 394 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 395
28b2ee20
RR
396 /* called by access_process_vm when get_user_pages() fails, typically
397 * for use by special VMAs that can switch between memory and hardware
398 */
399 int (*access)(struct vm_area_struct *vma, unsigned long addr,
400 void *buf, int len, int write);
78d683e8
AL
401
402 /* Called by the /proc/PID/maps code to ask the vma whether it
403 * has a special name. Returning non-NULL will also cause this
404 * vma to be dumped unconditionally. */
405 const char *(*name)(struct vm_area_struct *vma);
406
1da177e4 407#ifdef CONFIG_NUMA
a6020ed7
LS
408 /*
409 * set_policy() op must add a reference to any non-NULL @new mempolicy
410 * to hold the policy upon return. Caller should pass NULL @new to
411 * remove a policy and fall back to surrounding context--i.e. do not
412 * install a MPOL_DEFAULT policy, nor the task or system default
413 * mempolicy.
414 */
1da177e4 415 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
416
417 /*
418 * get_policy() op must add reference [mpol_get()] to any policy at
419 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
420 * in mm/mempolicy.c will do this automatically.
421 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
422 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
423 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
424 * must return NULL--i.e., do not "fallback" to task or system default
425 * policy.
426 */
1da177e4
LT
427 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
428 unsigned long addr);
429#endif
667a0a06
DV
430 /*
431 * Called by vm_normal_page() for special PTEs to find the
432 * page for @addr. This is useful if the default behavior
433 * (using pte_page()) would not find the correct page.
434 */
435 struct page *(*find_special_page)(struct vm_area_struct *vma,
436 unsigned long addr);
1da177e4
LT
437};
438
439struct mmu_gather;
440struct inode;
441
349aef0b
AM
442#define page_private(page) ((page)->private)
443#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 444
5c7fb56e
DW
445#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
446static inline int pmd_devmap(pmd_t pmd)
447{
448 return 0;
449}
a00cc7d9
MW
450static inline int pud_devmap(pud_t pud)
451{
452 return 0;
453}
b59f65fa
KS
454static inline int pgd_devmap(pgd_t pgd)
455{
456 return 0;
457}
5c7fb56e
DW
458#endif
459
1da177e4
LT
460/*
461 * FIXME: take this include out, include page-flags.h in
462 * files which need it (119 of them)
463 */
464#include <linux/page-flags.h>
71e3aac0 465#include <linux/huge_mm.h>
1da177e4
LT
466
467/*
468 * Methods to modify the page usage count.
469 *
470 * What counts for a page usage:
471 * - cache mapping (page->mapping)
472 * - private data (page->private)
473 * - page mapped in a task's page tables, each mapping
474 * is counted separately
475 *
476 * Also, many kernel routines increase the page count before a critical
477 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
478 */
479
480/*
da6052f7 481 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 482 */
7c8ee9a8
NP
483static inline int put_page_testzero(struct page *page)
484{
fe896d18
JK
485 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
486 return page_ref_dec_and_test(page);
7c8ee9a8 487}
1da177e4
LT
488
489/*
7c8ee9a8
NP
490 * Try to grab a ref unless the page has a refcount of zero, return false if
491 * that is the case.
8e0861fa
AK
492 * This can be called when MMU is off so it must not access
493 * any of the virtual mappings.
1da177e4 494 */
7c8ee9a8
NP
495static inline int get_page_unless_zero(struct page *page)
496{
fe896d18 497 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 498}
1da177e4 499
53df8fdc 500extern int page_is_ram(unsigned long pfn);
124fe20d
DW
501
502enum {
503 REGION_INTERSECTS,
504 REGION_DISJOINT,
505 REGION_MIXED,
506};
507
1c29f25b
TK
508int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
509 unsigned long desc);
53df8fdc 510
48667e7a 511/* Support for virtually mapped pages */
b3bdda02
CL
512struct page *vmalloc_to_page(const void *addr);
513unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 514
0738c4bb
PM
515/*
516 * Determine if an address is within the vmalloc range
517 *
518 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
519 * is no special casing required.
520 */
bb00a789 521static inline bool is_vmalloc_addr(const void *x)
9e2779fa 522{
0738c4bb 523#ifdef CONFIG_MMU
9e2779fa
CL
524 unsigned long addr = (unsigned long)x;
525
526 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 527#else
bb00a789 528 return false;
8ca3ed87 529#endif
0738c4bb 530}
81ac3ad9
KH
531#ifdef CONFIG_MMU
532extern int is_vmalloc_or_module_addr(const void *x);
533#else
934831d0 534static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
535{
536 return 0;
537}
538#endif
9e2779fa 539
a7c3e901
MH
540extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
541static inline void *kvmalloc(size_t size, gfp_t flags)
542{
543 return kvmalloc_node(size, flags, NUMA_NO_NODE);
544}
545static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
546{
547 return kvmalloc_node(size, flags | __GFP_ZERO, node);
548}
549static inline void *kvzalloc(size_t size, gfp_t flags)
550{
551 return kvmalloc(size, flags | __GFP_ZERO);
552}
553
752ade68
MH
554static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
555{
556 if (size != 0 && n > SIZE_MAX / size)
557 return NULL;
558
559 return kvmalloc(n * size, flags);
560}
561
39f1f78d
AV
562extern void kvfree(const void *addr);
563
53f9263b
KS
564static inline atomic_t *compound_mapcount_ptr(struct page *page)
565{
566 return &page[1].compound_mapcount;
567}
568
569static inline int compound_mapcount(struct page *page)
570{
5f527c2b 571 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
572 page = compound_head(page);
573 return atomic_read(compound_mapcount_ptr(page)) + 1;
574}
575
70b50f94
AA
576/*
577 * The atomic page->_mapcount, starts from -1: so that transitions
578 * both from it and to it can be tracked, using atomic_inc_and_test
579 * and atomic_add_negative(-1).
580 */
22b751c3 581static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
582{
583 atomic_set(&(page)->_mapcount, -1);
584}
585
b20ce5e0
KS
586int __page_mapcount(struct page *page);
587
70b50f94
AA
588static inline int page_mapcount(struct page *page)
589{
1d148e21 590 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 591
b20ce5e0
KS
592 if (unlikely(PageCompound(page)))
593 return __page_mapcount(page);
594 return atomic_read(&page->_mapcount) + 1;
595}
596
597#ifdef CONFIG_TRANSPARENT_HUGEPAGE
598int total_mapcount(struct page *page);
6d0a07ed 599int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
600#else
601static inline int total_mapcount(struct page *page)
602{
603 return page_mapcount(page);
70b50f94 604}
6d0a07ed
AA
605static inline int page_trans_huge_mapcount(struct page *page,
606 int *total_mapcount)
607{
608 int mapcount = page_mapcount(page);
609 if (total_mapcount)
610 *total_mapcount = mapcount;
611 return mapcount;
612}
b20ce5e0 613#endif
70b50f94 614
b49af68f
CL
615static inline struct page *virt_to_head_page(const void *x)
616{
617 struct page *page = virt_to_page(x);
ccaafd7f 618
1d798ca3 619 return compound_head(page);
b49af68f
CL
620}
621
ddc58f27
KS
622void __put_page(struct page *page);
623
1d7ea732 624void put_pages_list(struct list_head *pages);
1da177e4 625
8dfcc9ba 626void split_page(struct page *page, unsigned int order);
8dfcc9ba 627
33f2ef89
AW
628/*
629 * Compound pages have a destructor function. Provide a
630 * prototype for that function and accessor functions.
f1e61557 631 * These are _only_ valid on the head of a compound page.
33f2ef89 632 */
f1e61557
KS
633typedef void compound_page_dtor(struct page *);
634
635/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
636enum compound_dtor_id {
637 NULL_COMPOUND_DTOR,
638 COMPOUND_PAGE_DTOR,
639#ifdef CONFIG_HUGETLB_PAGE
640 HUGETLB_PAGE_DTOR,
9a982250
KS
641#endif
642#ifdef CONFIG_TRANSPARENT_HUGEPAGE
643 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
644#endif
645 NR_COMPOUND_DTORS,
646};
647extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
648
649static inline void set_compound_page_dtor(struct page *page,
f1e61557 650 enum compound_dtor_id compound_dtor)
33f2ef89 651{
f1e61557
KS
652 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
653 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
654}
655
656static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
657{
f1e61557
KS
658 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
659 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
660}
661
d00181b9 662static inline unsigned int compound_order(struct page *page)
d85f3385 663{
6d777953 664 if (!PageHead(page))
d85f3385 665 return 0;
e4b294c2 666 return page[1].compound_order;
d85f3385
CL
667}
668
f1e61557 669static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 670{
e4b294c2 671 page[1].compound_order = order;
d85f3385
CL
672}
673
9a982250
KS
674void free_compound_page(struct page *page);
675
3dece370 676#ifdef CONFIG_MMU
14fd403f
AA
677/*
678 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
679 * servicing faults for write access. In the normal case, do always want
680 * pte_mkwrite. But get_user_pages can cause write faults for mappings
681 * that do not have writing enabled, when used by access_process_vm.
682 */
683static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
684{
685 if (likely(vma->vm_flags & VM_WRITE))
686 pte = pte_mkwrite(pte);
687 return pte;
688}
8c6e50b0 689
82b0f8c3 690int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 691 struct page *page);
9118c0cb 692int finish_fault(struct vm_fault *vmf);
66a6197c 693int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 694#endif
14fd403f 695
1da177e4
LT
696/*
697 * Multiple processes may "see" the same page. E.g. for untouched
698 * mappings of /dev/null, all processes see the same page full of
699 * zeroes, and text pages of executables and shared libraries have
700 * only one copy in memory, at most, normally.
701 *
702 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
703 * page_count() == 0 means the page is free. page->lru is then used for
704 * freelist management in the buddy allocator.
da6052f7 705 * page_count() > 0 means the page has been allocated.
1da177e4 706 *
da6052f7
NP
707 * Pages are allocated by the slab allocator in order to provide memory
708 * to kmalloc and kmem_cache_alloc. In this case, the management of the
709 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
710 * unless a particular usage is carefully commented. (the responsibility of
711 * freeing the kmalloc memory is the caller's, of course).
1da177e4 712 *
da6052f7
NP
713 * A page may be used by anyone else who does a __get_free_page().
714 * In this case, page_count still tracks the references, and should only
715 * be used through the normal accessor functions. The top bits of page->flags
716 * and page->virtual store page management information, but all other fields
717 * are unused and could be used privately, carefully. The management of this
718 * page is the responsibility of the one who allocated it, and those who have
719 * subsequently been given references to it.
720 *
721 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
722 * managed by the Linux memory manager: I/O, buffers, swapping etc.
723 * The following discussion applies only to them.
724 *
da6052f7
NP
725 * A pagecache page contains an opaque `private' member, which belongs to the
726 * page's address_space. Usually, this is the address of a circular list of
727 * the page's disk buffers. PG_private must be set to tell the VM to call
728 * into the filesystem to release these pages.
1da177e4 729 *
da6052f7
NP
730 * A page may belong to an inode's memory mapping. In this case, page->mapping
731 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 732 * in units of PAGE_SIZE.
1da177e4 733 *
da6052f7
NP
734 * If pagecache pages are not associated with an inode, they are said to be
735 * anonymous pages. These may become associated with the swapcache, and in that
736 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 737 *
da6052f7
NP
738 * In either case (swapcache or inode backed), the pagecache itself holds one
739 * reference to the page. Setting PG_private should also increment the
740 * refcount. The each user mapping also has a reference to the page.
1da177e4 741 *
da6052f7
NP
742 * The pagecache pages are stored in a per-mapping radix tree, which is
743 * rooted at mapping->page_tree, and indexed by offset.
744 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
745 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 746 *
da6052f7 747 * All pagecache pages may be subject to I/O:
1da177e4
LT
748 * - inode pages may need to be read from disk,
749 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
750 * to be written back to the inode on disk,
751 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
752 * modified may need to be swapped out to swap space and (later) to be read
753 * back into memory.
1da177e4
LT
754 */
755
756/*
757 * The zone field is never updated after free_area_init_core()
758 * sets it, so none of the operations on it need to be atomic.
1da177e4 759 */
348f8b6c 760
90572890 761/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 762#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
763#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
764#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 765#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 766
348f8b6c 767/*
25985edc 768 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
769 * sections we define the shift as 0; that plus a 0 mask ensures
770 * the compiler will optimise away reference to them.
771 */
d41dee36
AW
772#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
773#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
774#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 775#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 776
bce54bbf
WD
777/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
778#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 779#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
780#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
781 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 782#else
89689ae7 783#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
784#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
785 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
786#endif
787
bd8029b6 788#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 789
9223b419
CL
790#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
791#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
792#endif
793
d41dee36
AW
794#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
795#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
796#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 797#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 798#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 799
33dd4e0e 800static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 801{
348f8b6c 802 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 803}
1da177e4 804
260ae3f7
DW
805#ifdef CONFIG_ZONE_DEVICE
806static inline bool is_zone_device_page(const struct page *page)
807{
808 return page_zonenum(page) == ZONE_DEVICE;
809}
810#else
811static inline bool is_zone_device_page(const struct page *page)
812{
813 return false;
814}
7b2d55d2 815#endif
5042db43 816
6b368cd4 817#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
df6ad698 818void put_zone_device_private_or_public_page(struct page *page);
6b368cd4
JG
819DECLARE_STATIC_KEY_FALSE(device_private_key);
820#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
821static inline bool is_device_private_page(const struct page *page);
822static inline bool is_device_public_page(const struct page *page);
823#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
df6ad698 824static inline void put_zone_device_private_or_public_page(struct page *page)
5042db43 825{
5042db43 826}
6b368cd4
JG
827#define IS_HMM_ENABLED 0
828static inline bool is_device_private_page(const struct page *page)
829{
830 return false;
831}
832static inline bool is_device_public_page(const struct page *page)
833{
834 return false;
835}
df6ad698 836#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
260ae3f7 837
7b2d55d2 838
7d225d5f
LT
839/* 127: arbitrary random number, small enough to assemble well */
840#define page_ref_zero_or_close_to_overflow(page) \
841 ((unsigned int) page_ref_count(page) + 127u <= 127u)
842
3565fce3
DW
843static inline void get_page(struct page *page)
844{
845 page = compound_head(page);
846 /*
847 * Getting a normal page or the head of a compound page
0139aa7b 848 * requires to already have an elevated page->_refcount.
3565fce3 849 */
7d225d5f 850 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 851 page_ref_inc(page);
3565fce3
DW
852}
853
854static inline void put_page(struct page *page)
855{
856 page = compound_head(page);
857
7b2d55d2
JG
858 /*
859 * For private device pages we need to catch refcount transition from
860 * 2 to 1, when refcount reach one it means the private device page is
861 * free and we need to inform the device driver through callback. See
862 * include/linux/memremap.h and HMM for details.
863 */
6b368cd4
JG
864 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
865 unlikely(is_device_public_page(page)))) {
df6ad698 866 put_zone_device_private_or_public_page(page);
7b2d55d2
JG
867 return;
868 }
869
3565fce3
DW
870 if (put_page_testzero(page))
871 __put_page(page);
3565fce3
DW
872}
873
9127ab4f
CS
874#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
875#define SECTION_IN_PAGE_FLAGS
876#endif
877
89689ae7 878/*
7a8010cd
VB
879 * The identification function is mainly used by the buddy allocator for
880 * determining if two pages could be buddies. We are not really identifying
881 * the zone since we could be using the section number id if we do not have
882 * node id available in page flags.
883 * We only guarantee that it will return the same value for two combinable
884 * pages in a zone.
89689ae7 885 */
cb2b95e1
AW
886static inline int page_zone_id(struct page *page)
887{
89689ae7 888 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
889}
890
25ba77c1 891static inline int zone_to_nid(struct zone *zone)
89fa3024 892{
d5f541ed
CL
893#ifdef CONFIG_NUMA
894 return zone->node;
895#else
896 return 0;
897#endif
89fa3024
CL
898}
899
89689ae7 900#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 901extern int page_to_nid(const struct page *page);
89689ae7 902#else
33dd4e0e 903static inline int page_to_nid(const struct page *page)
d41dee36 904{
89689ae7 905 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 906}
89689ae7
CL
907#endif
908
57e0a030 909#ifdef CONFIG_NUMA_BALANCING
90572890 910static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 911{
90572890 912 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
913}
914
90572890 915static inline int cpupid_to_pid(int cpupid)
57e0a030 916{
90572890 917 return cpupid & LAST__PID_MASK;
57e0a030 918}
b795854b 919
90572890 920static inline int cpupid_to_cpu(int cpupid)
b795854b 921{
90572890 922 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
923}
924
90572890 925static inline int cpupid_to_nid(int cpupid)
b795854b 926{
90572890 927 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
928}
929
90572890 930static inline bool cpupid_pid_unset(int cpupid)
57e0a030 931{
90572890 932 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
933}
934
90572890 935static inline bool cpupid_cpu_unset(int cpupid)
b795854b 936{
90572890 937 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
938}
939
8c8a743c
PZ
940static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
941{
942 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
943}
944
945#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
946#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
947static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 948{
1ae71d03 949 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 950}
90572890
PZ
951
952static inline int page_cpupid_last(struct page *page)
953{
954 return page->_last_cpupid;
955}
956static inline void page_cpupid_reset_last(struct page *page)
b795854b 957{
1ae71d03 958 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
959}
960#else
90572890 961static inline int page_cpupid_last(struct page *page)
75980e97 962{
90572890 963 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
964}
965
90572890 966extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 967
90572890 968static inline void page_cpupid_reset_last(struct page *page)
75980e97 969{
09940a4f 970 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 971}
90572890
PZ
972#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
973#else /* !CONFIG_NUMA_BALANCING */
974static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 975{
90572890 976 return page_to_nid(page); /* XXX */
57e0a030
MG
977}
978
90572890 979static inline int page_cpupid_last(struct page *page)
57e0a030 980{
90572890 981 return page_to_nid(page); /* XXX */
57e0a030
MG
982}
983
90572890 984static inline int cpupid_to_nid(int cpupid)
b795854b
MG
985{
986 return -1;
987}
988
90572890 989static inline int cpupid_to_pid(int cpupid)
b795854b
MG
990{
991 return -1;
992}
993
90572890 994static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
995{
996 return -1;
997}
998
90572890
PZ
999static inline int cpu_pid_to_cpupid(int nid, int pid)
1000{
1001 return -1;
1002}
1003
1004static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1005{
1006 return 1;
1007}
1008
90572890 1009static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1010{
1011}
8c8a743c
PZ
1012
1013static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1014{
1015 return false;
1016}
90572890 1017#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1018
33dd4e0e 1019static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1020{
1021 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1022}
1023
75ef7184
MG
1024static inline pg_data_t *page_pgdat(const struct page *page)
1025{
1026 return NODE_DATA(page_to_nid(page));
1027}
1028
9127ab4f 1029#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1030static inline void set_page_section(struct page *page, unsigned long section)
1031{
1032 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1033 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1034}
1035
aa462abe 1036static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1037{
1038 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1039}
308c05e3 1040#endif
d41dee36 1041
2f1b6248 1042static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1043{
1044 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1045 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1046}
2f1b6248 1047
348f8b6c
DH
1048static inline void set_page_node(struct page *page, unsigned long node)
1049{
1050 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1051 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1052}
89689ae7 1053
2f1b6248 1054static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1055 unsigned long node, unsigned long pfn)
1da177e4 1056{
348f8b6c
DH
1057 set_page_zone(page, zone);
1058 set_page_node(page, node);
9127ab4f 1059#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1060 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1061#endif
1da177e4
LT
1062}
1063
0610c25d
GT
1064#ifdef CONFIG_MEMCG
1065static inline struct mem_cgroup *page_memcg(struct page *page)
1066{
1067 return page->mem_cgroup;
1068}
55779ec7
JW
1069static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1070{
1071 WARN_ON_ONCE(!rcu_read_lock_held());
1072 return READ_ONCE(page->mem_cgroup);
1073}
0610c25d
GT
1074#else
1075static inline struct mem_cgroup *page_memcg(struct page *page)
1076{
1077 return NULL;
1078}
55779ec7
JW
1079static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1080{
1081 WARN_ON_ONCE(!rcu_read_lock_held());
1082 return NULL;
1083}
0610c25d
GT
1084#endif
1085
f6ac2354
CL
1086/*
1087 * Some inline functions in vmstat.h depend on page_zone()
1088 */
1089#include <linux/vmstat.h>
1090
33dd4e0e 1091static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1092{
1dff8083 1093 return page_to_virt(page);
1da177e4
LT
1094}
1095
1096#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1097#define HASHED_PAGE_VIRTUAL
1098#endif
1099
1100#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1101static inline void *page_address(const struct page *page)
1102{
1103 return page->virtual;
1104}
1105static inline void set_page_address(struct page *page, void *address)
1106{
1107 page->virtual = address;
1108}
1da177e4
LT
1109#define page_address_init() do { } while(0)
1110#endif
1111
1112#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1113void *page_address(const struct page *page);
1da177e4
LT
1114void set_page_address(struct page *page, void *virtual);
1115void page_address_init(void);
1116#endif
1117
1118#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1119#define page_address(page) lowmem_page_address(page)
1120#define set_page_address(page, address) do { } while(0)
1121#define page_address_init() do { } while(0)
1122#endif
1123
e39155ea
KS
1124extern void *page_rmapping(struct page *page);
1125extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1126extern struct address_space *page_mapping(struct page *page);
1da177e4 1127
f981c595
MG
1128extern struct address_space *__page_file_mapping(struct page *);
1129
1130static inline
1131struct address_space *page_file_mapping(struct page *page)
1132{
1133 if (unlikely(PageSwapCache(page)))
1134 return __page_file_mapping(page);
1135
1136 return page->mapping;
1137}
1138
f6ab1f7f
HY
1139extern pgoff_t __page_file_index(struct page *page);
1140
1da177e4
LT
1141/*
1142 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1143 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1144 */
1145static inline pgoff_t page_index(struct page *page)
1146{
1147 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1148 return __page_file_index(page);
1da177e4
LT
1149 return page->index;
1150}
1151
1aa8aea5 1152bool page_mapped(struct page *page);
bda807d4 1153struct address_space *page_mapping(struct page *page);
1da177e4 1154
2f064f34
MH
1155/*
1156 * Return true only if the page has been allocated with
1157 * ALLOC_NO_WATERMARKS and the low watermark was not
1158 * met implying that the system is under some pressure.
1159 */
1160static inline bool page_is_pfmemalloc(struct page *page)
1161{
1162 /*
1163 * Page index cannot be this large so this must be
1164 * a pfmemalloc page.
1165 */
1166 return page->index == -1UL;
1167}
1168
1169/*
1170 * Only to be called by the page allocator on a freshly allocated
1171 * page.
1172 */
1173static inline void set_page_pfmemalloc(struct page *page)
1174{
1175 page->index = -1UL;
1176}
1177
1178static inline void clear_page_pfmemalloc(struct page *page)
1179{
1180 page->index = 0;
1181}
1182
1da177e4
LT
1183/*
1184 * Different kinds of faults, as returned by handle_mm_fault().
1185 * Used to decide whether a process gets delivered SIGBUS or
1186 * just gets major/minor fault counters bumped up.
1187 */
d0217ac0 1188
83c54070
NP
1189#define VM_FAULT_OOM 0x0001
1190#define VM_FAULT_SIGBUS 0x0002
1191#define VM_FAULT_MAJOR 0x0004
1192#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1193#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1194#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1195#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1196
83c54070
NP
1197#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1198#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1199#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1200#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1201#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1202#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1203 * and needs fsync() to complete (for
1204 * synchronous page faults in DAX) */
aa50d3a7 1205
33692f27
LT
1206#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1207 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1208 VM_FAULT_FALLBACK)
aa50d3a7 1209
282a8e03
RZ
1210#define VM_FAULT_RESULT_TRACE \
1211 { VM_FAULT_OOM, "OOM" }, \
1212 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1213 { VM_FAULT_MAJOR, "MAJOR" }, \
1214 { VM_FAULT_WRITE, "WRITE" }, \
1215 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1216 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1217 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1218 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1219 { VM_FAULT_LOCKED, "LOCKED" }, \
1220 { VM_FAULT_RETRY, "RETRY" }, \
1221 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1222 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1223 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1224
aa50d3a7
AK
1225/* Encode hstate index for a hwpoisoned large page */
1226#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1227#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1228
1c0fe6e3
NP
1229/*
1230 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1231 */
1232extern void pagefault_out_of_memory(void);
1233
1da177e4
LT
1234#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1235
ddd588b5 1236/*
7bf02ea2 1237 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1238 * various contexts.
1239 */
4b59e6c4 1240#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1241
9af744d7 1242extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1243
7f43add4 1244extern bool can_do_mlock(void);
1da177e4
LT
1245extern int user_shm_lock(size_t, struct user_struct *);
1246extern void user_shm_unlock(size_t, struct user_struct *);
1247
1248/*
1249 * Parameter block passed down to zap_pte_range in exceptional cases.
1250 */
1251struct zap_details {
1da177e4
LT
1252 struct address_space *check_mapping; /* Check page->mapping if set */
1253 pgoff_t first_index; /* Lowest page->index to unmap */
1254 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1255};
1256
df6ad698
JG
1257struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1258 pte_t pte, bool with_public_device);
1259#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1260
28093f9f
GS
1261struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1262 pmd_t pmd);
7e675137 1263
c627f9cc
JS
1264int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1265 unsigned long size);
14f5ff5d 1266void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1267 unsigned long size);
4f74d2c8
LT
1268void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1269 unsigned long start, unsigned long end);
e6473092
MM
1270
1271/**
1272 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1273 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1274 * this handler should only handle pud_trans_huge() puds.
1275 * the pmd_entry or pte_entry callbacks will be used for
1276 * regular PUDs.
e6473092 1277 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1278 * this handler is required to be able to handle
1279 * pmd_trans_huge() pmds. They may simply choose to
1280 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1281 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1282 * @pte_hole: if set, called for each hole at all levels
5dc37642 1283 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1284 * @test_walk: caller specific callback function to determine whether
f7e2355f 1285 * we walk over the current vma or not. Returning 0
fafaa426
NH
1286 * value means "do page table walk over the current vma,"
1287 * and a negative one means "abort current page table walk
f7e2355f 1288 * right now." 1 means "skip the current vma."
fafaa426
NH
1289 * @mm: mm_struct representing the target process of page table walk
1290 * @vma: vma currently walked (NULL if walking outside vmas)
1291 * @private: private data for callbacks' usage
e6473092 1292 *
fafaa426 1293 * (see the comment on walk_page_range() for more details)
e6473092
MM
1294 */
1295struct mm_walk {
a00cc7d9
MW
1296 int (*pud_entry)(pud_t *pud, unsigned long addr,
1297 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1298 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1299 unsigned long next, struct mm_walk *walk);
1300 int (*pte_entry)(pte_t *pte, unsigned long addr,
1301 unsigned long next, struct mm_walk *walk);
1302 int (*pte_hole)(unsigned long addr, unsigned long next,
1303 struct mm_walk *walk);
1304 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1305 unsigned long addr, unsigned long next,
1306 struct mm_walk *walk);
fafaa426
NH
1307 int (*test_walk)(unsigned long addr, unsigned long next,
1308 struct mm_walk *walk);
2165009b 1309 struct mm_struct *mm;
fafaa426 1310 struct vm_area_struct *vma;
2165009b 1311 void *private;
e6473092
MM
1312};
1313
2165009b
DH
1314int walk_page_range(unsigned long addr, unsigned long end,
1315 struct mm_walk *walk);
900fc5f1 1316int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1317void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1318 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1319int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1320 struct vm_area_struct *vma);
1da177e4
LT
1321void unmap_mapping_range(struct address_space *mapping,
1322 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395 1323int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1324 unsigned long *start, unsigned long *end,
09796395 1325 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1326int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1327 unsigned long *pfn);
d87fe660 1328int follow_phys(struct vm_area_struct *vma, unsigned long address,
1329 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1330int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1331 void *buf, int len, int write);
1da177e4
LT
1332
1333static inline void unmap_shared_mapping_range(struct address_space *mapping,
1334 loff_t const holebegin, loff_t const holelen)
1335{
1336 unmap_mapping_range(mapping, holebegin, holelen, 0);
1337}
1338
7caef267 1339extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1340extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1341void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1342void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1343int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1344int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1345int invalidate_inode_page(struct page *page);
1346
7ee1dd3f 1347#ifdef CONFIG_MMU
dcddffd4
KS
1348extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1349 unsigned int flags);
5c723ba5 1350extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1351 unsigned long address, unsigned int fault_flags,
1352 bool *unlocked);
7ee1dd3f 1353#else
dcddffd4
KS
1354static inline int handle_mm_fault(struct vm_area_struct *vma,
1355 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1356{
1357 /* should never happen if there's no MMU */
1358 BUG();
1359 return VM_FAULT_SIGBUS;
1360}
5c723ba5
PZ
1361static inline int fixup_user_fault(struct task_struct *tsk,
1362 struct mm_struct *mm, unsigned long address,
4a9e1cda 1363 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1364{
1365 /* should never happen if there's no MMU */
1366 BUG();
1367 return -EFAULT;
1368}
7ee1dd3f 1369#endif
f33ea7f4 1370
c088e31d
SF
1371extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1372extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1373 int);
1374extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1375extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1376
1377#define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1378 __LINE__)
1379#define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1380 __LINE__)
1381#define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1382#define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1383
1384#ifndef CONFIG_MMU
1385extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1386extern void vmr_do_fput(struct vm_region *, const char[], int);
1387
1388#define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1389 __LINE__)
1390#define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1391#endif /* !CONFIG_MMU */
1392
f307ab6d
LS
1393extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1394 unsigned int gup_flags);
5ddd36b9 1395extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1396 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1397extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1398 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1399
1e987790
DH
1400long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1401 unsigned long start, unsigned long nr_pages,
9beae1ea 1402 unsigned int gup_flags, struct page **pages,
5b56d49f 1403 struct vm_area_struct **vmas, int *locked);
c12d2da5 1404long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1405 unsigned int gup_flags, struct page **pages,
cde70140 1406 struct vm_area_struct **vmas);
c12d2da5 1407long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1408 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1409long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1410 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1411#ifdef CONFIG_FS_DAX
1412long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1413 unsigned int gup_flags, struct page **pages,
1414 struct vm_area_struct **vmas);
1415#else
1416static inline long get_user_pages_longterm(unsigned long start,
1417 unsigned long nr_pages, unsigned int gup_flags,
1418 struct page **pages, struct vm_area_struct **vmas)
1419{
1420 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1421}
1422#endif /* CONFIG_FS_DAX */
1423
d2bf6be8
NP
1424int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1425 struct page **pages);
8025e5dd
JK
1426
1427/* Container for pinned pfns / pages */
1428struct frame_vector {
1429 unsigned int nr_allocated; /* Number of frames we have space for */
1430 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1431 bool got_ref; /* Did we pin pages by getting page ref? */
1432 bool is_pfns; /* Does array contain pages or pfns? */
1433 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1434 * pfns_vector_pages() or pfns_vector_pfns()
1435 * for access */
1436};
1437
1438struct frame_vector *frame_vector_create(unsigned int nr_frames);
1439void frame_vector_destroy(struct frame_vector *vec);
1440int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1441 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1442void put_vaddr_frames(struct frame_vector *vec);
1443int frame_vector_to_pages(struct frame_vector *vec);
1444void frame_vector_to_pfns(struct frame_vector *vec);
1445
1446static inline unsigned int frame_vector_count(struct frame_vector *vec)
1447{
1448 return vec->nr_frames;
1449}
1450
1451static inline struct page **frame_vector_pages(struct frame_vector *vec)
1452{
1453 if (vec->is_pfns) {
1454 int err = frame_vector_to_pages(vec);
1455
1456 if (err)
1457 return ERR_PTR(err);
1458 }
1459 return (struct page **)(vec->ptrs);
1460}
1461
1462static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1463{
1464 if (!vec->is_pfns)
1465 frame_vector_to_pfns(vec);
1466 return (unsigned long *)(vec->ptrs);
1467}
1468
18022c5d
MG
1469struct kvec;
1470int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1471 struct page **pages);
1472int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1473struct page *get_dump_page(unsigned long addr);
1da177e4 1474
cf9a2ae8 1475extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1476extern void do_invalidatepage(struct page *page, unsigned int offset,
1477 unsigned int length);
cf9a2ae8 1478
1da177e4 1479int __set_page_dirty_nobuffers(struct page *page);
76719325 1480int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1481int redirty_page_for_writepage(struct writeback_control *wbc,
1482 struct page *page);
62cccb8c 1483void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1484void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1485 struct bdi_writeback *wb);
b3c97528 1486int set_page_dirty(struct page *page);
1da177e4 1487int set_page_dirty_lock(struct page *page);
736304f3
JK
1488void __cancel_dirty_page(struct page *page);
1489static inline void cancel_dirty_page(struct page *page)
1490{
1491 /* Avoid atomic ops, locking, etc. when not actually needed. */
1492 if (PageDirty(page))
1493 __cancel_dirty_page(page);
1494}
1da177e4 1495int clear_page_dirty_for_io(struct page *page);
b9ea2515 1496
a9090253 1497int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1498
b5330628
ON
1499static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1500{
1501 return !vma->vm_ops;
1502}
1503
b0506e48
MR
1504#ifdef CONFIG_SHMEM
1505/*
1506 * The vma_is_shmem is not inline because it is used only by slow
1507 * paths in userfault.
1508 */
1509bool vma_is_shmem(struct vm_area_struct *vma);
1510#else
1511static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1512#endif
1513
d17af505 1514int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1515
b6a2fea3
OW
1516extern unsigned long move_page_tables(struct vm_area_struct *vma,
1517 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1518 unsigned long new_addr, unsigned long len,
1519 bool need_rmap_locks);
7da4d641
PZ
1520extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1521 unsigned long end, pgprot_t newprot,
4b10e7d5 1522 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1523extern int mprotect_fixup(struct vm_area_struct *vma,
1524 struct vm_area_struct **pprev, unsigned long start,
1525 unsigned long end, unsigned long newflags);
1da177e4 1526
465a454f
PZ
1527/*
1528 * doesn't attempt to fault and will return short.
1529 */
1530int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1531 struct page **pages);
d559db08
KH
1532/*
1533 * per-process(per-mm_struct) statistics.
1534 */
d559db08
KH
1535static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1536{
69c97823
KK
1537 long val = atomic_long_read(&mm->rss_stat.count[member]);
1538
1539#ifdef SPLIT_RSS_COUNTING
1540 /*
1541 * counter is updated in asynchronous manner and may go to minus.
1542 * But it's never be expected number for users.
1543 */
1544 if (val < 0)
1545 val = 0;
172703b0 1546#endif
69c97823
KK
1547 return (unsigned long)val;
1548}
d559db08
KH
1549
1550static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1551{
172703b0 1552 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1553}
1554
1555static inline void inc_mm_counter(struct mm_struct *mm, int member)
1556{
172703b0 1557 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1558}
1559
1560static inline void dec_mm_counter(struct mm_struct *mm, int member)
1561{
172703b0 1562 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1563}
1564
eca56ff9
JM
1565/* Optimized variant when page is already known not to be PageAnon */
1566static inline int mm_counter_file(struct page *page)
1567{
1568 if (PageSwapBacked(page))
1569 return MM_SHMEMPAGES;
1570 return MM_FILEPAGES;
1571}
1572
1573static inline int mm_counter(struct page *page)
1574{
1575 if (PageAnon(page))
1576 return MM_ANONPAGES;
1577 return mm_counter_file(page);
1578}
1579
d559db08
KH
1580static inline unsigned long get_mm_rss(struct mm_struct *mm)
1581{
1582 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1583 get_mm_counter(mm, MM_ANONPAGES) +
1584 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1585}
1586
1587static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1588{
1589 return max(mm->hiwater_rss, get_mm_rss(mm));
1590}
1591
1592static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1593{
1594 return max(mm->hiwater_vm, mm->total_vm);
1595}
1596
1597static inline void update_hiwater_rss(struct mm_struct *mm)
1598{
1599 unsigned long _rss = get_mm_rss(mm);
1600
1601 if ((mm)->hiwater_rss < _rss)
1602 (mm)->hiwater_rss = _rss;
1603}
1604
1605static inline void update_hiwater_vm(struct mm_struct *mm)
1606{
1607 if (mm->hiwater_vm < mm->total_vm)
1608 mm->hiwater_vm = mm->total_vm;
1609}
1610
695f0559
PC
1611static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1612{
1613 mm->hiwater_rss = get_mm_rss(mm);
1614}
1615
d559db08
KH
1616static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1617 struct mm_struct *mm)
1618{
1619 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1620
1621 if (*maxrss < hiwater_rss)
1622 *maxrss = hiwater_rss;
1623}
1624
53bddb4e 1625#if defined(SPLIT_RSS_COUNTING)
05af2e10 1626void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1627#else
05af2e10 1628static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1629{
1630}
1631#endif
465a454f 1632
3565fce3
DW
1633#ifndef __HAVE_ARCH_PTE_DEVMAP
1634static inline int pte_devmap(pte_t pte)
1635{
1636 return 0;
1637}
1638#endif
1639
6d2329f8 1640int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1641
25ca1d6c
NK
1642extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1643 spinlock_t **ptl);
1644static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1645 spinlock_t **ptl)
1646{
1647 pte_t *ptep;
1648 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1649 return ptep;
1650}
c9cfcddf 1651
c2febafc
KS
1652#ifdef __PAGETABLE_P4D_FOLDED
1653static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1654 unsigned long address)
1655{
1656 return 0;
1657}
1658#else
1659int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1660#endif
1661
b4e98d9a 1662#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1663static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1664 unsigned long address)
1665{
1666 return 0;
1667}
b4e98d9a
KS
1668static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1669static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1670
5f22df00 1671#else
c2febafc 1672int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1673
b4e98d9a
KS
1674static inline void mm_inc_nr_puds(struct mm_struct *mm)
1675{
fc708bc1
MS
1676 if (mm_pud_folded(mm))
1677 return;
af5b0f6a 1678 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1679}
1680
1681static inline void mm_dec_nr_puds(struct mm_struct *mm)
1682{
fc708bc1
MS
1683 if (mm_pud_folded(mm))
1684 return;
af5b0f6a 1685 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1686}
5f22df00
NP
1687#endif
1688
2d2f5119 1689#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1690static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1691 unsigned long address)
1692{
1693 return 0;
1694}
dc6c9a35 1695
dc6c9a35
KS
1696static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1697static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1698
5f22df00 1699#else
1bb3630e 1700int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1701
dc6c9a35
KS
1702static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1703{
fc708bc1
MS
1704 if (mm_pmd_folded(mm))
1705 return;
af5b0f6a 1706 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1707}
1708
1709static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1710{
fc708bc1
MS
1711 if (mm_pmd_folded(mm))
1712 return;
af5b0f6a 1713 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1714}
5f22df00
NP
1715#endif
1716
c4812909 1717#ifdef CONFIG_MMU
af5b0f6a 1718static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1719{
af5b0f6a 1720 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1721}
1722
af5b0f6a 1723static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1724{
af5b0f6a 1725 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1726}
1727
1728static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1729{
af5b0f6a 1730 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1731}
1732
1733static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1734{
af5b0f6a 1735 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1736}
1737#else
c4812909 1738
af5b0f6a
KS
1739static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1740static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1741{
1742 return 0;
1743}
1744
1745static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1746static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1747#endif
1748
3ed3a4f0 1749int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1750int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1751
1da177e4
LT
1752/*
1753 * The following ifdef needed to get the 4level-fixup.h header to work.
1754 * Remove it when 4level-fixup.h has been removed.
1755 */
1bb3630e 1756#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1757
1758#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1759static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1760 unsigned long address)
1761{
1762 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1763 NULL : p4d_offset(pgd, address);
1764}
1765
1766static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1767 unsigned long address)
1da177e4 1768{
c2febafc
KS
1769 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1770 NULL : pud_offset(p4d, address);
1da177e4 1771}
505a60e2 1772#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1773
1774static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1775{
1bb3630e
HD
1776 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1777 NULL: pmd_offset(pud, address);
1da177e4 1778}
1bb3630e
HD
1779#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1780
57c1ffce 1781#if USE_SPLIT_PTE_PTLOCKS
597d795a 1782#if ALLOC_SPLIT_PTLOCKS
b35f1819 1783void __init ptlock_cache_init(void);
539edb58
PZ
1784extern bool ptlock_alloc(struct page *page);
1785extern void ptlock_free(struct page *page);
1786
1787static inline spinlock_t *ptlock_ptr(struct page *page)
1788{
1789 return page->ptl;
1790}
597d795a 1791#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1792static inline void ptlock_cache_init(void)
1793{
1794}
1795
49076ec2
KS
1796static inline bool ptlock_alloc(struct page *page)
1797{
49076ec2
KS
1798 return true;
1799}
539edb58 1800
49076ec2
KS
1801static inline void ptlock_free(struct page *page)
1802{
49076ec2
KS
1803}
1804
1805static inline spinlock_t *ptlock_ptr(struct page *page)
1806{
539edb58 1807 return &page->ptl;
49076ec2 1808}
597d795a 1809#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1810
1811static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1812{
1813 return ptlock_ptr(pmd_page(*pmd));
1814}
1815
1816static inline bool ptlock_init(struct page *page)
1817{
1818 /*
1819 * prep_new_page() initialize page->private (and therefore page->ptl)
1820 * with 0. Make sure nobody took it in use in between.
1821 *
1822 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1823 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1824 */
309381fe 1825 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1826 if (!ptlock_alloc(page))
1827 return false;
1828 spin_lock_init(ptlock_ptr(page));
1829 return true;
1830}
1831
1832/* Reset page->mapping so free_pages_check won't complain. */
1833static inline void pte_lock_deinit(struct page *page)
1834{
1835 page->mapping = NULL;
1836 ptlock_free(page);
1837}
1838
57c1ffce 1839#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1840/*
1841 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1842 */
49076ec2
KS
1843static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1844{
1845 return &mm->page_table_lock;
1846}
b35f1819 1847static inline void ptlock_cache_init(void) {}
49076ec2
KS
1848static inline bool ptlock_init(struct page *page) { return true; }
1849static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1850#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1851
b35f1819
KS
1852static inline void pgtable_init(void)
1853{
1854 ptlock_cache_init();
1855 pgtable_cache_init();
1856}
1857
390f44e2 1858static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1859{
706874e9
VD
1860 if (!ptlock_init(page))
1861 return false;
2f569afd 1862 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1863 return true;
2f569afd
MS
1864}
1865
1866static inline void pgtable_page_dtor(struct page *page)
1867{
1868 pte_lock_deinit(page);
1869 dec_zone_page_state(page, NR_PAGETABLE);
1870}
1871
c74df32c
HD
1872#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1873({ \
4c21e2f2 1874 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1875 pte_t *__pte = pte_offset_map(pmd, address); \
1876 *(ptlp) = __ptl; \
1877 spin_lock(__ptl); \
1878 __pte; \
1879})
1880
1881#define pte_unmap_unlock(pte, ptl) do { \
1882 spin_unlock(ptl); \
1883 pte_unmap(pte); \
1884} while (0)
1885
3ed3a4f0
KS
1886#define pte_alloc(mm, pmd, address) \
1887 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1888
1889#define pte_alloc_map(mm, pmd, address) \
1890 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1891
c74df32c 1892#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1893 (pte_alloc(mm, pmd, address) ? \
1894 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1895
1bb3630e 1896#define pte_alloc_kernel(pmd, address) \
8ac1f832 1897 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1898 NULL: pte_offset_kernel(pmd, address))
1da177e4 1899
e009bb30
KS
1900#if USE_SPLIT_PMD_PTLOCKS
1901
634391ac
MS
1902static struct page *pmd_to_page(pmd_t *pmd)
1903{
1904 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1905 return virt_to_page((void *)((unsigned long) pmd & mask));
1906}
1907
e009bb30
KS
1908static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1909{
634391ac 1910 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1911}
1912
1913static inline bool pgtable_pmd_page_ctor(struct page *page)
1914{
e009bb30
KS
1915#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1916 page->pmd_huge_pte = NULL;
1917#endif
49076ec2 1918 return ptlock_init(page);
e009bb30
KS
1919}
1920
1921static inline void pgtable_pmd_page_dtor(struct page *page)
1922{
1923#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1924 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1925#endif
49076ec2 1926 ptlock_free(page);
e009bb30
KS
1927}
1928
634391ac 1929#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1930
1931#else
1932
9a86cb7b
KS
1933static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1934{
1935 return &mm->page_table_lock;
1936}
1937
e009bb30
KS
1938static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1939static inline void pgtable_pmd_page_dtor(struct page *page) {}
1940
c389a250 1941#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1942
e009bb30
KS
1943#endif
1944
9a86cb7b
KS
1945static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1946{
1947 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1948 spin_lock(ptl);
1949 return ptl;
1950}
1951
a00cc7d9
MW
1952/*
1953 * No scalability reason to split PUD locks yet, but follow the same pattern
1954 * as the PMD locks to make it easier if we decide to. The VM should not be
1955 * considered ready to switch to split PUD locks yet; there may be places
1956 * which need to be converted from page_table_lock.
1957 */
1958static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1959{
1960 return &mm->page_table_lock;
1961}
1962
1963static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1964{
1965 spinlock_t *ptl = pud_lockptr(mm, pud);
1966
1967 spin_lock(ptl);
1968 return ptl;
1969}
62906027 1970
a00cc7d9 1971extern void __init pagecache_init(void);
1da177e4 1972extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1973extern void free_area_init_node(int nid, unsigned long * zones_size,
1974 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1975extern void free_initmem(void);
1976
69afade7
JL
1977/*
1978 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1979 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1980 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1981 * Return pages freed into the buddy system.
1982 */
11199692 1983extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1984 int poison, char *s);
c3d5f5f0 1985
cfa11e08
JL
1986#ifdef CONFIG_HIGHMEM
1987/*
1988 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1989 * and totalram_pages.
1990 */
1991extern void free_highmem_page(struct page *page);
1992#endif
69afade7 1993
c3d5f5f0 1994extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1995extern void mem_init_print_info(const char *str);
69afade7 1996
4b50bcc7 1997extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1998
69afade7
JL
1999/* Free the reserved page into the buddy system, so it gets managed. */
2000static inline void __free_reserved_page(struct page *page)
2001{
2002 ClearPageReserved(page);
2003 init_page_count(page);
2004 __free_page(page);
2005}
2006
2007static inline void free_reserved_page(struct page *page)
2008{
2009 __free_reserved_page(page);
2010 adjust_managed_page_count(page, 1);
2011}
2012
2013static inline void mark_page_reserved(struct page *page)
2014{
2015 SetPageReserved(page);
2016 adjust_managed_page_count(page, -1);
2017}
2018
2019/*
2020 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2021 * The freed pages will be poisoned with pattern "poison" if it's within
2022 * range [0, UCHAR_MAX].
2023 * Return pages freed into the buddy system.
69afade7
JL
2024 */
2025static inline unsigned long free_initmem_default(int poison)
2026{
2027 extern char __init_begin[], __init_end[];
2028
11199692 2029 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2030 poison, "unused kernel");
2031}
2032
7ee3d4e8
JL
2033static inline unsigned long get_num_physpages(void)
2034{
2035 int nid;
2036 unsigned long phys_pages = 0;
2037
2038 for_each_online_node(nid)
2039 phys_pages += node_present_pages(nid);
2040
2041 return phys_pages;
2042}
2043
0ee332c1 2044#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2045/*
0ee332c1 2046 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2047 * zones, allocate the backing mem_map and account for memory holes in a more
2048 * architecture independent manner. This is a substitute for creating the
2049 * zone_sizes[] and zholes_size[] arrays and passing them to
2050 * free_area_init_node()
2051 *
2052 * An architecture is expected to register range of page frames backed by
0ee332c1 2053 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2054 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2055 * usage, an architecture is expected to do something like
2056 *
2057 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2058 * max_highmem_pfn};
2059 * for_each_valid_physical_page_range()
0ee332c1 2060 * memblock_add_node(base, size, nid)
c713216d
MG
2061 * free_area_init_nodes(max_zone_pfns);
2062 *
0ee332c1
TH
2063 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2064 * registered physical page range. Similarly
2065 * sparse_memory_present_with_active_regions() calls memory_present() for
2066 * each range when SPARSEMEM is enabled.
c713216d
MG
2067 *
2068 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2069 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2070 */
2071extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2072unsigned long node_map_pfn_alignment(void);
32996250
YL
2073unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2074 unsigned long end_pfn);
c713216d
MG
2075extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2076 unsigned long end_pfn);
2077extern void get_pfn_range_for_nid(unsigned int nid,
2078 unsigned long *start_pfn, unsigned long *end_pfn);
2079extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2080extern void free_bootmem_with_active_regions(int nid,
2081 unsigned long max_low_pfn);
2082extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2083
0ee332c1 2084#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2085
0ee332c1 2086#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2087 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2088static inline int __early_pfn_to_nid(unsigned long pfn,
2089 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2090{
2091 return 0;
2092}
2093#else
2094/* please see mm/page_alloc.c */
2095extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2096/* there is a per-arch backend function. */
8a942fde
MG
2097extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2098 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2099#endif
2100
afa11cd3 2101#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2102void zero_resv_unavail(void);
2103#else
2104static inline void zero_resv_unavail(void) {}
2105#endif
2106
0e0b864e 2107extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
2108extern void memmap_init_zone(unsigned long, int, unsigned long,
2109 unsigned long, enum memmap_context);
bc75d33f 2110extern void setup_per_zone_wmarks(void);
1b79acc9 2111extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2112extern void mem_init(void);
8feae131 2113extern void __init mmap_init(void);
9af744d7 2114extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2115extern long si_mem_available(void);
1da177e4
LT
2116extern void si_meminfo(struct sysinfo * val);
2117extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2118#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2119extern unsigned long arch_reserved_kernel_pages(void);
2120#endif
1da177e4 2121
a8e99259
MH
2122extern __printf(3, 4)
2123void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2124
e7c8d5c9 2125extern void setup_per_cpu_pageset(void);
e7c8d5c9 2126
112067f0 2127extern void zone_pcp_update(struct zone *zone);
340175b7 2128extern void zone_pcp_reset(struct zone *zone);
112067f0 2129
75f7ad8e
PS
2130/* page_alloc.c */
2131extern int min_free_kbytes;
795ae7a0 2132extern int watermark_scale_factor;
75f7ad8e 2133
8feae131 2134/* nommu.c */
33e5d769 2135extern atomic_long_t mmap_pages_allocated;
7e660872 2136extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2137
6b2dbba8 2138/* interval_tree.c */
6b2dbba8 2139void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2140 struct rb_root_cached *root);
9826a516
ML
2141void vma_interval_tree_insert_after(struct vm_area_struct *node,
2142 struct vm_area_struct *prev,
f808c13f 2143 struct rb_root_cached *root);
6b2dbba8 2144void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2145 struct rb_root_cached *root);
2146struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2147 unsigned long start, unsigned long last);
2148struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2149 unsigned long start, unsigned long last);
2150
2151#define vma_interval_tree_foreach(vma, root, start, last) \
2152 for (vma = vma_interval_tree_iter_first(root, start, last); \
2153 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2154
bf181b9f 2155void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2156 struct rb_root_cached *root);
bf181b9f 2157void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2158 struct rb_root_cached *root);
2159struct anon_vma_chain *
2160anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2161 unsigned long start, unsigned long last);
bf181b9f
ML
2162struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2163 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2164#ifdef CONFIG_DEBUG_VM_RB
2165void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2166#endif
bf181b9f
ML
2167
2168#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2169 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2170 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2171
1da177e4 2172/* mmap.c */
34b4e4aa 2173extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2174extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2175 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2176 struct vm_area_struct *expand);
2177static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2178 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2179{
2180 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2181}
1da177e4
LT
2182extern struct vm_area_struct *vma_merge(struct mm_struct *,
2183 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2184 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2185 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2186extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2187extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2188 unsigned long addr, int new_below);
2189extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2190 unsigned long addr, int new_below);
1da177e4
LT
2191extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2192extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2193 struct rb_node **, struct rb_node *);
a8fb5618 2194extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2195extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2196 unsigned long addr, unsigned long len, pgoff_t pgoff,
2197 bool *need_rmap_locks);
1da177e4 2198extern void exit_mmap(struct mm_struct *);
925d1c40 2199
9c599024
CG
2200static inline int check_data_rlimit(unsigned long rlim,
2201 unsigned long new,
2202 unsigned long start,
2203 unsigned long end_data,
2204 unsigned long start_data)
2205{
2206 if (rlim < RLIM_INFINITY) {
2207 if (((new - start) + (end_data - start_data)) > rlim)
2208 return -ENOSPC;
2209 }
2210
2211 return 0;
2212}
2213
7906d00c
AA
2214extern int mm_take_all_locks(struct mm_struct *mm);
2215extern void mm_drop_all_locks(struct mm_struct *mm);
2216
38646013
JS
2217extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2218extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2219extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2220
84638335
KK
2221extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2222extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2223
2eefd878
DS
2224extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2225 const struct vm_special_mapping *sm);
3935ed6a
SS
2226extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2227 unsigned long addr, unsigned long len,
a62c34bd
AL
2228 unsigned long flags,
2229 const struct vm_special_mapping *spec);
2230/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2231extern int install_special_mapping(struct mm_struct *mm,
2232 unsigned long addr, unsigned long len,
2233 unsigned long flags, struct page **pages);
1da177e4
LT
2234
2235extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2236
0165ab44 2237extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2238 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2239 struct list_head *uf);
1fcfd8db 2240extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2241 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2242 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2243 struct list_head *uf);
2244extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2245 struct list_head *uf);
1da177e4 2246
1fcfd8db
ON
2247static inline unsigned long
2248do_mmap_pgoff(struct file *file, unsigned long addr,
2249 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2250 unsigned long pgoff, unsigned long *populate,
2251 struct list_head *uf)
1fcfd8db 2252{
897ab3e0 2253 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2254}
2255
bebeb3d6
ML
2256#ifdef CONFIG_MMU
2257extern int __mm_populate(unsigned long addr, unsigned long len,
2258 int ignore_errors);
2259static inline void mm_populate(unsigned long addr, unsigned long len)
2260{
2261 /* Ignore errors */
2262 (void) __mm_populate(addr, len, 1);
2263}
2264#else
2265static inline void mm_populate(unsigned long addr, unsigned long len) {}
2266#endif
2267
e4eb1ff6 2268/* These take the mm semaphore themselves */
5d22fc25 2269extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2270extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2271extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2272extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2273 unsigned long, unsigned long,
2274 unsigned long, unsigned long);
1da177e4 2275
db4fbfb9
ML
2276struct vm_unmapped_area_info {
2277#define VM_UNMAPPED_AREA_TOPDOWN 1
2278 unsigned long flags;
2279 unsigned long length;
2280 unsigned long low_limit;
2281 unsigned long high_limit;
2282 unsigned long align_mask;
2283 unsigned long align_offset;
2284};
2285
2286extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2287extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2288
2289/*
2290 * Search for an unmapped address range.
2291 *
2292 * We are looking for a range that:
2293 * - does not intersect with any VMA;
2294 * - is contained within the [low_limit, high_limit) interval;
2295 * - is at least the desired size.
2296 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2297 */
2298static inline unsigned long
2299vm_unmapped_area(struct vm_unmapped_area_info *info)
2300{
cdd7875e 2301 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2302 return unmapped_area_topdown(info);
cdd7875e
BP
2303 else
2304 return unmapped_area(info);
db4fbfb9
ML
2305}
2306
85821aab 2307/* truncate.c */
1da177e4 2308extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2309extern void truncate_inode_pages_range(struct address_space *,
2310 loff_t lstart, loff_t lend);
91b0abe3 2311extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2312
2313/* generic vm_area_ops exported for stackable file systems */
11bac800 2314extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2315extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2316 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2317extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2318
2319/* mm/page-writeback.c */
2b69c828 2320int __must_check write_one_page(struct page *page);
1cf6e7d8 2321void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2322
2323/* readahead.c */
2324#define VM_MAX_READAHEAD 128 /* kbytes */
2325#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2326
1da177e4 2327int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2328 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2329
2330void page_cache_sync_readahead(struct address_space *mapping,
2331 struct file_ra_state *ra,
2332 struct file *filp,
2333 pgoff_t offset,
2334 unsigned long size);
2335
2336void page_cache_async_readahead(struct address_space *mapping,
2337 struct file_ra_state *ra,
2338 struct file *filp,
2339 struct page *pg,
2340 pgoff_t offset,
2341 unsigned long size);
2342
1be7107f 2343extern unsigned long stack_guard_gap;
d05f3169 2344/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2345extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2346
2347/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2348extern int expand_downwards(struct vm_area_struct *vma,
2349 unsigned long address);
8ca3eb08 2350#if VM_GROWSUP
46dea3d0 2351extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2352#else
fee7e49d 2353 #define expand_upwards(vma, address) (0)
9ab88515 2354#endif
1da177e4
LT
2355
2356/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2357extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2358extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2359 struct vm_area_struct **pprev);
2360
2361/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2362 NULL if none. Assume start_addr < end_addr. */
2363static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2364{
2365 struct vm_area_struct * vma = find_vma(mm,start_addr);
2366
2367 if (vma && end_addr <= vma->vm_start)
2368 vma = NULL;
2369 return vma;
2370}
2371
1be7107f
HD
2372static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2373{
2374 unsigned long vm_start = vma->vm_start;
2375
2376 if (vma->vm_flags & VM_GROWSDOWN) {
2377 vm_start -= stack_guard_gap;
2378 if (vm_start > vma->vm_start)
2379 vm_start = 0;
2380 }
2381 return vm_start;
2382}
2383
2384static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2385{
2386 unsigned long vm_end = vma->vm_end;
2387
2388 if (vma->vm_flags & VM_GROWSUP) {
2389 vm_end += stack_guard_gap;
2390 if (vm_end < vma->vm_end)
2391 vm_end = -PAGE_SIZE;
2392 }
2393 return vm_end;
2394}
2395
1da177e4
LT
2396static inline unsigned long vma_pages(struct vm_area_struct *vma)
2397{
2398 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2399}
2400
640708a2
PE
2401/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2402static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2403 unsigned long vm_start, unsigned long vm_end)
2404{
2405 struct vm_area_struct *vma = find_vma(mm, vm_start);
2406
2407 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2408 vma = NULL;
2409
2410 return vma;
2411}
2412
162aed49
MK
2413static inline bool range_in_vma(struct vm_area_struct *vma,
2414 unsigned long start, unsigned long end)
2415{
2416 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2417}
2418
bad849b3 2419#ifdef CONFIG_MMU
804af2cf 2420pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2421void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2422#else
2423static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2424{
2425 return __pgprot(0);
2426}
64e45507
PF
2427static inline void vma_set_page_prot(struct vm_area_struct *vma)
2428{
2429 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2430}
bad849b3
DH
2431#endif
2432
5877231f 2433#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2434unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2435 unsigned long start, unsigned long end);
2436#endif
2437
deceb6cd 2438struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2439int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2440 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2441int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2442int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2443 unsigned long pfn);
1745cbc5
AL
2444int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2445 unsigned long pfn, pgprot_t pgprot);
423bad60 2446int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2447 pfn_t pfn);
b2770da6
RZ
2448int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2449 pfn_t pfn);
b4cbb197
LT
2450int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2451
deceb6cd 2452
240aadee
ML
2453struct page *follow_page_mask(struct vm_area_struct *vma,
2454 unsigned long address, unsigned int foll_flags,
2455 unsigned int *page_mask);
2456
2457static inline struct page *follow_page(struct vm_area_struct *vma,
2458 unsigned long address, unsigned int foll_flags)
2459{
2460 unsigned int unused_page_mask;
2461 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2462}
2463
deceb6cd
HD
2464#define FOLL_WRITE 0x01 /* check pte is writable */
2465#define FOLL_TOUCH 0x02 /* mark page accessed */
2466#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2467#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2468#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2469#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2470 * and return without waiting upon it */
84d33df2 2471#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2472#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2473#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2474#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2475#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2476#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2477#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2478#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2479#define FOLL_COW 0x4000 /* internal GUP flag */
4cc2a00a 2480#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2481
9a291a7c
JM
2482static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2483{
2484 if (vm_fault & VM_FAULT_OOM)
2485 return -ENOMEM;
2486 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2487 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2488 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2489 return -EFAULT;
2490 return 0;
2491}
2492
2f569afd 2493typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2494 void *data);
2495extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2496 unsigned long size, pte_fn_t fn, void *data);
2497
1da177e4 2498
8823b1db
LA
2499#ifdef CONFIG_PAGE_POISONING
2500extern bool page_poisoning_enabled(void);
2501extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2502extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2503#else
2504static inline bool page_poisoning_enabled(void) { return false; }
2505static inline void kernel_poison_pages(struct page *page, int numpages,
2506 int enable) { }
1414c7f4 2507static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2508#endif
2509
12d6f21e 2510#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2511extern bool _debug_pagealloc_enabled;
2512extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2513
2514static inline bool debug_pagealloc_enabled(void)
2515{
2516 return _debug_pagealloc_enabled;
2517}
2518
2519static inline void
2520kernel_map_pages(struct page *page, int numpages, int enable)
2521{
2522 if (!debug_pagealloc_enabled())
2523 return;
2524
2525 __kernel_map_pages(page, numpages, enable);
2526}
8a235efa
RW
2527#ifdef CONFIG_HIBERNATION
2528extern bool kernel_page_present(struct page *page);
40b44137
JK
2529#endif /* CONFIG_HIBERNATION */
2530#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2531static inline void
9858db50 2532kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2533#ifdef CONFIG_HIBERNATION
2534static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2535#endif /* CONFIG_HIBERNATION */
2536static inline bool debug_pagealloc_enabled(void)
2537{
2538 return false;
2539}
2540#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2541
a6c19dfe 2542#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2543extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2544extern int in_gate_area_no_mm(unsigned long addr);
2545extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2546#else
a6c19dfe
AL
2547static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2548{
2549 return NULL;
2550}
2551static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2552static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2553{
2554 return 0;
2555}
1da177e4
LT
2556#endif /* __HAVE_ARCH_GATE_AREA */
2557
44a70ade
MH
2558extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2559
146732ce
JT
2560#ifdef CONFIG_SYSCTL
2561extern int sysctl_drop_caches;
8d65af78 2562int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2563 void __user *, size_t *, loff_t *);
146732ce
JT
2564#endif
2565
cb731d6c
VD
2566void drop_slab(void);
2567void drop_slab_node(int nid);
9d0243bc 2568
7a9166e3
LY
2569#ifndef CONFIG_MMU
2570#define randomize_va_space 0
2571#else
a62eaf15 2572extern int randomize_va_space;
7a9166e3 2573#endif
a62eaf15 2574
045e72ac 2575const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2576void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2577
9bdac914
YL
2578void sparse_mem_maps_populate_node(struct page **map_map,
2579 unsigned long pnum_begin,
2580 unsigned long pnum_end,
2581 unsigned long map_count,
2582 int nodeid);
2583
98f3cfc1 2584struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111 2585pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2586p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2587pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2588pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2589pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2590void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2591struct vmem_altmap;
2592void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2593 struct vmem_altmap *altmap);
2594static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2595{
2596 return __vmemmap_alloc_block_buf(size, node, NULL);
2597}
2598
8f6aac41 2599void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2600int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2601 int node);
2602int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2603void vmemmap_populate_print_last(void);
0197518c 2604#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2605void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2606#endif
46723bfa 2607void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2608 unsigned long nr_pages);
6a46079c 2609
82ba011b
AK
2610enum mf_flags {
2611 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2612 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2613 MF_MUST_KILL = 1 << 2,
cf870c70 2614 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2615};
cd42f4a3 2616extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2617extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2618extern int unpoison_memory(unsigned long pfn);
ead07f6a 2619extern int get_hwpoison_page(struct page *page);
4e41a30c 2620#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2621extern int sysctl_memory_failure_early_kill;
2622extern int sysctl_memory_failure_recovery;
facb6011 2623extern void shake_page(struct page *p, int access);
293c07e3 2624extern atomic_long_t num_poisoned_pages;
facb6011 2625extern int soft_offline_page(struct page *page, int flags);
6a46079c 2626
cc637b17
XX
2627
2628/*
2629 * Error handlers for various types of pages.
2630 */
cc3e2af4 2631enum mf_result {
cc637b17
XX
2632 MF_IGNORED, /* Error: cannot be handled */
2633 MF_FAILED, /* Error: handling failed */
2634 MF_DELAYED, /* Will be handled later */
2635 MF_RECOVERED, /* Successfully recovered */
2636};
2637
2638enum mf_action_page_type {
2639 MF_MSG_KERNEL,
2640 MF_MSG_KERNEL_HIGH_ORDER,
2641 MF_MSG_SLAB,
2642 MF_MSG_DIFFERENT_COMPOUND,
2643 MF_MSG_POISONED_HUGE,
2644 MF_MSG_HUGE,
2645 MF_MSG_FREE_HUGE,
8e88be0d 2646 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2647 MF_MSG_UNMAP_FAILED,
2648 MF_MSG_DIRTY_SWAPCACHE,
2649 MF_MSG_CLEAN_SWAPCACHE,
2650 MF_MSG_DIRTY_MLOCKED_LRU,
2651 MF_MSG_CLEAN_MLOCKED_LRU,
2652 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2653 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2654 MF_MSG_DIRTY_LRU,
2655 MF_MSG_CLEAN_LRU,
2656 MF_MSG_TRUNCATED_LRU,
2657 MF_MSG_BUDDY,
2658 MF_MSG_BUDDY_2ND,
2659 MF_MSG_UNKNOWN,
2660};
2661
47ad8475
AA
2662#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2663extern void clear_huge_page(struct page *page,
c79b57e4 2664 unsigned long addr_hint,
47ad8475
AA
2665 unsigned int pages_per_huge_page);
2666extern void copy_user_huge_page(struct page *dst, struct page *src,
2667 unsigned long addr, struct vm_area_struct *vma,
2668 unsigned int pages_per_huge_page);
fa4d75c1
MK
2669extern long copy_huge_page_from_user(struct page *dst_page,
2670 const void __user *usr_src,
810a56b9
MK
2671 unsigned int pages_per_huge_page,
2672 bool allow_pagefault);
47ad8475
AA
2673#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2674
e30825f1 2675extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2676
c0a32fc5
SG
2677#ifdef CONFIG_DEBUG_PAGEALLOC
2678extern unsigned int _debug_guardpage_minorder;
e30825f1 2679extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2680
2681static inline unsigned int debug_guardpage_minorder(void)
2682{
2683 return _debug_guardpage_minorder;
2684}
2685
e30825f1
JK
2686static inline bool debug_guardpage_enabled(void)
2687{
2688 return _debug_guardpage_enabled;
2689}
2690
c0a32fc5
SG
2691static inline bool page_is_guard(struct page *page)
2692{
e30825f1
JK
2693 struct page_ext *page_ext;
2694
2695 if (!debug_guardpage_enabled())
2696 return false;
2697
2698 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2699 if (unlikely(!page_ext))
2700 return false;
2701
e30825f1 2702 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2703}
2704#else
2705static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2706static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2707static inline bool page_is_guard(struct page *page) { return false; }
2708#endif /* CONFIG_DEBUG_PAGEALLOC */
2709
f9872caf
CS
2710#if MAX_NUMNODES > 1
2711void __init setup_nr_node_ids(void);
2712#else
2713static inline void setup_nr_node_ids(void) {}
2714#endif
2715
1da177e4
LT
2716#endif /* __KERNEL__ */
2717#endif /* _LINUX_MM_H */