]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/mm.h
madvise: correct the comment of MADV_DODUMP flag
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
1da177e4
LT
21
22struct mempolicy;
23struct anon_vma;
bf181b9f 24struct anon_vma_chain;
4e950f6f 25struct file_ra_state;
e8edc6e0 26struct user_struct;
4e950f6f 27struct writeback_control;
1da177e4 28
fccc9987 29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 30extern unsigned long max_mapnr;
fccc9987
JL
31
32static inline void set_max_mapnr(unsigned long limit)
33{
34 max_mapnr = limit;
35}
36#else
37static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
38#endif
39
4481374c 40extern unsigned long totalram_pages;
1da177e4 41extern void * high_memory;
1da177e4
LT
42extern int page_cluster;
43
44#ifdef CONFIG_SYSCTL
45extern int sysctl_legacy_va_layout;
46#else
47#define sysctl_legacy_va_layout 0
48#endif
49
50#include <asm/page.h>
51#include <asm/pgtable.h>
52#include <asm/processor.h>
1da177e4 53
79442ed1
TC
54#ifndef __pa_symbol
55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56#endif
57
c9b1d098 58extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 59extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 60
49f0ce5f
JM
61extern int sysctl_overcommit_memory;
62extern int sysctl_overcommit_ratio;
63extern unsigned long sysctl_overcommit_kbytes;
64
65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
1da177e4
LT
70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
27ac792c
AR
72/* to align the pointer to the (next) page boundary */
73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
0fa73b86
AM
75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
1da177e4
LT
78/*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
c43692e8
CL
87extern struct kmem_cache *vm_area_cachep;
88
1da177e4 89#ifndef CONFIG_MMU
8feae131
DH
90extern struct rb_root nommu_region_tree;
91extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
92
93extern unsigned int kobjsize(const void *objp);
94#endif
95
96/*
605d9288 97 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 98 */
cc2383ec
KK
99#define VM_NONE 0x00000000
100
1da177e4
LT
101#define VM_READ 0x00000001 /* currently active flags */
102#define VM_WRITE 0x00000002
103#define VM_EXEC 0x00000004
104#define VM_SHARED 0x00000008
105
7e2cff42 106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108#define VM_MAYWRITE 0x00000020
109#define VM_MAYEXEC 0x00000040
110#define VM_MAYSHARE 0x00000080
111
112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
1da177e4
LT
116#define VM_LOCKED 0x00002000
117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 131
d9104d1c
CG
132#ifdef CONFIG_MEM_SOFT_DIRTY
133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134#else
135# define VM_SOFTDIRTY 0
136#endif
137
b379d790 138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 142
cc2383ec
KK
143#if defined(CONFIG_X86)
144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145#elif defined(CONFIG_PPC)
146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147#elif defined(CONFIG_PARISC)
148# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
149#elif defined(CONFIG_METAG)
150# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
151#elif defined(CONFIG_IA64)
152# define VM_GROWSUP VM_ARCH_1
153#elif !defined(CONFIG_MMU)
154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155#endif
156
157#ifndef VM_GROWSUP
158# define VM_GROWSUP VM_NONE
159#endif
160
a8bef8ff
MG
161/* Bits set in the VMA until the stack is in its final location */
162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
1da177e4
LT
164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166#endif
167
168#ifdef CONFIG_STACK_GROWSUP
169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170#else
171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#endif
173
b291f000 174/*
78f11a25
AA
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 177 */
9050d7eb 178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 179
a0715cc2
AT
180/* This mask defines which mm->def_flags a process can inherit its parent */
181#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
1da177e4
LT
183/*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187extern pgprot_t protection_map[16];
188
d0217ac0
NP
189#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 191#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 192#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 193#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 194#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 195#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 196#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 197
54cb8821 198/*
d0217ac0 199 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 202 *
d0217ac0 203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 205 */
d0217ac0
NP
206struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
83c54070 212 * page here, unless VM_FAULT_NOPAGE
d0217ac0 213 * is set (which is also implied by
83c54070 214 * VM_FAULT_ERROR).
d0217ac0 215 */
8c6e50b0
KS
216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 220};
1da177e4
LT
221
222/*
223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs.
226 */
227struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area);
d0217ac0 230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
232
233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
236
237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware
239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write);
1da177e4 242#ifdef CONFIG_NUMA
a6020ed7
LS
243 /*
244 * set_policy() op must add a reference to any non-NULL @new mempolicy
245 * to hold the policy upon return. Caller should pass NULL @new to
246 * remove a policy and fall back to surrounding context--i.e. do not
247 * install a MPOL_DEFAULT policy, nor the task or system default
248 * mempolicy.
249 */
1da177e4 250 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
251
252 /*
253 * get_policy() op must add reference [mpol_get()] to any policy at
254 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
255 * in mm/mempolicy.c will do this automatically.
256 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
257 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
258 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
259 * must return NULL--i.e., do not "fallback" to task or system default
260 * policy.
261 */
1da177e4
LT
262 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
263 unsigned long addr);
7b2259b3
CL
264 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
265 const nodemask_t *to, unsigned long flags);
1da177e4 266#endif
0b173bc4
KK
267 /* called by sys_remap_file_pages() to populate non-linear mapping */
268 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
269 unsigned long size, pgoff_t pgoff);
1da177e4
LT
270};
271
272struct mmu_gather;
273struct inode;
274
349aef0b
AM
275#define page_private(page) ((page)->private)
276#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 277
b12c4ad1
MK
278/* It's valid only if the page is free path or free_list */
279static inline void set_freepage_migratetype(struct page *page, int migratetype)
280{
95e34412 281 page->index = migratetype;
b12c4ad1
MK
282}
283
284/* It's valid only if the page is free path or free_list */
285static inline int get_freepage_migratetype(struct page *page)
286{
95e34412 287 return page->index;
b12c4ad1
MK
288}
289
1da177e4
LT
290/*
291 * FIXME: take this include out, include page-flags.h in
292 * files which need it (119 of them)
293 */
294#include <linux/page-flags.h>
71e3aac0 295#include <linux/huge_mm.h>
1da177e4
LT
296
297/*
298 * Methods to modify the page usage count.
299 *
300 * What counts for a page usage:
301 * - cache mapping (page->mapping)
302 * - private data (page->private)
303 * - page mapped in a task's page tables, each mapping
304 * is counted separately
305 *
306 * Also, many kernel routines increase the page count before a critical
307 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
308 */
309
310/*
da6052f7 311 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 312 */
7c8ee9a8
NP
313static inline int put_page_testzero(struct page *page)
314{
309381fe 315 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 316 return atomic_dec_and_test(&page->_count);
7c8ee9a8 317}
1da177e4
LT
318
319/*
7c8ee9a8
NP
320 * Try to grab a ref unless the page has a refcount of zero, return false if
321 * that is the case.
8e0861fa
AK
322 * This can be called when MMU is off so it must not access
323 * any of the virtual mappings.
1da177e4 324 */
7c8ee9a8
NP
325static inline int get_page_unless_zero(struct page *page)
326{
8dc04efb 327 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 328}
1da177e4 329
8e0861fa
AK
330/*
331 * Try to drop a ref unless the page has a refcount of one, return false if
332 * that is the case.
333 * This is to make sure that the refcount won't become zero after this drop.
334 * This can be called when MMU is off so it must not access
335 * any of the virtual mappings.
336 */
337static inline int put_page_unless_one(struct page *page)
338{
339 return atomic_add_unless(&page->_count, -1, 1);
340}
341
53df8fdc
WF
342extern int page_is_ram(unsigned long pfn);
343
48667e7a 344/* Support for virtually mapped pages */
b3bdda02
CL
345struct page *vmalloc_to_page(const void *addr);
346unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 347
0738c4bb
PM
348/*
349 * Determine if an address is within the vmalloc range
350 *
351 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
352 * is no special casing required.
353 */
9e2779fa
CL
354static inline int is_vmalloc_addr(const void *x)
355{
0738c4bb 356#ifdef CONFIG_MMU
9e2779fa
CL
357 unsigned long addr = (unsigned long)x;
358
359 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
360#else
361 return 0;
8ca3ed87 362#endif
0738c4bb 363}
81ac3ad9
KH
364#ifdef CONFIG_MMU
365extern int is_vmalloc_or_module_addr(const void *x);
366#else
934831d0 367static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
368{
369 return 0;
370}
371#endif
9e2779fa 372
e9da73d6
AA
373static inline void compound_lock(struct page *page)
374{
375#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 376 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
377 bit_spin_lock(PG_compound_lock, &page->flags);
378#endif
379}
380
381static inline void compound_unlock(struct page *page)
382{
383#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 384 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
385 bit_spin_unlock(PG_compound_lock, &page->flags);
386#endif
387}
388
389static inline unsigned long compound_lock_irqsave(struct page *page)
390{
391 unsigned long uninitialized_var(flags);
392#ifdef CONFIG_TRANSPARENT_HUGEPAGE
393 local_irq_save(flags);
394 compound_lock(page);
395#endif
396 return flags;
397}
398
399static inline void compound_unlock_irqrestore(struct page *page,
400 unsigned long flags)
401{
402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 compound_unlock(page);
404 local_irq_restore(flags);
405#endif
406}
407
d85f3385
CL
408static inline struct page *compound_head(struct page *page)
409{
668f9abb
DR
410 if (unlikely(PageTail(page))) {
411 struct page *head = page->first_page;
412
413 /*
414 * page->first_page may be a dangling pointer to an old
415 * compound page, so recheck that it is still a tail
416 * page before returning.
417 */
418 smp_rmb();
419 if (likely(PageTail(page)))
420 return head;
421 }
d85f3385
CL
422 return page;
423}
424
70b50f94
AA
425/*
426 * The atomic page->_mapcount, starts from -1: so that transitions
427 * both from it and to it can be tracked, using atomic_inc_and_test
428 * and atomic_add_negative(-1).
429 */
22b751c3 430static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
431{
432 atomic_set(&(page)->_mapcount, -1);
433}
434
435static inline int page_mapcount(struct page *page)
436{
437 return atomic_read(&(page)->_mapcount) + 1;
438}
439
4c21e2f2 440static inline int page_count(struct page *page)
1da177e4 441{
d85f3385 442 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
443}
444
44518d2b
AA
445#ifdef CONFIG_HUGETLB_PAGE
446extern int PageHeadHuge(struct page *page_head);
447#else /* CONFIG_HUGETLB_PAGE */
448static inline int PageHeadHuge(struct page *page_head)
449{
450 return 0;
451}
452#endif /* CONFIG_HUGETLB_PAGE */
453
454static inline bool __compound_tail_refcounted(struct page *page)
455{
456 return !PageSlab(page) && !PageHeadHuge(page);
457}
458
459/*
460 * This takes a head page as parameter and tells if the
461 * tail page reference counting can be skipped.
462 *
463 * For this to be safe, PageSlab and PageHeadHuge must remain true on
464 * any given page where they return true here, until all tail pins
465 * have been released.
466 */
467static inline bool compound_tail_refcounted(struct page *page)
468{
309381fe 469 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
470 return __compound_tail_refcounted(page);
471}
472
b35a35b5
AA
473static inline void get_huge_page_tail(struct page *page)
474{
475 /*
5eaf1a9e 476 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 477 */
309381fe
SL
478 VM_BUG_ON_PAGE(!PageTail(page), page);
479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 481 if (compound_tail_refcounted(page->first_page))
44518d2b 482 atomic_inc(&page->_mapcount);
b35a35b5
AA
483}
484
70b50f94
AA
485extern bool __get_page_tail(struct page *page);
486
1da177e4
LT
487static inline void get_page(struct page *page)
488{
70b50f94
AA
489 if (unlikely(PageTail(page)))
490 if (likely(__get_page_tail(page)))
491 return;
91807063
AA
492 /*
493 * Getting a normal page or the head of a compound page
70b50f94 494 * requires to already have an elevated page->_count.
91807063 495 */
309381fe 496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
497 atomic_inc(&page->_count);
498}
499
b49af68f
CL
500static inline struct page *virt_to_head_page(const void *x)
501{
502 struct page *page = virt_to_page(x);
503 return compound_head(page);
504}
505
7835e98b
NP
506/*
507 * Setup the page count before being freed into the page allocator for
508 * the first time (boot or memory hotplug)
509 */
510static inline void init_page_count(struct page *page)
511{
512 atomic_set(&page->_count, 1);
513}
514
5f24ce5f
AA
515/*
516 * PageBuddy() indicate that the page is free and in the buddy system
517 * (see mm/page_alloc.c).
ef2b4b95
AA
518 *
519 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
520 * -2 so that an underflow of the page_mapcount() won't be mistaken
521 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
522 * efficiently by most CPU architectures.
5f24ce5f 523 */
ef2b4b95
AA
524#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
525
5f24ce5f
AA
526static inline int PageBuddy(struct page *page)
527{
ef2b4b95 528 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
529}
530
531static inline void __SetPageBuddy(struct page *page)
532{
309381fe 533 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 534 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
535}
536
537static inline void __ClearPageBuddy(struct page *page)
538{
309381fe 539 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
540 atomic_set(&page->_mapcount, -1);
541}
542
1da177e4 543void put_page(struct page *page);
1d7ea732 544void put_pages_list(struct list_head *pages);
1da177e4 545
8dfcc9ba 546void split_page(struct page *page, unsigned int order);
748446bb 547int split_free_page(struct page *page);
8dfcc9ba 548
33f2ef89
AW
549/*
550 * Compound pages have a destructor function. Provide a
551 * prototype for that function and accessor functions.
552 * These are _only_ valid on the head of a PG_compound page.
553 */
554typedef void compound_page_dtor(struct page *);
555
556static inline void set_compound_page_dtor(struct page *page,
557 compound_page_dtor *dtor)
558{
559 page[1].lru.next = (void *)dtor;
560}
561
562static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
563{
564 return (compound_page_dtor *)page[1].lru.next;
565}
566
d85f3385
CL
567static inline int compound_order(struct page *page)
568{
6d777953 569 if (!PageHead(page))
d85f3385
CL
570 return 0;
571 return (unsigned long)page[1].lru.prev;
572}
573
574static inline void set_compound_order(struct page *page, unsigned long order)
575{
576 page[1].lru.prev = (void *)order;
577}
578
3dece370 579#ifdef CONFIG_MMU
14fd403f
AA
580/*
581 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
582 * servicing faults for write access. In the normal case, do always want
583 * pte_mkwrite. But get_user_pages can cause write faults for mappings
584 * that do not have writing enabled, when used by access_process_vm.
585 */
586static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
587{
588 if (likely(vma->vm_flags & VM_WRITE))
589 pte = pte_mkwrite(pte);
590 return pte;
591}
8c6e50b0
KS
592
593void do_set_pte(struct vm_area_struct *vma, unsigned long address,
594 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 595#endif
14fd403f 596
1da177e4
LT
597/*
598 * Multiple processes may "see" the same page. E.g. for untouched
599 * mappings of /dev/null, all processes see the same page full of
600 * zeroes, and text pages of executables and shared libraries have
601 * only one copy in memory, at most, normally.
602 *
603 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
604 * page_count() == 0 means the page is free. page->lru is then used for
605 * freelist management in the buddy allocator.
da6052f7 606 * page_count() > 0 means the page has been allocated.
1da177e4 607 *
da6052f7
NP
608 * Pages are allocated by the slab allocator in order to provide memory
609 * to kmalloc and kmem_cache_alloc. In this case, the management of the
610 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
611 * unless a particular usage is carefully commented. (the responsibility of
612 * freeing the kmalloc memory is the caller's, of course).
1da177e4 613 *
da6052f7
NP
614 * A page may be used by anyone else who does a __get_free_page().
615 * In this case, page_count still tracks the references, and should only
616 * be used through the normal accessor functions. The top bits of page->flags
617 * and page->virtual store page management information, but all other fields
618 * are unused and could be used privately, carefully. The management of this
619 * page is the responsibility of the one who allocated it, and those who have
620 * subsequently been given references to it.
621 *
622 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
623 * managed by the Linux memory manager: I/O, buffers, swapping etc.
624 * The following discussion applies only to them.
625 *
da6052f7
NP
626 * A pagecache page contains an opaque `private' member, which belongs to the
627 * page's address_space. Usually, this is the address of a circular list of
628 * the page's disk buffers. PG_private must be set to tell the VM to call
629 * into the filesystem to release these pages.
1da177e4 630 *
da6052f7
NP
631 * A page may belong to an inode's memory mapping. In this case, page->mapping
632 * is the pointer to the inode, and page->index is the file offset of the page,
633 * in units of PAGE_CACHE_SIZE.
1da177e4 634 *
da6052f7
NP
635 * If pagecache pages are not associated with an inode, they are said to be
636 * anonymous pages. These may become associated with the swapcache, and in that
637 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 638 *
da6052f7
NP
639 * In either case (swapcache or inode backed), the pagecache itself holds one
640 * reference to the page. Setting PG_private should also increment the
641 * refcount. The each user mapping also has a reference to the page.
1da177e4 642 *
da6052f7
NP
643 * The pagecache pages are stored in a per-mapping radix tree, which is
644 * rooted at mapping->page_tree, and indexed by offset.
645 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
646 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 647 *
da6052f7 648 * All pagecache pages may be subject to I/O:
1da177e4
LT
649 * - inode pages may need to be read from disk,
650 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
651 * to be written back to the inode on disk,
652 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
653 * modified may need to be swapped out to swap space and (later) to be read
654 * back into memory.
1da177e4
LT
655 */
656
657/*
658 * The zone field is never updated after free_area_init_core()
659 * sets it, so none of the operations on it need to be atomic.
1da177e4 660 */
348f8b6c 661
90572890 662/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 663#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
664#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
665#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 666#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 667
348f8b6c 668/*
25985edc 669 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
670 * sections we define the shift as 0; that plus a 0 mask ensures
671 * the compiler will optimise away reference to them.
672 */
d41dee36
AW
673#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
674#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
675#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 676#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 677
bce54bbf
WD
678/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
679#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 680#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
681#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
682 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 683#else
89689ae7 684#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
685#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
686 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
687#endif
688
bd8029b6 689#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 690
9223b419
CL
691#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
692#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
693#endif
694
d41dee36
AW
695#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
696#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
697#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
90572890 698#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
89689ae7 699#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 700
33dd4e0e 701static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 702{
348f8b6c 703 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 704}
1da177e4 705
9127ab4f
CS
706#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
707#define SECTION_IN_PAGE_FLAGS
708#endif
709
89689ae7 710/*
7a8010cd
VB
711 * The identification function is mainly used by the buddy allocator for
712 * determining if two pages could be buddies. We are not really identifying
713 * the zone since we could be using the section number id if we do not have
714 * node id available in page flags.
715 * We only guarantee that it will return the same value for two combinable
716 * pages in a zone.
89689ae7 717 */
cb2b95e1
AW
718static inline int page_zone_id(struct page *page)
719{
89689ae7 720 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
721}
722
25ba77c1 723static inline int zone_to_nid(struct zone *zone)
89fa3024 724{
d5f541ed
CL
725#ifdef CONFIG_NUMA
726 return zone->node;
727#else
728 return 0;
729#endif
89fa3024
CL
730}
731
89689ae7 732#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 733extern int page_to_nid(const struct page *page);
89689ae7 734#else
33dd4e0e 735static inline int page_to_nid(const struct page *page)
d41dee36 736{
89689ae7 737 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 738}
89689ae7
CL
739#endif
740
57e0a030 741#ifdef CONFIG_NUMA_BALANCING
90572890 742static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 743{
90572890 744 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
745}
746
90572890 747static inline int cpupid_to_pid(int cpupid)
57e0a030 748{
90572890 749 return cpupid & LAST__PID_MASK;
57e0a030 750}
b795854b 751
90572890 752static inline int cpupid_to_cpu(int cpupid)
b795854b 753{
90572890 754 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
755}
756
90572890 757static inline int cpupid_to_nid(int cpupid)
b795854b 758{
90572890 759 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
760}
761
90572890 762static inline bool cpupid_pid_unset(int cpupid)
57e0a030 763{
90572890 764 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
765}
766
90572890 767static inline bool cpupid_cpu_unset(int cpupid)
b795854b 768{
90572890 769 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
770}
771
8c8a743c
PZ
772static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
773{
774 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
775}
776
777#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
778#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
779static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 780{
1ae71d03 781 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 782}
90572890
PZ
783
784static inline int page_cpupid_last(struct page *page)
785{
786 return page->_last_cpupid;
787}
788static inline void page_cpupid_reset_last(struct page *page)
b795854b 789{
1ae71d03 790 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
791}
792#else
90572890 793static inline int page_cpupid_last(struct page *page)
75980e97 794{
90572890 795 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
796}
797
90572890 798extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 799
90572890 800static inline void page_cpupid_reset_last(struct page *page)
75980e97 801{
90572890 802 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 803
90572890
PZ
804 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
805 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 806}
90572890
PZ
807#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
808#else /* !CONFIG_NUMA_BALANCING */
809static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 810{
90572890 811 return page_to_nid(page); /* XXX */
57e0a030
MG
812}
813
90572890 814static inline int page_cpupid_last(struct page *page)
57e0a030 815{
90572890 816 return page_to_nid(page); /* XXX */
57e0a030
MG
817}
818
90572890 819static inline int cpupid_to_nid(int cpupid)
b795854b
MG
820{
821 return -1;
822}
823
90572890 824static inline int cpupid_to_pid(int cpupid)
b795854b
MG
825{
826 return -1;
827}
828
90572890 829static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
830{
831 return -1;
832}
833
90572890
PZ
834static inline int cpu_pid_to_cpupid(int nid, int pid)
835{
836 return -1;
837}
838
839static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
840{
841 return 1;
842}
843
90572890 844static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
845{
846}
8c8a743c
PZ
847
848static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
849{
850 return false;
851}
90572890 852#endif /* CONFIG_NUMA_BALANCING */
57e0a030 853
33dd4e0e 854static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
855{
856 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
857}
858
9127ab4f 859#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
860static inline void set_page_section(struct page *page, unsigned long section)
861{
862 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
863 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
864}
865
aa462abe 866static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
867{
868 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
869}
308c05e3 870#endif
d41dee36 871
2f1b6248 872static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
873{
874 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
875 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
876}
2f1b6248 877
348f8b6c
DH
878static inline void set_page_node(struct page *page, unsigned long node)
879{
880 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
881 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 882}
89689ae7 883
2f1b6248 884static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 885 unsigned long node, unsigned long pfn)
1da177e4 886{
348f8b6c
DH
887 set_page_zone(page, zone);
888 set_page_node(page, node);
9127ab4f 889#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 890 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 891#endif
1da177e4
LT
892}
893
f6ac2354
CL
894/*
895 * Some inline functions in vmstat.h depend on page_zone()
896 */
897#include <linux/vmstat.h>
898
33dd4e0e 899static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 900{
aa462abe 901 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
902}
903
904#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
905#define HASHED_PAGE_VIRTUAL
906#endif
907
908#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
909static inline void *page_address(const struct page *page)
910{
911 return page->virtual;
912}
913static inline void set_page_address(struct page *page, void *address)
914{
915 page->virtual = address;
916}
1da177e4
LT
917#define page_address_init() do { } while(0)
918#endif
919
920#if defined(HASHED_PAGE_VIRTUAL)
f9918794 921void *page_address(const struct page *page);
1da177e4
LT
922void set_page_address(struct page *page, void *virtual);
923void page_address_init(void);
924#endif
925
926#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
927#define page_address(page) lowmem_page_address(page)
928#define set_page_address(page, address) do { } while(0)
929#define page_address_init() do { } while(0)
930#endif
931
932/*
933 * On an anonymous page mapped into a user virtual memory area,
934 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
935 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
936 *
937 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
938 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
939 * and then page->mapping points, not to an anon_vma, but to a private
940 * structure which KSM associates with that merged page. See ksm.h.
941 *
942 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
943 *
944 * Please note that, confusingly, "page_mapping" refers to the inode
945 * address_space which maps the page from disk; whereas "page_mapped"
946 * refers to user virtual address space into which the page is mapped.
947 */
948#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
949#define PAGE_MAPPING_KSM 2
950#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 951
9800339b 952extern struct address_space *page_mapping(struct page *page);
1da177e4 953
3ca7b3c5
HD
954/* Neutral page->mapping pointer to address_space or anon_vma or other */
955static inline void *page_rmapping(struct page *page)
956{
957 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
958}
959
f981c595
MG
960extern struct address_space *__page_file_mapping(struct page *);
961
962static inline
963struct address_space *page_file_mapping(struct page *page)
964{
965 if (unlikely(PageSwapCache(page)))
966 return __page_file_mapping(page);
967
968 return page->mapping;
969}
970
1da177e4
LT
971static inline int PageAnon(struct page *page)
972{
973 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
974}
975
976/*
977 * Return the pagecache index of the passed page. Regular pagecache pages
978 * use ->index whereas swapcache pages use ->private
979 */
980static inline pgoff_t page_index(struct page *page)
981{
982 if (unlikely(PageSwapCache(page)))
4c21e2f2 983 return page_private(page);
1da177e4
LT
984 return page->index;
985}
986
f981c595
MG
987extern pgoff_t __page_file_index(struct page *page);
988
989/*
990 * Return the file index of the page. Regular pagecache pages use ->index
991 * whereas swapcache pages use swp_offset(->private)
992 */
993static inline pgoff_t page_file_index(struct page *page)
994{
995 if (unlikely(PageSwapCache(page)))
996 return __page_file_index(page);
997
998 return page->index;
999}
1000
1da177e4
LT
1001/*
1002 * Return true if this page is mapped into pagetables.
1003 */
1004static inline int page_mapped(struct page *page)
1005{
1006 return atomic_read(&(page)->_mapcount) >= 0;
1007}
1008
1da177e4
LT
1009/*
1010 * Different kinds of faults, as returned by handle_mm_fault().
1011 * Used to decide whether a process gets delivered SIGBUS or
1012 * just gets major/minor fault counters bumped up.
1013 */
d0217ac0 1014
83c54070 1015#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1016
83c54070
NP
1017#define VM_FAULT_OOM 0x0001
1018#define VM_FAULT_SIGBUS 0x0002
1019#define VM_FAULT_MAJOR 0x0004
1020#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1021#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1022#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1023
83c54070
NP
1024#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1025#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1026#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1027#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1028
aa50d3a7
AK
1029#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1030
1031#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1032 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1033
1034/* Encode hstate index for a hwpoisoned large page */
1035#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1036#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1037
1c0fe6e3
NP
1038/*
1039 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1040 */
1041extern void pagefault_out_of_memory(void);
1042
1da177e4
LT
1043#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1044
ddd588b5 1045/*
7bf02ea2 1046 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1047 * various contexts.
1048 */
4b59e6c4 1049#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1050
7bf02ea2
DR
1051extern void show_free_areas(unsigned int flags);
1052extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1053
1da177e4 1054int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1055#ifdef CONFIG_SHMEM
1056bool shmem_mapping(struct address_space *mapping);
1057#else
1058static inline bool shmem_mapping(struct address_space *mapping)
1059{
1060 return false;
1061}
1062#endif
1da177e4 1063
e8edc6e0 1064extern int can_do_mlock(void);
1da177e4
LT
1065extern int user_shm_lock(size_t, struct user_struct *);
1066extern void user_shm_unlock(size_t, struct user_struct *);
1067
1068/*
1069 * Parameter block passed down to zap_pte_range in exceptional cases.
1070 */
1071struct zap_details {
1072 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1073 struct address_space *check_mapping; /* Check page->mapping if set */
1074 pgoff_t first_index; /* Lowest page->index to unmap */
1075 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1076};
1077
7e675137
NP
1078struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1079 pte_t pte);
1080
c627f9cc
JS
1081int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1082 unsigned long size);
14f5ff5d 1083void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1084 unsigned long size, struct zap_details *);
4f74d2c8
LT
1085void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1086 unsigned long start, unsigned long end);
e6473092
MM
1087
1088/**
1089 * mm_walk - callbacks for walk_page_range
1090 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1091 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1092 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1093 * this handler is required to be able to handle
1094 * pmd_trans_huge() pmds. They may simply choose to
1095 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1096 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1097 * @pte_hole: if set, called for each hole at all levels
5dc37642 1098 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1099 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1100 * is used.
e6473092
MM
1101 *
1102 * (see walk_page_range for more details)
1103 */
1104struct mm_walk {
0f157a5b
AM
1105 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1106 unsigned long next, struct mm_walk *walk);
1107 int (*pud_entry)(pud_t *pud, unsigned long addr,
1108 unsigned long next, struct mm_walk *walk);
1109 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1110 unsigned long next, struct mm_walk *walk);
1111 int (*pte_entry)(pte_t *pte, unsigned long addr,
1112 unsigned long next, struct mm_walk *walk);
1113 int (*pte_hole)(unsigned long addr, unsigned long next,
1114 struct mm_walk *walk);
1115 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1116 unsigned long addr, unsigned long next,
1117 struct mm_walk *walk);
2165009b
DH
1118 struct mm_struct *mm;
1119 void *private;
e6473092
MM
1120};
1121
2165009b
DH
1122int walk_page_range(unsigned long addr, unsigned long end,
1123 struct mm_walk *walk);
42b77728 1124void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1125 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1126int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1127 struct vm_area_struct *vma);
1da177e4
LT
1128void unmap_mapping_range(struct address_space *mapping,
1129 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1130int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1131 unsigned long *pfn);
d87fe660 1132int follow_phys(struct vm_area_struct *vma, unsigned long address,
1133 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1134int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1135 void *buf, int len, int write);
1da177e4
LT
1136
1137static inline void unmap_shared_mapping_range(struct address_space *mapping,
1138 loff_t const holebegin, loff_t const holelen)
1139{
1140 unmap_mapping_range(mapping, holebegin, holelen, 0);
1141}
1142
7caef267 1143extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1144extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1145void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1146int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1147int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1148int invalidate_inode_page(struct page *page);
1149
7ee1dd3f 1150#ifdef CONFIG_MMU
83c54070 1151extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1152 unsigned long address, unsigned int flags);
5c723ba5
PZ
1153extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1154 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1155#else
1156static inline int handle_mm_fault(struct mm_struct *mm,
1157 struct vm_area_struct *vma, unsigned long address,
d06063cc 1158 unsigned int flags)
7ee1dd3f
DH
1159{
1160 /* should never happen if there's no MMU */
1161 BUG();
1162 return VM_FAULT_SIGBUS;
1163}
5c723ba5
PZ
1164static inline int fixup_user_fault(struct task_struct *tsk,
1165 struct mm_struct *mm, unsigned long address,
1166 unsigned int fault_flags)
1167{
1168 /* should never happen if there's no MMU */
1169 BUG();
1170 return -EFAULT;
1171}
7ee1dd3f 1172#endif
f33ea7f4 1173
1da177e4 1174extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1175extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1176 void *buf, int len, int write);
1da177e4 1177
28a35716
ML
1178long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1179 unsigned long start, unsigned long nr_pages,
1180 unsigned int foll_flags, struct page **pages,
1181 struct vm_area_struct **vmas, int *nonblocking);
1182long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1183 unsigned long start, unsigned long nr_pages,
1184 int write, int force, struct page **pages,
1185 struct vm_area_struct **vmas);
d2bf6be8
NP
1186int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1187 struct page **pages);
18022c5d
MG
1188struct kvec;
1189int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1190 struct page **pages);
1191int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1192struct page *get_dump_page(unsigned long addr);
1da177e4 1193
cf9a2ae8 1194extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1195extern void do_invalidatepage(struct page *page, unsigned int offset,
1196 unsigned int length);
cf9a2ae8 1197
1da177e4 1198int __set_page_dirty_nobuffers(struct page *page);
76719325 1199int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1200int redirty_page_for_writepage(struct writeback_control *wbc,
1201 struct page *page);
e3a7cca1 1202void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1203void account_page_writeback(struct page *page);
b3c97528 1204int set_page_dirty(struct page *page);
1da177e4
LT
1205int set_page_dirty_lock(struct page *page);
1206int clear_page_dirty_for_io(struct page *page);
1207
39aa3cb3 1208/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1209static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1210{
1211 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1212}
1213
a09a79f6
MP
1214static inline int stack_guard_page_start(struct vm_area_struct *vma,
1215 unsigned long addr)
1216{
1217 return (vma->vm_flags & VM_GROWSDOWN) &&
1218 (vma->vm_start == addr) &&
1219 !vma_growsdown(vma->vm_prev, addr);
1220}
1221
1222/* Is the vma a continuation of the stack vma below it? */
1223static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1224{
1225 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1226}
1227
1228static inline int stack_guard_page_end(struct vm_area_struct *vma,
1229 unsigned long addr)
1230{
1231 return (vma->vm_flags & VM_GROWSUP) &&
1232 (vma->vm_end == addr) &&
1233 !vma_growsup(vma->vm_next, addr);
1234}
1235
b7643757
SP
1236extern pid_t
1237vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1238
b6a2fea3
OW
1239extern unsigned long move_page_tables(struct vm_area_struct *vma,
1240 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1241 unsigned long new_addr, unsigned long len,
1242 bool need_rmap_locks);
7da4d641
PZ
1243extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1244 unsigned long end, pgprot_t newprot,
4b10e7d5 1245 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1246extern int mprotect_fixup(struct vm_area_struct *vma,
1247 struct vm_area_struct **pprev, unsigned long start,
1248 unsigned long end, unsigned long newflags);
1da177e4 1249
465a454f
PZ
1250/*
1251 * doesn't attempt to fault and will return short.
1252 */
1253int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1254 struct page **pages);
d559db08
KH
1255/*
1256 * per-process(per-mm_struct) statistics.
1257 */
d559db08
KH
1258static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1259{
69c97823
KK
1260 long val = atomic_long_read(&mm->rss_stat.count[member]);
1261
1262#ifdef SPLIT_RSS_COUNTING
1263 /*
1264 * counter is updated in asynchronous manner and may go to minus.
1265 * But it's never be expected number for users.
1266 */
1267 if (val < 0)
1268 val = 0;
172703b0 1269#endif
69c97823
KK
1270 return (unsigned long)val;
1271}
d559db08
KH
1272
1273static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1274{
172703b0 1275 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1276}
1277
1278static inline void inc_mm_counter(struct mm_struct *mm, int member)
1279{
172703b0 1280 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1281}
1282
1283static inline void dec_mm_counter(struct mm_struct *mm, int member)
1284{
172703b0 1285 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1286}
1287
d559db08
KH
1288static inline unsigned long get_mm_rss(struct mm_struct *mm)
1289{
1290 return get_mm_counter(mm, MM_FILEPAGES) +
1291 get_mm_counter(mm, MM_ANONPAGES);
1292}
1293
1294static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1295{
1296 return max(mm->hiwater_rss, get_mm_rss(mm));
1297}
1298
1299static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1300{
1301 return max(mm->hiwater_vm, mm->total_vm);
1302}
1303
1304static inline void update_hiwater_rss(struct mm_struct *mm)
1305{
1306 unsigned long _rss = get_mm_rss(mm);
1307
1308 if ((mm)->hiwater_rss < _rss)
1309 (mm)->hiwater_rss = _rss;
1310}
1311
1312static inline void update_hiwater_vm(struct mm_struct *mm)
1313{
1314 if (mm->hiwater_vm < mm->total_vm)
1315 mm->hiwater_vm = mm->total_vm;
1316}
1317
1318static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1319 struct mm_struct *mm)
1320{
1321 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1322
1323 if (*maxrss < hiwater_rss)
1324 *maxrss = hiwater_rss;
1325}
1326
53bddb4e 1327#if defined(SPLIT_RSS_COUNTING)
05af2e10 1328void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1329#else
05af2e10 1330static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1331{
1332}
1333#endif
465a454f 1334
4e950f6f 1335int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1336
25ca1d6c
NK
1337extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1338 spinlock_t **ptl);
1339static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1340 spinlock_t **ptl)
1341{
1342 pte_t *ptep;
1343 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1344 return ptep;
1345}
c9cfcddf 1346
5f22df00
NP
1347#ifdef __PAGETABLE_PUD_FOLDED
1348static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1349 unsigned long address)
1350{
1351 return 0;
1352}
1353#else
1bb3630e 1354int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1355#endif
1356
1357#ifdef __PAGETABLE_PMD_FOLDED
1358static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1359 unsigned long address)
1360{
1361 return 0;
1362}
1363#else
1bb3630e 1364int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1365#endif
1366
8ac1f832
AA
1367int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1368 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1369int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1370
1da177e4
LT
1371/*
1372 * The following ifdef needed to get the 4level-fixup.h header to work.
1373 * Remove it when 4level-fixup.h has been removed.
1374 */
1bb3630e 1375#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1376static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1377{
1bb3630e
HD
1378 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1379 NULL: pud_offset(pgd, address);
1da177e4
LT
1380}
1381
1382static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1383{
1bb3630e
HD
1384 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1385 NULL: pmd_offset(pud, address);
1da177e4 1386}
1bb3630e
HD
1387#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1388
57c1ffce 1389#if USE_SPLIT_PTE_PTLOCKS
597d795a 1390#if ALLOC_SPLIT_PTLOCKS
b35f1819 1391void __init ptlock_cache_init(void);
539edb58
PZ
1392extern bool ptlock_alloc(struct page *page);
1393extern void ptlock_free(struct page *page);
1394
1395static inline spinlock_t *ptlock_ptr(struct page *page)
1396{
1397 return page->ptl;
1398}
597d795a 1399#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1400static inline void ptlock_cache_init(void)
1401{
1402}
1403
49076ec2
KS
1404static inline bool ptlock_alloc(struct page *page)
1405{
49076ec2
KS
1406 return true;
1407}
539edb58 1408
49076ec2
KS
1409static inline void ptlock_free(struct page *page)
1410{
49076ec2
KS
1411}
1412
1413static inline spinlock_t *ptlock_ptr(struct page *page)
1414{
539edb58 1415 return &page->ptl;
49076ec2 1416}
597d795a 1417#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1418
1419static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1420{
1421 return ptlock_ptr(pmd_page(*pmd));
1422}
1423
1424static inline bool ptlock_init(struct page *page)
1425{
1426 /*
1427 * prep_new_page() initialize page->private (and therefore page->ptl)
1428 * with 0. Make sure nobody took it in use in between.
1429 *
1430 * It can happen if arch try to use slab for page table allocation:
1431 * slab code uses page->slab_cache and page->first_page (for tail
1432 * pages), which share storage with page->ptl.
1433 */
309381fe 1434 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1435 if (!ptlock_alloc(page))
1436 return false;
1437 spin_lock_init(ptlock_ptr(page));
1438 return true;
1439}
1440
1441/* Reset page->mapping so free_pages_check won't complain. */
1442static inline void pte_lock_deinit(struct page *page)
1443{
1444 page->mapping = NULL;
1445 ptlock_free(page);
1446}
1447
57c1ffce 1448#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1449/*
1450 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1451 */
49076ec2
KS
1452static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1453{
1454 return &mm->page_table_lock;
1455}
b35f1819 1456static inline void ptlock_cache_init(void) {}
49076ec2
KS
1457static inline bool ptlock_init(struct page *page) { return true; }
1458static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1459#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1460
b35f1819
KS
1461static inline void pgtable_init(void)
1462{
1463 ptlock_cache_init();
1464 pgtable_cache_init();
1465}
1466
390f44e2 1467static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1468{
2f569afd 1469 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1470 return ptlock_init(page);
2f569afd
MS
1471}
1472
1473static inline void pgtable_page_dtor(struct page *page)
1474{
1475 pte_lock_deinit(page);
1476 dec_zone_page_state(page, NR_PAGETABLE);
1477}
1478
c74df32c
HD
1479#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1480({ \
4c21e2f2 1481 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1482 pte_t *__pte = pte_offset_map(pmd, address); \
1483 *(ptlp) = __ptl; \
1484 spin_lock(__ptl); \
1485 __pte; \
1486})
1487
1488#define pte_unmap_unlock(pte, ptl) do { \
1489 spin_unlock(ptl); \
1490 pte_unmap(pte); \
1491} while (0)
1492
8ac1f832
AA
1493#define pte_alloc_map(mm, vma, pmd, address) \
1494 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1495 pmd, address))? \
1496 NULL: pte_offset_map(pmd, address))
1bb3630e 1497
c74df32c 1498#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1499 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1500 pmd, address))? \
c74df32c
HD
1501 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1502
1bb3630e 1503#define pte_alloc_kernel(pmd, address) \
8ac1f832 1504 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1505 NULL: pte_offset_kernel(pmd, address))
1da177e4 1506
e009bb30
KS
1507#if USE_SPLIT_PMD_PTLOCKS
1508
634391ac
MS
1509static struct page *pmd_to_page(pmd_t *pmd)
1510{
1511 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1512 return virt_to_page((void *)((unsigned long) pmd & mask));
1513}
1514
e009bb30
KS
1515static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1516{
634391ac 1517 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1518}
1519
1520static inline bool pgtable_pmd_page_ctor(struct page *page)
1521{
e009bb30
KS
1522#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1523 page->pmd_huge_pte = NULL;
1524#endif
49076ec2 1525 return ptlock_init(page);
e009bb30
KS
1526}
1527
1528static inline void pgtable_pmd_page_dtor(struct page *page)
1529{
1530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1531 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1532#endif
49076ec2 1533 ptlock_free(page);
e009bb30
KS
1534}
1535
634391ac 1536#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1537
1538#else
1539
9a86cb7b
KS
1540static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1541{
1542 return &mm->page_table_lock;
1543}
1544
e009bb30
KS
1545static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1546static inline void pgtable_pmd_page_dtor(struct page *page) {}
1547
c389a250 1548#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1549
e009bb30
KS
1550#endif
1551
9a86cb7b
KS
1552static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1553{
1554 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1555 spin_lock(ptl);
1556 return ptl;
1557}
1558
1da177e4 1559extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1560extern void free_area_init_node(int nid, unsigned long * zones_size,
1561 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1562extern void free_initmem(void);
1563
69afade7
JL
1564/*
1565 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1566 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1567 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1568 * Return pages freed into the buddy system.
1569 */
11199692 1570extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1571 int poison, char *s);
c3d5f5f0 1572
cfa11e08
JL
1573#ifdef CONFIG_HIGHMEM
1574/*
1575 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1576 * and totalram_pages.
1577 */
1578extern void free_highmem_page(struct page *page);
1579#endif
69afade7 1580
c3d5f5f0 1581extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1582extern void mem_init_print_info(const char *str);
69afade7
JL
1583
1584/* Free the reserved page into the buddy system, so it gets managed. */
1585static inline void __free_reserved_page(struct page *page)
1586{
1587 ClearPageReserved(page);
1588 init_page_count(page);
1589 __free_page(page);
1590}
1591
1592static inline void free_reserved_page(struct page *page)
1593{
1594 __free_reserved_page(page);
1595 adjust_managed_page_count(page, 1);
1596}
1597
1598static inline void mark_page_reserved(struct page *page)
1599{
1600 SetPageReserved(page);
1601 adjust_managed_page_count(page, -1);
1602}
1603
1604/*
1605 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1606 * The freed pages will be poisoned with pattern "poison" if it's within
1607 * range [0, UCHAR_MAX].
1608 * Return pages freed into the buddy system.
69afade7
JL
1609 */
1610static inline unsigned long free_initmem_default(int poison)
1611{
1612 extern char __init_begin[], __init_end[];
1613
11199692 1614 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1615 poison, "unused kernel");
1616}
1617
7ee3d4e8
JL
1618static inline unsigned long get_num_physpages(void)
1619{
1620 int nid;
1621 unsigned long phys_pages = 0;
1622
1623 for_each_online_node(nid)
1624 phys_pages += node_present_pages(nid);
1625
1626 return phys_pages;
1627}
1628
0ee332c1 1629#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1630/*
0ee332c1 1631 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1632 * zones, allocate the backing mem_map and account for memory holes in a more
1633 * architecture independent manner. This is a substitute for creating the
1634 * zone_sizes[] and zholes_size[] arrays and passing them to
1635 * free_area_init_node()
1636 *
1637 * An architecture is expected to register range of page frames backed by
0ee332c1 1638 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1639 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1640 * usage, an architecture is expected to do something like
1641 *
1642 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1643 * max_highmem_pfn};
1644 * for_each_valid_physical_page_range()
0ee332c1 1645 * memblock_add_node(base, size, nid)
c713216d
MG
1646 * free_area_init_nodes(max_zone_pfns);
1647 *
0ee332c1
TH
1648 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1649 * registered physical page range. Similarly
1650 * sparse_memory_present_with_active_regions() calls memory_present() for
1651 * each range when SPARSEMEM is enabled.
c713216d
MG
1652 *
1653 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1654 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1655 */
1656extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1657unsigned long node_map_pfn_alignment(void);
32996250
YL
1658unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1659 unsigned long end_pfn);
c713216d
MG
1660extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1661 unsigned long end_pfn);
1662extern void get_pfn_range_for_nid(unsigned int nid,
1663 unsigned long *start_pfn, unsigned long *end_pfn);
1664extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1665extern void free_bootmem_with_active_regions(int nid,
1666 unsigned long max_low_pfn);
1667extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1668
0ee332c1 1669#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1670
0ee332c1 1671#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1672 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1673static inline int __early_pfn_to_nid(unsigned long pfn)
1674{
1675 return 0;
1676}
1677#else
1678/* please see mm/page_alloc.c */
1679extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1680/* there is a per-arch backend function. */
1681extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1682#endif
1683
0e0b864e 1684extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1685extern void memmap_init_zone(unsigned long, int, unsigned long,
1686 unsigned long, enum memmap_context);
bc75d33f 1687extern void setup_per_zone_wmarks(void);
1b79acc9 1688extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1689extern void mem_init(void);
8feae131 1690extern void __init mmap_init(void);
b2b755b5 1691extern void show_mem(unsigned int flags);
1da177e4
LT
1692extern void si_meminfo(struct sysinfo * val);
1693extern void si_meminfo_node(struct sysinfo *val, int nid);
1694
3ee9a4f0
JP
1695extern __printf(3, 4)
1696void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1697
e7c8d5c9 1698extern void setup_per_cpu_pageset(void);
e7c8d5c9 1699
112067f0 1700extern void zone_pcp_update(struct zone *zone);
340175b7 1701extern void zone_pcp_reset(struct zone *zone);
112067f0 1702
75f7ad8e
PS
1703/* page_alloc.c */
1704extern int min_free_kbytes;
1705
8feae131 1706/* nommu.c */
33e5d769 1707extern atomic_long_t mmap_pages_allocated;
7e660872 1708extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1709
6b2dbba8 1710/* interval_tree.c */
6b2dbba8
ML
1711void vma_interval_tree_insert(struct vm_area_struct *node,
1712 struct rb_root *root);
9826a516
ML
1713void vma_interval_tree_insert_after(struct vm_area_struct *node,
1714 struct vm_area_struct *prev,
1715 struct rb_root *root);
6b2dbba8
ML
1716void vma_interval_tree_remove(struct vm_area_struct *node,
1717 struct rb_root *root);
1718struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1719 unsigned long start, unsigned long last);
1720struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1721 unsigned long start, unsigned long last);
1722
1723#define vma_interval_tree_foreach(vma, root, start, last) \
1724 for (vma = vma_interval_tree_iter_first(root, start, last); \
1725 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1726
1727static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1728 struct list_head *list)
1729{
6b2dbba8 1730 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1731}
1732
bf181b9f
ML
1733void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1734 struct rb_root *root);
1735void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1736 struct rb_root *root);
1737struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1738 struct rb_root *root, unsigned long start, unsigned long last);
1739struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1740 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1741#ifdef CONFIG_DEBUG_VM_RB
1742void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1743#endif
bf181b9f
ML
1744
1745#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1746 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1747 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1748
1da177e4 1749/* mmap.c */
34b4e4aa 1750extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1751extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1752 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1753extern struct vm_area_struct *vma_merge(struct mm_struct *,
1754 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1755 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1756 struct mempolicy *);
1757extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1758extern int split_vma(struct mm_struct *,
1759 struct vm_area_struct *, unsigned long addr, int new_below);
1760extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1761extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1762 struct rb_node **, struct rb_node *);
a8fb5618 1763extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1764extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1765 unsigned long addr, unsigned long len, pgoff_t pgoff,
1766 bool *need_rmap_locks);
1da177e4 1767extern void exit_mmap(struct mm_struct *);
925d1c40 1768
7906d00c
AA
1769extern int mm_take_all_locks(struct mm_struct *mm);
1770extern void mm_drop_all_locks(struct mm_struct *mm);
1771
38646013
JS
1772extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1773extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1774
119f657c 1775extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1776extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1777 unsigned long addr, unsigned long len,
1778 unsigned long flags, struct page **pages);
fa5dc22f
RM
1779extern int install_special_mapping(struct mm_struct *mm,
1780 unsigned long addr, unsigned long len,
1781 unsigned long flags, struct page **pages);
1da177e4
LT
1782
1783extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1784
0165ab44 1785extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1786 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1787extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1788 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1789 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1790extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1791
bebeb3d6
ML
1792#ifdef CONFIG_MMU
1793extern int __mm_populate(unsigned long addr, unsigned long len,
1794 int ignore_errors);
1795static inline void mm_populate(unsigned long addr, unsigned long len)
1796{
1797 /* Ignore errors */
1798 (void) __mm_populate(addr, len, 1);
1799}
1800#else
1801static inline void mm_populate(unsigned long addr, unsigned long len) {}
1802#endif
1803
e4eb1ff6
LT
1804/* These take the mm semaphore themselves */
1805extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1806extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1807extern unsigned long vm_mmap(struct file *, unsigned long,
1808 unsigned long, unsigned long,
1809 unsigned long, unsigned long);
1da177e4 1810
db4fbfb9
ML
1811struct vm_unmapped_area_info {
1812#define VM_UNMAPPED_AREA_TOPDOWN 1
1813 unsigned long flags;
1814 unsigned long length;
1815 unsigned long low_limit;
1816 unsigned long high_limit;
1817 unsigned long align_mask;
1818 unsigned long align_offset;
1819};
1820
1821extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1822extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1823
1824/*
1825 * Search for an unmapped address range.
1826 *
1827 * We are looking for a range that:
1828 * - does not intersect with any VMA;
1829 * - is contained within the [low_limit, high_limit) interval;
1830 * - is at least the desired size.
1831 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1832 */
1833static inline unsigned long
1834vm_unmapped_area(struct vm_unmapped_area_info *info)
1835{
1836 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1837 return unmapped_area(info);
1838 else
1839 return unmapped_area_topdown(info);
1840}
1841
85821aab 1842/* truncate.c */
1da177e4 1843extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1844extern void truncate_inode_pages_range(struct address_space *,
1845 loff_t lstart, loff_t lend);
91b0abe3 1846extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1847
1848/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1849extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1850extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1851extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1852
1853/* mm/page-writeback.c */
1854int write_one_page(struct page *page, int wait);
1cf6e7d8 1855void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1856
1857/* readahead.c */
1858#define VM_MAX_READAHEAD 128 /* kbytes */
1859#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1860
1da177e4 1861int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1862 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1863
1864void page_cache_sync_readahead(struct address_space *mapping,
1865 struct file_ra_state *ra,
1866 struct file *filp,
1867 pgoff_t offset,
1868 unsigned long size);
1869
1870void page_cache_async_readahead(struct address_space *mapping,
1871 struct file_ra_state *ra,
1872 struct file *filp,
1873 struct page *pg,
1874 pgoff_t offset,
1875 unsigned long size);
1876
1da177e4
LT
1877unsigned long max_sane_readahead(unsigned long nr);
1878
d05f3169 1879/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1880extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1881
1882/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1883extern int expand_downwards(struct vm_area_struct *vma,
1884 unsigned long address);
8ca3eb08 1885#if VM_GROWSUP
46dea3d0 1886extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1887#else
1888 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1889#endif
1da177e4
LT
1890
1891/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1892extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1893extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1894 struct vm_area_struct **pprev);
1895
1896/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1897 NULL if none. Assume start_addr < end_addr. */
1898static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1899{
1900 struct vm_area_struct * vma = find_vma(mm,start_addr);
1901
1902 if (vma && end_addr <= vma->vm_start)
1903 vma = NULL;
1904 return vma;
1905}
1906
1907static inline unsigned long vma_pages(struct vm_area_struct *vma)
1908{
1909 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1910}
1911
640708a2
PE
1912/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1913static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1914 unsigned long vm_start, unsigned long vm_end)
1915{
1916 struct vm_area_struct *vma = find_vma(mm, vm_start);
1917
1918 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1919 vma = NULL;
1920
1921 return vma;
1922}
1923
bad849b3 1924#ifdef CONFIG_MMU
804af2cf 1925pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1926#else
1927static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1928{
1929 return __pgprot(0);
1930}
1931#endif
1932
5877231f 1933#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 1934unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1935 unsigned long start, unsigned long end);
1936#endif
1937
deceb6cd 1938struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1939int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1940 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1941int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1942int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1943 unsigned long pfn);
423bad60
NP
1944int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1945 unsigned long pfn);
b4cbb197
LT
1946int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1947
deceb6cd 1948
240aadee
ML
1949struct page *follow_page_mask(struct vm_area_struct *vma,
1950 unsigned long address, unsigned int foll_flags,
1951 unsigned int *page_mask);
1952
1953static inline struct page *follow_page(struct vm_area_struct *vma,
1954 unsigned long address, unsigned int foll_flags)
1955{
1956 unsigned int unused_page_mask;
1957 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1958}
1959
deceb6cd
HD
1960#define FOLL_WRITE 0x01 /* check pte is writable */
1961#define FOLL_TOUCH 0x02 /* mark page accessed */
1962#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1963#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1964#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1965#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1966 * and return without waiting upon it */
110d74a9 1967#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1968#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1969#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1970#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1971#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1972
2f569afd 1973typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1974 void *data);
1975extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1976 unsigned long size, pte_fn_t fn, void *data);
1977
1da177e4 1978#ifdef CONFIG_PROC_FS
ab50b8ed 1979void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1980#else
ab50b8ed 1981static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1982 unsigned long flags, struct file *file, long pages)
1983{
44de9d0c 1984 mm->total_vm += pages;
1da177e4
LT
1985}
1986#endif /* CONFIG_PROC_FS */
1987
12d6f21e 1988#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1989extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1990#ifdef CONFIG_HIBERNATION
1991extern bool kernel_page_present(struct page *page);
1992#endif /* CONFIG_HIBERNATION */
12d6f21e 1993#else
1da177e4 1994static inline void
9858db50 1995kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1996#ifdef CONFIG_HIBERNATION
1997static inline bool kernel_page_present(struct page *page) { return true; }
1998#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1999#endif
2000
31db58b3 2001extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 2002#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 2003int in_gate_area_no_mm(unsigned long addr);
83b964bb 2004int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2005#else
cae5d390
SW
2006int in_gate_area_no_mm(unsigned long addr);
2007#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
2008#endif /* __HAVE_ARCH_GATE_AREA */
2009
146732ce
JT
2010#ifdef CONFIG_SYSCTL
2011extern int sysctl_drop_caches;
8d65af78 2012int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2013 void __user *, size_t *, loff_t *);
146732ce
JT
2014#endif
2015
a09ed5e0 2016unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
2017 unsigned long nr_pages_scanned,
2018 unsigned long lru_pages);
9d0243bc 2019
7a9166e3
LY
2020#ifndef CONFIG_MMU
2021#define randomize_va_space 0
2022#else
a62eaf15 2023extern int randomize_va_space;
7a9166e3 2024#endif
a62eaf15 2025
045e72ac 2026const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2027void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2028
9bdac914
YL
2029void sparse_mem_maps_populate_node(struct page **map_map,
2030 unsigned long pnum_begin,
2031 unsigned long pnum_end,
2032 unsigned long map_count,
2033 int nodeid);
2034
98f3cfc1 2035struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2036pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2037pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2038pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2039pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2040void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2041void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2042void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2043int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2044 int node);
2045int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2046void vmemmap_populate_print_last(void);
0197518c 2047#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2048void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2049#endif
46723bfa
YI
2050void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2051 unsigned long size);
6a46079c 2052
82ba011b
AK
2053enum mf_flags {
2054 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2055 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2056 MF_MUST_KILL = 1 << 2,
cf870c70 2057 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2058};
cd42f4a3 2059extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2060extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2061extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2062extern int sysctl_memory_failure_early_kill;
2063extern int sysctl_memory_failure_recovery;
facb6011 2064extern void shake_page(struct page *p, int access);
293c07e3 2065extern atomic_long_t num_poisoned_pages;
facb6011 2066extern int soft_offline_page(struct page *page, int flags);
6a46079c 2067
47ad8475
AA
2068#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2069extern void clear_huge_page(struct page *page,
2070 unsigned long addr,
2071 unsigned int pages_per_huge_page);
2072extern void copy_user_huge_page(struct page *dst, struct page *src,
2073 unsigned long addr, struct vm_area_struct *vma,
2074 unsigned int pages_per_huge_page);
2075#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2076
c0a32fc5
SG
2077#ifdef CONFIG_DEBUG_PAGEALLOC
2078extern unsigned int _debug_guardpage_minorder;
2079
2080static inline unsigned int debug_guardpage_minorder(void)
2081{
2082 return _debug_guardpage_minorder;
2083}
2084
2085static inline bool page_is_guard(struct page *page)
2086{
2087 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2088}
2089#else
2090static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2091static inline bool page_is_guard(struct page *page) { return false; }
2092#endif /* CONFIG_DEBUG_PAGEALLOC */
2093
f9872caf
CS
2094#if MAX_NUMNODES > 1
2095void __init setup_nr_node_ids(void);
2096#else
2097static inline void setup_nr_node_ids(void) {}
2098#endif
2099
1da177e4
LT
2100#endif /* __KERNEL__ */
2101#endif /* _LINUX_MM_H */