]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/mm.h
mm, thp: add VM_INIT_DEF_MASK and PRCTL_THP_DISABLE
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
1da177e4
LT
21
22struct mempolicy;
23struct anon_vma;
bf181b9f 24struct anon_vma_chain;
4e950f6f 25struct file_ra_state;
e8edc6e0 26struct user_struct;
4e950f6f 27struct writeback_control;
1da177e4 28
fccc9987 29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 30extern unsigned long max_mapnr;
fccc9987
JL
31
32static inline void set_max_mapnr(unsigned long limit)
33{
34 max_mapnr = limit;
35}
36#else
37static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
38#endif
39
4481374c 40extern unsigned long totalram_pages;
1da177e4 41extern void * high_memory;
1da177e4
LT
42extern int page_cluster;
43
44#ifdef CONFIG_SYSCTL
45extern int sysctl_legacy_va_layout;
46#else
47#define sysctl_legacy_va_layout 0
48#endif
49
50#include <asm/page.h>
51#include <asm/pgtable.h>
52#include <asm/processor.h>
1da177e4 53
79442ed1
TC
54#ifndef __pa_symbol
55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56#endif
57
c9b1d098 58extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 59extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 60
49f0ce5f
JM
61extern int sysctl_overcommit_memory;
62extern int sysctl_overcommit_ratio;
63extern unsigned long sysctl_overcommit_kbytes;
64
65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
1da177e4
LT
70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
27ac792c
AR
72/* to align the pointer to the (next) page boundary */
73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
0fa73b86
AM
75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
1da177e4
LT
78/*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
c43692e8
CL
87extern struct kmem_cache *vm_area_cachep;
88
1da177e4 89#ifndef CONFIG_MMU
8feae131
DH
90extern struct rb_root nommu_region_tree;
91extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
92
93extern unsigned int kobjsize(const void *objp);
94#endif
95
96/*
605d9288 97 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 98 */
cc2383ec
KK
99#define VM_NONE 0x00000000
100
1da177e4
LT
101#define VM_READ 0x00000001 /* currently active flags */
102#define VM_WRITE 0x00000002
103#define VM_EXEC 0x00000004
104#define VM_SHARED 0x00000008
105
7e2cff42 106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108#define VM_MAYWRITE 0x00000020
109#define VM_MAYEXEC 0x00000040
110#define VM_MAYSHARE 0x00000080
111
112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
1da177e4
LT
116#define VM_LOCKED 0x00002000
117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 131
d9104d1c
CG
132#ifdef CONFIG_MEM_SOFT_DIRTY
133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134#else
135# define VM_SOFTDIRTY 0
136#endif
137
b379d790 138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 142
cc2383ec
KK
143#if defined(CONFIG_X86)
144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145#elif defined(CONFIG_PPC)
146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147#elif defined(CONFIG_PARISC)
148# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
149#elif defined(CONFIG_METAG)
150# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
151#elif defined(CONFIG_IA64)
152# define VM_GROWSUP VM_ARCH_1
153#elif !defined(CONFIG_MMU)
154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155#endif
156
157#ifndef VM_GROWSUP
158# define VM_GROWSUP VM_NONE
159#endif
160
a8bef8ff
MG
161/* Bits set in the VMA until the stack is in its final location */
162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
1da177e4
LT
164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166#endif
167
168#ifdef CONFIG_STACK_GROWSUP
169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170#else
171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#endif
173
b291f000 174/*
78f11a25
AA
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 177 */
9050d7eb 178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 179
a0715cc2
AT
180/* This mask defines which mm->def_flags a process can inherit its parent */
181#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
1da177e4
LT
183/*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187extern pgprot_t protection_map[16];
188
d0217ac0
NP
189#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 191#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 192#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 193#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 194#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 195#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 196#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 197
54cb8821 198/*
d0217ac0 199 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 202 *
d0217ac0 203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 205 */
d0217ac0
NP
206struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
83c54070 212 * page here, unless VM_FAULT_NOPAGE
d0217ac0 213 * is set (which is also implied by
83c54070 214 * VM_FAULT_ERROR).
d0217ac0 215 */
54cb8821 216};
1da177e4
LT
217
218/*
219 * These are the virtual MM functions - opening of an area, closing and
220 * unmapping it (needed to keep files on disk up-to-date etc), pointer
221 * to the functions called when a no-page or a wp-page exception occurs.
222 */
223struct vm_operations_struct {
224 void (*open)(struct vm_area_struct * area);
225 void (*close)(struct vm_area_struct * area);
d0217ac0 226 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
227
228 /* notification that a previously read-only page is about to become
229 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 230 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
231
232 /* called by access_process_vm when get_user_pages() fails, typically
233 * for use by special VMAs that can switch between memory and hardware
234 */
235 int (*access)(struct vm_area_struct *vma, unsigned long addr,
236 void *buf, int len, int write);
1da177e4 237#ifdef CONFIG_NUMA
a6020ed7
LS
238 /*
239 * set_policy() op must add a reference to any non-NULL @new mempolicy
240 * to hold the policy upon return. Caller should pass NULL @new to
241 * remove a policy and fall back to surrounding context--i.e. do not
242 * install a MPOL_DEFAULT policy, nor the task or system default
243 * mempolicy.
244 */
1da177e4 245 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
246
247 /*
248 * get_policy() op must add reference [mpol_get()] to any policy at
249 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
250 * in mm/mempolicy.c will do this automatically.
251 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
252 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
253 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
254 * must return NULL--i.e., do not "fallback" to task or system default
255 * policy.
256 */
1da177e4
LT
257 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
258 unsigned long addr);
7b2259b3
CL
259 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
260 const nodemask_t *to, unsigned long flags);
1da177e4 261#endif
0b173bc4
KK
262 /* called by sys_remap_file_pages() to populate non-linear mapping */
263 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
264 unsigned long size, pgoff_t pgoff);
1da177e4
LT
265};
266
267struct mmu_gather;
268struct inode;
269
349aef0b
AM
270#define page_private(page) ((page)->private)
271#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 272
b12c4ad1
MK
273/* It's valid only if the page is free path or free_list */
274static inline void set_freepage_migratetype(struct page *page, int migratetype)
275{
95e34412 276 page->index = migratetype;
b12c4ad1
MK
277}
278
279/* It's valid only if the page is free path or free_list */
280static inline int get_freepage_migratetype(struct page *page)
281{
95e34412 282 return page->index;
b12c4ad1
MK
283}
284
1da177e4
LT
285/*
286 * FIXME: take this include out, include page-flags.h in
287 * files which need it (119 of them)
288 */
289#include <linux/page-flags.h>
71e3aac0 290#include <linux/huge_mm.h>
1da177e4
LT
291
292/*
293 * Methods to modify the page usage count.
294 *
295 * What counts for a page usage:
296 * - cache mapping (page->mapping)
297 * - private data (page->private)
298 * - page mapped in a task's page tables, each mapping
299 * is counted separately
300 *
301 * Also, many kernel routines increase the page count before a critical
302 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
303 */
304
305/*
da6052f7 306 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 307 */
7c8ee9a8
NP
308static inline int put_page_testzero(struct page *page)
309{
309381fe 310 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 311 return atomic_dec_and_test(&page->_count);
7c8ee9a8 312}
1da177e4
LT
313
314/*
7c8ee9a8
NP
315 * Try to grab a ref unless the page has a refcount of zero, return false if
316 * that is the case.
8e0861fa
AK
317 * This can be called when MMU is off so it must not access
318 * any of the virtual mappings.
1da177e4 319 */
7c8ee9a8
NP
320static inline int get_page_unless_zero(struct page *page)
321{
8dc04efb 322 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 323}
1da177e4 324
8e0861fa
AK
325/*
326 * Try to drop a ref unless the page has a refcount of one, return false if
327 * that is the case.
328 * This is to make sure that the refcount won't become zero after this drop.
329 * This can be called when MMU is off so it must not access
330 * any of the virtual mappings.
331 */
332static inline int put_page_unless_one(struct page *page)
333{
334 return atomic_add_unless(&page->_count, -1, 1);
335}
336
53df8fdc
WF
337extern int page_is_ram(unsigned long pfn);
338
48667e7a 339/* Support for virtually mapped pages */
b3bdda02
CL
340struct page *vmalloc_to_page(const void *addr);
341unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 342
0738c4bb
PM
343/*
344 * Determine if an address is within the vmalloc range
345 *
346 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
347 * is no special casing required.
348 */
9e2779fa
CL
349static inline int is_vmalloc_addr(const void *x)
350{
0738c4bb 351#ifdef CONFIG_MMU
9e2779fa
CL
352 unsigned long addr = (unsigned long)x;
353
354 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
355#else
356 return 0;
8ca3ed87 357#endif
0738c4bb 358}
81ac3ad9
KH
359#ifdef CONFIG_MMU
360extern int is_vmalloc_or_module_addr(const void *x);
361#else
934831d0 362static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
363{
364 return 0;
365}
366#endif
9e2779fa 367
e9da73d6
AA
368static inline void compound_lock(struct page *page)
369{
370#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 371 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
372 bit_spin_lock(PG_compound_lock, &page->flags);
373#endif
374}
375
376static inline void compound_unlock(struct page *page)
377{
378#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 379 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
380 bit_spin_unlock(PG_compound_lock, &page->flags);
381#endif
382}
383
384static inline unsigned long compound_lock_irqsave(struct page *page)
385{
386 unsigned long uninitialized_var(flags);
387#ifdef CONFIG_TRANSPARENT_HUGEPAGE
388 local_irq_save(flags);
389 compound_lock(page);
390#endif
391 return flags;
392}
393
394static inline void compound_unlock_irqrestore(struct page *page,
395 unsigned long flags)
396{
397#ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 compound_unlock(page);
399 local_irq_restore(flags);
400#endif
401}
402
d85f3385
CL
403static inline struct page *compound_head(struct page *page)
404{
668f9abb
DR
405 if (unlikely(PageTail(page))) {
406 struct page *head = page->first_page;
407
408 /*
409 * page->first_page may be a dangling pointer to an old
410 * compound page, so recheck that it is still a tail
411 * page before returning.
412 */
413 smp_rmb();
414 if (likely(PageTail(page)))
415 return head;
416 }
d85f3385
CL
417 return page;
418}
419
70b50f94
AA
420/*
421 * The atomic page->_mapcount, starts from -1: so that transitions
422 * both from it and to it can be tracked, using atomic_inc_and_test
423 * and atomic_add_negative(-1).
424 */
22b751c3 425static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
426{
427 atomic_set(&(page)->_mapcount, -1);
428}
429
430static inline int page_mapcount(struct page *page)
431{
432 return atomic_read(&(page)->_mapcount) + 1;
433}
434
4c21e2f2 435static inline int page_count(struct page *page)
1da177e4 436{
d85f3385 437 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
438}
439
44518d2b
AA
440#ifdef CONFIG_HUGETLB_PAGE
441extern int PageHeadHuge(struct page *page_head);
442#else /* CONFIG_HUGETLB_PAGE */
443static inline int PageHeadHuge(struct page *page_head)
444{
445 return 0;
446}
447#endif /* CONFIG_HUGETLB_PAGE */
448
449static inline bool __compound_tail_refcounted(struct page *page)
450{
451 return !PageSlab(page) && !PageHeadHuge(page);
452}
453
454/*
455 * This takes a head page as parameter and tells if the
456 * tail page reference counting can be skipped.
457 *
458 * For this to be safe, PageSlab and PageHeadHuge must remain true on
459 * any given page where they return true here, until all tail pins
460 * have been released.
461 */
462static inline bool compound_tail_refcounted(struct page *page)
463{
309381fe 464 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
465 return __compound_tail_refcounted(page);
466}
467
b35a35b5
AA
468static inline void get_huge_page_tail(struct page *page)
469{
470 /*
5eaf1a9e 471 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 472 */
309381fe
SL
473 VM_BUG_ON_PAGE(!PageTail(page), page);
474 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
475 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 476 if (compound_tail_refcounted(page->first_page))
44518d2b 477 atomic_inc(&page->_mapcount);
b35a35b5
AA
478}
479
70b50f94
AA
480extern bool __get_page_tail(struct page *page);
481
1da177e4
LT
482static inline void get_page(struct page *page)
483{
70b50f94
AA
484 if (unlikely(PageTail(page)))
485 if (likely(__get_page_tail(page)))
486 return;
91807063
AA
487 /*
488 * Getting a normal page or the head of a compound page
70b50f94 489 * requires to already have an elevated page->_count.
91807063 490 */
309381fe 491 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
492 atomic_inc(&page->_count);
493}
494
b49af68f
CL
495static inline struct page *virt_to_head_page(const void *x)
496{
497 struct page *page = virt_to_page(x);
498 return compound_head(page);
499}
500
7835e98b
NP
501/*
502 * Setup the page count before being freed into the page allocator for
503 * the first time (boot or memory hotplug)
504 */
505static inline void init_page_count(struct page *page)
506{
507 atomic_set(&page->_count, 1);
508}
509
5f24ce5f
AA
510/*
511 * PageBuddy() indicate that the page is free and in the buddy system
512 * (see mm/page_alloc.c).
ef2b4b95
AA
513 *
514 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
515 * -2 so that an underflow of the page_mapcount() won't be mistaken
516 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
517 * efficiently by most CPU architectures.
5f24ce5f 518 */
ef2b4b95
AA
519#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
520
5f24ce5f
AA
521static inline int PageBuddy(struct page *page)
522{
ef2b4b95 523 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
524}
525
526static inline void __SetPageBuddy(struct page *page)
527{
309381fe 528 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 529 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
530}
531
532static inline void __ClearPageBuddy(struct page *page)
533{
309381fe 534 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
535 atomic_set(&page->_mapcount, -1);
536}
537
1da177e4 538void put_page(struct page *page);
1d7ea732 539void put_pages_list(struct list_head *pages);
1da177e4 540
8dfcc9ba 541void split_page(struct page *page, unsigned int order);
748446bb 542int split_free_page(struct page *page);
8dfcc9ba 543
33f2ef89
AW
544/*
545 * Compound pages have a destructor function. Provide a
546 * prototype for that function and accessor functions.
547 * These are _only_ valid on the head of a PG_compound page.
548 */
549typedef void compound_page_dtor(struct page *);
550
551static inline void set_compound_page_dtor(struct page *page,
552 compound_page_dtor *dtor)
553{
554 page[1].lru.next = (void *)dtor;
555}
556
557static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
558{
559 return (compound_page_dtor *)page[1].lru.next;
560}
561
d85f3385
CL
562static inline int compound_order(struct page *page)
563{
6d777953 564 if (!PageHead(page))
d85f3385
CL
565 return 0;
566 return (unsigned long)page[1].lru.prev;
567}
568
569static inline void set_compound_order(struct page *page, unsigned long order)
570{
571 page[1].lru.prev = (void *)order;
572}
573
3dece370 574#ifdef CONFIG_MMU
14fd403f
AA
575/*
576 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
577 * servicing faults for write access. In the normal case, do always want
578 * pte_mkwrite. But get_user_pages can cause write faults for mappings
579 * that do not have writing enabled, when used by access_process_vm.
580 */
581static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
582{
583 if (likely(vma->vm_flags & VM_WRITE))
584 pte = pte_mkwrite(pte);
585 return pte;
586}
3dece370 587#endif
14fd403f 588
1da177e4
LT
589/*
590 * Multiple processes may "see" the same page. E.g. for untouched
591 * mappings of /dev/null, all processes see the same page full of
592 * zeroes, and text pages of executables and shared libraries have
593 * only one copy in memory, at most, normally.
594 *
595 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
596 * page_count() == 0 means the page is free. page->lru is then used for
597 * freelist management in the buddy allocator.
da6052f7 598 * page_count() > 0 means the page has been allocated.
1da177e4 599 *
da6052f7
NP
600 * Pages are allocated by the slab allocator in order to provide memory
601 * to kmalloc and kmem_cache_alloc. In this case, the management of the
602 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
603 * unless a particular usage is carefully commented. (the responsibility of
604 * freeing the kmalloc memory is the caller's, of course).
1da177e4 605 *
da6052f7
NP
606 * A page may be used by anyone else who does a __get_free_page().
607 * In this case, page_count still tracks the references, and should only
608 * be used through the normal accessor functions. The top bits of page->flags
609 * and page->virtual store page management information, but all other fields
610 * are unused and could be used privately, carefully. The management of this
611 * page is the responsibility of the one who allocated it, and those who have
612 * subsequently been given references to it.
613 *
614 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
615 * managed by the Linux memory manager: I/O, buffers, swapping etc.
616 * The following discussion applies only to them.
617 *
da6052f7
NP
618 * A pagecache page contains an opaque `private' member, which belongs to the
619 * page's address_space. Usually, this is the address of a circular list of
620 * the page's disk buffers. PG_private must be set to tell the VM to call
621 * into the filesystem to release these pages.
1da177e4 622 *
da6052f7
NP
623 * A page may belong to an inode's memory mapping. In this case, page->mapping
624 * is the pointer to the inode, and page->index is the file offset of the page,
625 * in units of PAGE_CACHE_SIZE.
1da177e4 626 *
da6052f7
NP
627 * If pagecache pages are not associated with an inode, they are said to be
628 * anonymous pages. These may become associated with the swapcache, and in that
629 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 630 *
da6052f7
NP
631 * In either case (swapcache or inode backed), the pagecache itself holds one
632 * reference to the page. Setting PG_private should also increment the
633 * refcount. The each user mapping also has a reference to the page.
1da177e4 634 *
da6052f7
NP
635 * The pagecache pages are stored in a per-mapping radix tree, which is
636 * rooted at mapping->page_tree, and indexed by offset.
637 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
638 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 639 *
da6052f7 640 * All pagecache pages may be subject to I/O:
1da177e4
LT
641 * - inode pages may need to be read from disk,
642 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
643 * to be written back to the inode on disk,
644 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
645 * modified may need to be swapped out to swap space and (later) to be read
646 * back into memory.
1da177e4
LT
647 */
648
649/*
650 * The zone field is never updated after free_area_init_core()
651 * sets it, so none of the operations on it need to be atomic.
1da177e4 652 */
348f8b6c 653
90572890 654/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 655#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
656#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
657#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 658#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 659
348f8b6c 660/*
25985edc 661 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
662 * sections we define the shift as 0; that plus a 0 mask ensures
663 * the compiler will optimise away reference to them.
664 */
d41dee36
AW
665#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
666#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
667#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 668#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 669
bce54bbf
WD
670/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
671#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 672#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
673#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
674 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 675#else
89689ae7 676#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
677#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
678 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
679#endif
680
bd8029b6 681#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 682
9223b419
CL
683#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
684#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
685#endif
686
d41dee36
AW
687#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
688#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
689#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
90572890 690#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
89689ae7 691#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 692
33dd4e0e 693static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 694{
348f8b6c 695 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 696}
1da177e4 697
9127ab4f
CS
698#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
699#define SECTION_IN_PAGE_FLAGS
700#endif
701
89689ae7 702/*
7a8010cd
VB
703 * The identification function is mainly used by the buddy allocator for
704 * determining if two pages could be buddies. We are not really identifying
705 * the zone since we could be using the section number id if we do not have
706 * node id available in page flags.
707 * We only guarantee that it will return the same value for two combinable
708 * pages in a zone.
89689ae7 709 */
cb2b95e1
AW
710static inline int page_zone_id(struct page *page)
711{
89689ae7 712 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
713}
714
25ba77c1 715static inline int zone_to_nid(struct zone *zone)
89fa3024 716{
d5f541ed
CL
717#ifdef CONFIG_NUMA
718 return zone->node;
719#else
720 return 0;
721#endif
89fa3024
CL
722}
723
89689ae7 724#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 725extern int page_to_nid(const struct page *page);
89689ae7 726#else
33dd4e0e 727static inline int page_to_nid(const struct page *page)
d41dee36 728{
89689ae7 729 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 730}
89689ae7
CL
731#endif
732
57e0a030 733#ifdef CONFIG_NUMA_BALANCING
90572890 734static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 735{
90572890 736 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
737}
738
90572890 739static inline int cpupid_to_pid(int cpupid)
57e0a030 740{
90572890 741 return cpupid & LAST__PID_MASK;
57e0a030 742}
b795854b 743
90572890 744static inline int cpupid_to_cpu(int cpupid)
b795854b 745{
90572890 746 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
747}
748
90572890 749static inline int cpupid_to_nid(int cpupid)
b795854b 750{
90572890 751 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
752}
753
90572890 754static inline bool cpupid_pid_unset(int cpupid)
57e0a030 755{
90572890 756 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
757}
758
90572890 759static inline bool cpupid_cpu_unset(int cpupid)
b795854b 760{
90572890 761 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
762}
763
8c8a743c
PZ
764static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
765{
766 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
767}
768
769#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
770#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
771static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 772{
1ae71d03 773 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 774}
90572890
PZ
775
776static inline int page_cpupid_last(struct page *page)
777{
778 return page->_last_cpupid;
779}
780static inline void page_cpupid_reset_last(struct page *page)
b795854b 781{
1ae71d03 782 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
783}
784#else
90572890 785static inline int page_cpupid_last(struct page *page)
75980e97 786{
90572890 787 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
788}
789
90572890 790extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 791
90572890 792static inline void page_cpupid_reset_last(struct page *page)
75980e97 793{
90572890 794 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 795
90572890
PZ
796 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
797 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 798}
90572890
PZ
799#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
800#else /* !CONFIG_NUMA_BALANCING */
801static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 802{
90572890 803 return page_to_nid(page); /* XXX */
57e0a030
MG
804}
805
90572890 806static inline int page_cpupid_last(struct page *page)
57e0a030 807{
90572890 808 return page_to_nid(page); /* XXX */
57e0a030
MG
809}
810
90572890 811static inline int cpupid_to_nid(int cpupid)
b795854b
MG
812{
813 return -1;
814}
815
90572890 816static inline int cpupid_to_pid(int cpupid)
b795854b
MG
817{
818 return -1;
819}
820
90572890 821static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
822{
823 return -1;
824}
825
90572890
PZ
826static inline int cpu_pid_to_cpupid(int nid, int pid)
827{
828 return -1;
829}
830
831static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
832{
833 return 1;
834}
835
90572890 836static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
837{
838}
8c8a743c
PZ
839
840static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
841{
842 return false;
843}
90572890 844#endif /* CONFIG_NUMA_BALANCING */
57e0a030 845
33dd4e0e 846static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
847{
848 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
849}
850
9127ab4f 851#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
852static inline void set_page_section(struct page *page, unsigned long section)
853{
854 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
855 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
856}
857
aa462abe 858static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
859{
860 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
861}
308c05e3 862#endif
d41dee36 863
2f1b6248 864static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
865{
866 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
867 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
868}
2f1b6248 869
348f8b6c
DH
870static inline void set_page_node(struct page *page, unsigned long node)
871{
872 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
873 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 874}
89689ae7 875
2f1b6248 876static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 877 unsigned long node, unsigned long pfn)
1da177e4 878{
348f8b6c
DH
879 set_page_zone(page, zone);
880 set_page_node(page, node);
9127ab4f 881#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 882 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 883#endif
1da177e4
LT
884}
885
f6ac2354
CL
886/*
887 * Some inline functions in vmstat.h depend on page_zone()
888 */
889#include <linux/vmstat.h>
890
33dd4e0e 891static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 892{
aa462abe 893 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
894}
895
896#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
897#define HASHED_PAGE_VIRTUAL
898#endif
899
900#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
901static inline void *page_address(const struct page *page)
902{
903 return page->virtual;
904}
905static inline void set_page_address(struct page *page, void *address)
906{
907 page->virtual = address;
908}
1da177e4
LT
909#define page_address_init() do { } while(0)
910#endif
911
912#if defined(HASHED_PAGE_VIRTUAL)
f9918794 913void *page_address(const struct page *page);
1da177e4
LT
914void set_page_address(struct page *page, void *virtual);
915void page_address_init(void);
916#endif
917
918#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
919#define page_address(page) lowmem_page_address(page)
920#define set_page_address(page, address) do { } while(0)
921#define page_address_init() do { } while(0)
922#endif
923
924/*
925 * On an anonymous page mapped into a user virtual memory area,
926 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
927 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
928 *
929 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
930 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
931 * and then page->mapping points, not to an anon_vma, but to a private
932 * structure which KSM associates with that merged page. See ksm.h.
933 *
934 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
935 *
936 * Please note that, confusingly, "page_mapping" refers to the inode
937 * address_space which maps the page from disk; whereas "page_mapped"
938 * refers to user virtual address space into which the page is mapped.
939 */
940#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
941#define PAGE_MAPPING_KSM 2
942#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 943
9800339b 944extern struct address_space *page_mapping(struct page *page);
1da177e4 945
3ca7b3c5
HD
946/* Neutral page->mapping pointer to address_space or anon_vma or other */
947static inline void *page_rmapping(struct page *page)
948{
949 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
950}
951
f981c595
MG
952extern struct address_space *__page_file_mapping(struct page *);
953
954static inline
955struct address_space *page_file_mapping(struct page *page)
956{
957 if (unlikely(PageSwapCache(page)))
958 return __page_file_mapping(page);
959
960 return page->mapping;
961}
962
1da177e4
LT
963static inline int PageAnon(struct page *page)
964{
965 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
966}
967
968/*
969 * Return the pagecache index of the passed page. Regular pagecache pages
970 * use ->index whereas swapcache pages use ->private
971 */
972static inline pgoff_t page_index(struct page *page)
973{
974 if (unlikely(PageSwapCache(page)))
4c21e2f2 975 return page_private(page);
1da177e4
LT
976 return page->index;
977}
978
f981c595
MG
979extern pgoff_t __page_file_index(struct page *page);
980
981/*
982 * Return the file index of the page. Regular pagecache pages use ->index
983 * whereas swapcache pages use swp_offset(->private)
984 */
985static inline pgoff_t page_file_index(struct page *page)
986{
987 if (unlikely(PageSwapCache(page)))
988 return __page_file_index(page);
989
990 return page->index;
991}
992
1da177e4
LT
993/*
994 * Return true if this page is mapped into pagetables.
995 */
996static inline int page_mapped(struct page *page)
997{
998 return atomic_read(&(page)->_mapcount) >= 0;
999}
1000
1da177e4
LT
1001/*
1002 * Different kinds of faults, as returned by handle_mm_fault().
1003 * Used to decide whether a process gets delivered SIGBUS or
1004 * just gets major/minor fault counters bumped up.
1005 */
d0217ac0 1006
83c54070 1007#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1008
83c54070
NP
1009#define VM_FAULT_OOM 0x0001
1010#define VM_FAULT_SIGBUS 0x0002
1011#define VM_FAULT_MAJOR 0x0004
1012#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1013#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1014#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1015
83c54070
NP
1016#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1017#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1018#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1019#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1020
aa50d3a7
AK
1021#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1022
1023#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1024 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1025
1026/* Encode hstate index for a hwpoisoned large page */
1027#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1028#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1029
1c0fe6e3
NP
1030/*
1031 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1032 */
1033extern void pagefault_out_of_memory(void);
1034
1da177e4
LT
1035#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1036
ddd588b5 1037/*
7bf02ea2 1038 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1039 * various contexts.
1040 */
4b59e6c4 1041#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1042
7bf02ea2
DR
1043extern void show_free_areas(unsigned int flags);
1044extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1045
1da177e4 1046int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1047#ifdef CONFIG_SHMEM
1048bool shmem_mapping(struct address_space *mapping);
1049#else
1050static inline bool shmem_mapping(struct address_space *mapping)
1051{
1052 return false;
1053}
1054#endif
1da177e4 1055
e8edc6e0 1056extern int can_do_mlock(void);
1da177e4
LT
1057extern int user_shm_lock(size_t, struct user_struct *);
1058extern void user_shm_unlock(size_t, struct user_struct *);
1059
1060/*
1061 * Parameter block passed down to zap_pte_range in exceptional cases.
1062 */
1063struct zap_details {
1064 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1065 struct address_space *check_mapping; /* Check page->mapping if set */
1066 pgoff_t first_index; /* Lowest page->index to unmap */
1067 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1068};
1069
7e675137
NP
1070struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1071 pte_t pte);
1072
c627f9cc
JS
1073int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1074 unsigned long size);
14f5ff5d 1075void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1076 unsigned long size, struct zap_details *);
4f74d2c8
LT
1077void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1078 unsigned long start, unsigned long end);
e6473092
MM
1079
1080/**
1081 * mm_walk - callbacks for walk_page_range
1082 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1083 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1084 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1085 * this handler is required to be able to handle
1086 * pmd_trans_huge() pmds. They may simply choose to
1087 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1088 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1089 * @pte_hole: if set, called for each hole at all levels
5dc37642 1090 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1091 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1092 * is used.
e6473092
MM
1093 *
1094 * (see walk_page_range for more details)
1095 */
1096struct mm_walk {
0f157a5b
AM
1097 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1098 unsigned long next, struct mm_walk *walk);
1099 int (*pud_entry)(pud_t *pud, unsigned long addr,
1100 unsigned long next, struct mm_walk *walk);
1101 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1102 unsigned long next, struct mm_walk *walk);
1103 int (*pte_entry)(pte_t *pte, unsigned long addr,
1104 unsigned long next, struct mm_walk *walk);
1105 int (*pte_hole)(unsigned long addr, unsigned long next,
1106 struct mm_walk *walk);
1107 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1108 unsigned long addr, unsigned long next,
1109 struct mm_walk *walk);
2165009b
DH
1110 struct mm_struct *mm;
1111 void *private;
e6473092
MM
1112};
1113
2165009b
DH
1114int walk_page_range(unsigned long addr, unsigned long end,
1115 struct mm_walk *walk);
42b77728 1116void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1117 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1118int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1119 struct vm_area_struct *vma);
1da177e4
LT
1120void unmap_mapping_range(struct address_space *mapping,
1121 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1122int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1123 unsigned long *pfn);
d87fe660 1124int follow_phys(struct vm_area_struct *vma, unsigned long address,
1125 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1126int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1127 void *buf, int len, int write);
1da177e4
LT
1128
1129static inline void unmap_shared_mapping_range(struct address_space *mapping,
1130 loff_t const holebegin, loff_t const holelen)
1131{
1132 unmap_mapping_range(mapping, holebegin, holelen, 0);
1133}
1134
7caef267 1135extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1136extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1137void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1138int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1139int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1140int invalidate_inode_page(struct page *page);
1141
7ee1dd3f 1142#ifdef CONFIG_MMU
83c54070 1143extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1144 unsigned long address, unsigned int flags);
5c723ba5
PZ
1145extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1146 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1147#else
1148static inline int handle_mm_fault(struct mm_struct *mm,
1149 struct vm_area_struct *vma, unsigned long address,
d06063cc 1150 unsigned int flags)
7ee1dd3f
DH
1151{
1152 /* should never happen if there's no MMU */
1153 BUG();
1154 return VM_FAULT_SIGBUS;
1155}
5c723ba5
PZ
1156static inline int fixup_user_fault(struct task_struct *tsk,
1157 struct mm_struct *mm, unsigned long address,
1158 unsigned int fault_flags)
1159{
1160 /* should never happen if there's no MMU */
1161 BUG();
1162 return -EFAULT;
1163}
7ee1dd3f 1164#endif
f33ea7f4 1165
1da177e4 1166extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1167extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1168 void *buf, int len, int write);
1da177e4 1169
28a35716
ML
1170long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1171 unsigned long start, unsigned long nr_pages,
1172 unsigned int foll_flags, struct page **pages,
1173 struct vm_area_struct **vmas, int *nonblocking);
1174long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1175 unsigned long start, unsigned long nr_pages,
1176 int write, int force, struct page **pages,
1177 struct vm_area_struct **vmas);
d2bf6be8
NP
1178int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1179 struct page **pages);
18022c5d
MG
1180struct kvec;
1181int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1182 struct page **pages);
1183int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1184struct page *get_dump_page(unsigned long addr);
1da177e4 1185
cf9a2ae8 1186extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1187extern void do_invalidatepage(struct page *page, unsigned int offset,
1188 unsigned int length);
cf9a2ae8 1189
1da177e4 1190int __set_page_dirty_nobuffers(struct page *page);
76719325 1191int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1192int redirty_page_for_writepage(struct writeback_control *wbc,
1193 struct page *page);
e3a7cca1 1194void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1195void account_page_writeback(struct page *page);
b3c97528 1196int set_page_dirty(struct page *page);
1da177e4
LT
1197int set_page_dirty_lock(struct page *page);
1198int clear_page_dirty_for_io(struct page *page);
1199
39aa3cb3 1200/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1201static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1202{
1203 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1204}
1205
a09a79f6
MP
1206static inline int stack_guard_page_start(struct vm_area_struct *vma,
1207 unsigned long addr)
1208{
1209 return (vma->vm_flags & VM_GROWSDOWN) &&
1210 (vma->vm_start == addr) &&
1211 !vma_growsdown(vma->vm_prev, addr);
1212}
1213
1214/* Is the vma a continuation of the stack vma below it? */
1215static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1216{
1217 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1218}
1219
1220static inline int stack_guard_page_end(struct vm_area_struct *vma,
1221 unsigned long addr)
1222{
1223 return (vma->vm_flags & VM_GROWSUP) &&
1224 (vma->vm_end == addr) &&
1225 !vma_growsup(vma->vm_next, addr);
1226}
1227
b7643757
SP
1228extern pid_t
1229vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1230
b6a2fea3
OW
1231extern unsigned long move_page_tables(struct vm_area_struct *vma,
1232 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1233 unsigned long new_addr, unsigned long len,
1234 bool need_rmap_locks);
7da4d641
PZ
1235extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1236 unsigned long end, pgprot_t newprot,
4b10e7d5 1237 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1238extern int mprotect_fixup(struct vm_area_struct *vma,
1239 struct vm_area_struct **pprev, unsigned long start,
1240 unsigned long end, unsigned long newflags);
1da177e4 1241
465a454f
PZ
1242/*
1243 * doesn't attempt to fault and will return short.
1244 */
1245int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1246 struct page **pages);
d559db08
KH
1247/*
1248 * per-process(per-mm_struct) statistics.
1249 */
d559db08
KH
1250static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1251{
69c97823
KK
1252 long val = atomic_long_read(&mm->rss_stat.count[member]);
1253
1254#ifdef SPLIT_RSS_COUNTING
1255 /*
1256 * counter is updated in asynchronous manner and may go to minus.
1257 * But it's never be expected number for users.
1258 */
1259 if (val < 0)
1260 val = 0;
172703b0 1261#endif
69c97823
KK
1262 return (unsigned long)val;
1263}
d559db08
KH
1264
1265static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1266{
172703b0 1267 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1268}
1269
1270static inline void inc_mm_counter(struct mm_struct *mm, int member)
1271{
172703b0 1272 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1273}
1274
1275static inline void dec_mm_counter(struct mm_struct *mm, int member)
1276{
172703b0 1277 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1278}
1279
d559db08
KH
1280static inline unsigned long get_mm_rss(struct mm_struct *mm)
1281{
1282 return get_mm_counter(mm, MM_FILEPAGES) +
1283 get_mm_counter(mm, MM_ANONPAGES);
1284}
1285
1286static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1287{
1288 return max(mm->hiwater_rss, get_mm_rss(mm));
1289}
1290
1291static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1292{
1293 return max(mm->hiwater_vm, mm->total_vm);
1294}
1295
1296static inline void update_hiwater_rss(struct mm_struct *mm)
1297{
1298 unsigned long _rss = get_mm_rss(mm);
1299
1300 if ((mm)->hiwater_rss < _rss)
1301 (mm)->hiwater_rss = _rss;
1302}
1303
1304static inline void update_hiwater_vm(struct mm_struct *mm)
1305{
1306 if (mm->hiwater_vm < mm->total_vm)
1307 mm->hiwater_vm = mm->total_vm;
1308}
1309
1310static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1311 struct mm_struct *mm)
1312{
1313 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1314
1315 if (*maxrss < hiwater_rss)
1316 *maxrss = hiwater_rss;
1317}
1318
53bddb4e 1319#if defined(SPLIT_RSS_COUNTING)
05af2e10 1320void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1321#else
05af2e10 1322static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1323{
1324}
1325#endif
465a454f 1326
4e950f6f 1327int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1328
25ca1d6c
NK
1329extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1330 spinlock_t **ptl);
1331static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1332 spinlock_t **ptl)
1333{
1334 pte_t *ptep;
1335 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1336 return ptep;
1337}
c9cfcddf 1338
5f22df00
NP
1339#ifdef __PAGETABLE_PUD_FOLDED
1340static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1341 unsigned long address)
1342{
1343 return 0;
1344}
1345#else
1bb3630e 1346int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1347#endif
1348
1349#ifdef __PAGETABLE_PMD_FOLDED
1350static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1351 unsigned long address)
1352{
1353 return 0;
1354}
1355#else
1bb3630e 1356int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1357#endif
1358
8ac1f832
AA
1359int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1360 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1361int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1362
1da177e4
LT
1363/*
1364 * The following ifdef needed to get the 4level-fixup.h header to work.
1365 * Remove it when 4level-fixup.h has been removed.
1366 */
1bb3630e 1367#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1368static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1369{
1bb3630e
HD
1370 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1371 NULL: pud_offset(pgd, address);
1da177e4
LT
1372}
1373
1374static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1375{
1bb3630e
HD
1376 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1377 NULL: pmd_offset(pud, address);
1da177e4 1378}
1bb3630e
HD
1379#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1380
57c1ffce 1381#if USE_SPLIT_PTE_PTLOCKS
597d795a 1382#if ALLOC_SPLIT_PTLOCKS
b35f1819 1383void __init ptlock_cache_init(void);
539edb58
PZ
1384extern bool ptlock_alloc(struct page *page);
1385extern void ptlock_free(struct page *page);
1386
1387static inline spinlock_t *ptlock_ptr(struct page *page)
1388{
1389 return page->ptl;
1390}
597d795a 1391#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1392static inline void ptlock_cache_init(void)
1393{
1394}
1395
49076ec2
KS
1396static inline bool ptlock_alloc(struct page *page)
1397{
49076ec2
KS
1398 return true;
1399}
539edb58 1400
49076ec2
KS
1401static inline void ptlock_free(struct page *page)
1402{
49076ec2
KS
1403}
1404
1405static inline spinlock_t *ptlock_ptr(struct page *page)
1406{
539edb58 1407 return &page->ptl;
49076ec2 1408}
597d795a 1409#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1410
1411static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1412{
1413 return ptlock_ptr(pmd_page(*pmd));
1414}
1415
1416static inline bool ptlock_init(struct page *page)
1417{
1418 /*
1419 * prep_new_page() initialize page->private (and therefore page->ptl)
1420 * with 0. Make sure nobody took it in use in between.
1421 *
1422 * It can happen if arch try to use slab for page table allocation:
1423 * slab code uses page->slab_cache and page->first_page (for tail
1424 * pages), which share storage with page->ptl.
1425 */
309381fe 1426 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1427 if (!ptlock_alloc(page))
1428 return false;
1429 spin_lock_init(ptlock_ptr(page));
1430 return true;
1431}
1432
1433/* Reset page->mapping so free_pages_check won't complain. */
1434static inline void pte_lock_deinit(struct page *page)
1435{
1436 page->mapping = NULL;
1437 ptlock_free(page);
1438}
1439
57c1ffce 1440#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1441/*
1442 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1443 */
49076ec2
KS
1444static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1445{
1446 return &mm->page_table_lock;
1447}
b35f1819 1448static inline void ptlock_cache_init(void) {}
49076ec2
KS
1449static inline bool ptlock_init(struct page *page) { return true; }
1450static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1451#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1452
b35f1819
KS
1453static inline void pgtable_init(void)
1454{
1455 ptlock_cache_init();
1456 pgtable_cache_init();
1457}
1458
390f44e2 1459static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1460{
2f569afd 1461 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1462 return ptlock_init(page);
2f569afd
MS
1463}
1464
1465static inline void pgtable_page_dtor(struct page *page)
1466{
1467 pte_lock_deinit(page);
1468 dec_zone_page_state(page, NR_PAGETABLE);
1469}
1470
c74df32c
HD
1471#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1472({ \
4c21e2f2 1473 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1474 pte_t *__pte = pte_offset_map(pmd, address); \
1475 *(ptlp) = __ptl; \
1476 spin_lock(__ptl); \
1477 __pte; \
1478})
1479
1480#define pte_unmap_unlock(pte, ptl) do { \
1481 spin_unlock(ptl); \
1482 pte_unmap(pte); \
1483} while (0)
1484
8ac1f832
AA
1485#define pte_alloc_map(mm, vma, pmd, address) \
1486 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1487 pmd, address))? \
1488 NULL: pte_offset_map(pmd, address))
1bb3630e 1489
c74df32c 1490#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1491 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1492 pmd, address))? \
c74df32c
HD
1493 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1494
1bb3630e 1495#define pte_alloc_kernel(pmd, address) \
8ac1f832 1496 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1497 NULL: pte_offset_kernel(pmd, address))
1da177e4 1498
e009bb30
KS
1499#if USE_SPLIT_PMD_PTLOCKS
1500
634391ac
MS
1501static struct page *pmd_to_page(pmd_t *pmd)
1502{
1503 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1504 return virt_to_page((void *)((unsigned long) pmd & mask));
1505}
1506
e009bb30
KS
1507static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1508{
634391ac 1509 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1510}
1511
1512static inline bool pgtable_pmd_page_ctor(struct page *page)
1513{
e009bb30
KS
1514#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1515 page->pmd_huge_pte = NULL;
1516#endif
49076ec2 1517 return ptlock_init(page);
e009bb30
KS
1518}
1519
1520static inline void pgtable_pmd_page_dtor(struct page *page)
1521{
1522#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1523 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1524#endif
49076ec2 1525 ptlock_free(page);
e009bb30
KS
1526}
1527
634391ac 1528#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1529
1530#else
1531
9a86cb7b
KS
1532static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1533{
1534 return &mm->page_table_lock;
1535}
1536
e009bb30
KS
1537static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1538static inline void pgtable_pmd_page_dtor(struct page *page) {}
1539
c389a250 1540#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1541
e009bb30
KS
1542#endif
1543
9a86cb7b
KS
1544static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1545{
1546 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1547 spin_lock(ptl);
1548 return ptl;
1549}
1550
1da177e4 1551extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1552extern void free_area_init_node(int nid, unsigned long * zones_size,
1553 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1554extern void free_initmem(void);
1555
69afade7
JL
1556/*
1557 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1558 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1559 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1560 * Return pages freed into the buddy system.
1561 */
11199692 1562extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1563 int poison, char *s);
c3d5f5f0 1564
cfa11e08
JL
1565#ifdef CONFIG_HIGHMEM
1566/*
1567 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1568 * and totalram_pages.
1569 */
1570extern void free_highmem_page(struct page *page);
1571#endif
69afade7 1572
c3d5f5f0 1573extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1574extern void mem_init_print_info(const char *str);
69afade7
JL
1575
1576/* Free the reserved page into the buddy system, so it gets managed. */
1577static inline void __free_reserved_page(struct page *page)
1578{
1579 ClearPageReserved(page);
1580 init_page_count(page);
1581 __free_page(page);
1582}
1583
1584static inline void free_reserved_page(struct page *page)
1585{
1586 __free_reserved_page(page);
1587 adjust_managed_page_count(page, 1);
1588}
1589
1590static inline void mark_page_reserved(struct page *page)
1591{
1592 SetPageReserved(page);
1593 adjust_managed_page_count(page, -1);
1594}
1595
1596/*
1597 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1598 * The freed pages will be poisoned with pattern "poison" if it's within
1599 * range [0, UCHAR_MAX].
1600 * Return pages freed into the buddy system.
69afade7
JL
1601 */
1602static inline unsigned long free_initmem_default(int poison)
1603{
1604 extern char __init_begin[], __init_end[];
1605
11199692 1606 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1607 poison, "unused kernel");
1608}
1609
7ee3d4e8
JL
1610static inline unsigned long get_num_physpages(void)
1611{
1612 int nid;
1613 unsigned long phys_pages = 0;
1614
1615 for_each_online_node(nid)
1616 phys_pages += node_present_pages(nid);
1617
1618 return phys_pages;
1619}
1620
0ee332c1 1621#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1622/*
0ee332c1 1623 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1624 * zones, allocate the backing mem_map and account for memory holes in a more
1625 * architecture independent manner. This is a substitute for creating the
1626 * zone_sizes[] and zholes_size[] arrays and passing them to
1627 * free_area_init_node()
1628 *
1629 * An architecture is expected to register range of page frames backed by
0ee332c1 1630 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1631 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1632 * usage, an architecture is expected to do something like
1633 *
1634 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1635 * max_highmem_pfn};
1636 * for_each_valid_physical_page_range()
0ee332c1 1637 * memblock_add_node(base, size, nid)
c713216d
MG
1638 * free_area_init_nodes(max_zone_pfns);
1639 *
0ee332c1
TH
1640 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1641 * registered physical page range. Similarly
1642 * sparse_memory_present_with_active_regions() calls memory_present() for
1643 * each range when SPARSEMEM is enabled.
c713216d
MG
1644 *
1645 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1646 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1647 */
1648extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1649unsigned long node_map_pfn_alignment(void);
32996250
YL
1650unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1651 unsigned long end_pfn);
c713216d
MG
1652extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1653 unsigned long end_pfn);
1654extern void get_pfn_range_for_nid(unsigned int nid,
1655 unsigned long *start_pfn, unsigned long *end_pfn);
1656extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1657extern void free_bootmem_with_active_regions(int nid,
1658 unsigned long max_low_pfn);
1659extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1660
0ee332c1 1661#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1662
0ee332c1 1663#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1664 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1665static inline int __early_pfn_to_nid(unsigned long pfn)
1666{
1667 return 0;
1668}
1669#else
1670/* please see mm/page_alloc.c */
1671extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1672/* there is a per-arch backend function. */
1673extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1674#endif
1675
0e0b864e 1676extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1677extern void memmap_init_zone(unsigned long, int, unsigned long,
1678 unsigned long, enum memmap_context);
bc75d33f 1679extern void setup_per_zone_wmarks(void);
1b79acc9 1680extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1681extern void mem_init(void);
8feae131 1682extern void __init mmap_init(void);
b2b755b5 1683extern void show_mem(unsigned int flags);
1da177e4
LT
1684extern void si_meminfo(struct sysinfo * val);
1685extern void si_meminfo_node(struct sysinfo *val, int nid);
1686
3ee9a4f0
JP
1687extern __printf(3, 4)
1688void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1689
e7c8d5c9 1690extern void setup_per_cpu_pageset(void);
e7c8d5c9 1691
112067f0 1692extern void zone_pcp_update(struct zone *zone);
340175b7 1693extern void zone_pcp_reset(struct zone *zone);
112067f0 1694
75f7ad8e
PS
1695/* page_alloc.c */
1696extern int min_free_kbytes;
1697
8feae131 1698/* nommu.c */
33e5d769 1699extern atomic_long_t mmap_pages_allocated;
7e660872 1700extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1701
6b2dbba8 1702/* interval_tree.c */
6b2dbba8
ML
1703void vma_interval_tree_insert(struct vm_area_struct *node,
1704 struct rb_root *root);
9826a516
ML
1705void vma_interval_tree_insert_after(struct vm_area_struct *node,
1706 struct vm_area_struct *prev,
1707 struct rb_root *root);
6b2dbba8
ML
1708void vma_interval_tree_remove(struct vm_area_struct *node,
1709 struct rb_root *root);
1710struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1711 unsigned long start, unsigned long last);
1712struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1713 unsigned long start, unsigned long last);
1714
1715#define vma_interval_tree_foreach(vma, root, start, last) \
1716 for (vma = vma_interval_tree_iter_first(root, start, last); \
1717 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1718
1719static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1720 struct list_head *list)
1721{
6b2dbba8 1722 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1723}
1724
bf181b9f
ML
1725void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1726 struct rb_root *root);
1727void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1728 struct rb_root *root);
1729struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1730 struct rb_root *root, unsigned long start, unsigned long last);
1731struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1732 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1733#ifdef CONFIG_DEBUG_VM_RB
1734void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1735#endif
bf181b9f
ML
1736
1737#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1738 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1739 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1740
1da177e4 1741/* mmap.c */
34b4e4aa 1742extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1743extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1744 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1745extern struct vm_area_struct *vma_merge(struct mm_struct *,
1746 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1747 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1748 struct mempolicy *);
1749extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1750extern int split_vma(struct mm_struct *,
1751 struct vm_area_struct *, unsigned long addr, int new_below);
1752extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1753extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1754 struct rb_node **, struct rb_node *);
a8fb5618 1755extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1756extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1757 unsigned long addr, unsigned long len, pgoff_t pgoff,
1758 bool *need_rmap_locks);
1da177e4 1759extern void exit_mmap(struct mm_struct *);
925d1c40 1760
7906d00c
AA
1761extern int mm_take_all_locks(struct mm_struct *mm);
1762extern void mm_drop_all_locks(struct mm_struct *mm);
1763
38646013
JS
1764extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1765extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1766
119f657c 1767extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1768extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1769 unsigned long addr, unsigned long len,
1770 unsigned long flags, struct page **pages);
fa5dc22f
RM
1771extern int install_special_mapping(struct mm_struct *mm,
1772 unsigned long addr, unsigned long len,
1773 unsigned long flags, struct page **pages);
1da177e4
LT
1774
1775extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1776
0165ab44 1777extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1778 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1779extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1780 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1781 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1782extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1783
bebeb3d6
ML
1784#ifdef CONFIG_MMU
1785extern int __mm_populate(unsigned long addr, unsigned long len,
1786 int ignore_errors);
1787static inline void mm_populate(unsigned long addr, unsigned long len)
1788{
1789 /* Ignore errors */
1790 (void) __mm_populate(addr, len, 1);
1791}
1792#else
1793static inline void mm_populate(unsigned long addr, unsigned long len) {}
1794#endif
1795
e4eb1ff6
LT
1796/* These take the mm semaphore themselves */
1797extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1798extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1799extern unsigned long vm_mmap(struct file *, unsigned long,
1800 unsigned long, unsigned long,
1801 unsigned long, unsigned long);
1da177e4 1802
db4fbfb9
ML
1803struct vm_unmapped_area_info {
1804#define VM_UNMAPPED_AREA_TOPDOWN 1
1805 unsigned long flags;
1806 unsigned long length;
1807 unsigned long low_limit;
1808 unsigned long high_limit;
1809 unsigned long align_mask;
1810 unsigned long align_offset;
1811};
1812
1813extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1814extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1815
1816/*
1817 * Search for an unmapped address range.
1818 *
1819 * We are looking for a range that:
1820 * - does not intersect with any VMA;
1821 * - is contained within the [low_limit, high_limit) interval;
1822 * - is at least the desired size.
1823 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1824 */
1825static inline unsigned long
1826vm_unmapped_area(struct vm_unmapped_area_info *info)
1827{
1828 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1829 return unmapped_area(info);
1830 else
1831 return unmapped_area_topdown(info);
1832}
1833
85821aab 1834/* truncate.c */
1da177e4 1835extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1836extern void truncate_inode_pages_range(struct address_space *,
1837 loff_t lstart, loff_t lend);
91b0abe3 1838extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1839
1840/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1841extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1842extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1843
1844/* mm/page-writeback.c */
1845int write_one_page(struct page *page, int wait);
1cf6e7d8 1846void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1847
1848/* readahead.c */
1849#define VM_MAX_READAHEAD 128 /* kbytes */
1850#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1851
1da177e4 1852int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1853 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1854
1855void page_cache_sync_readahead(struct address_space *mapping,
1856 struct file_ra_state *ra,
1857 struct file *filp,
1858 pgoff_t offset,
1859 unsigned long size);
1860
1861void page_cache_async_readahead(struct address_space *mapping,
1862 struct file_ra_state *ra,
1863 struct file *filp,
1864 struct page *pg,
1865 pgoff_t offset,
1866 unsigned long size);
1867
1da177e4 1868unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1869unsigned long ra_submit(struct file_ra_state *ra,
1870 struct address_space *mapping,
1871 struct file *filp);
1da177e4 1872
d05f3169 1873/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1874extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1875
1876/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1877extern int expand_downwards(struct vm_area_struct *vma,
1878 unsigned long address);
8ca3eb08 1879#if VM_GROWSUP
46dea3d0 1880extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1881#else
1882 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1883#endif
1da177e4
LT
1884
1885/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1886extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1887extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1888 struct vm_area_struct **pprev);
1889
1890/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1891 NULL if none. Assume start_addr < end_addr. */
1892static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1893{
1894 struct vm_area_struct * vma = find_vma(mm,start_addr);
1895
1896 if (vma && end_addr <= vma->vm_start)
1897 vma = NULL;
1898 return vma;
1899}
1900
1901static inline unsigned long vma_pages(struct vm_area_struct *vma)
1902{
1903 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1904}
1905
640708a2
PE
1906/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1907static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1908 unsigned long vm_start, unsigned long vm_end)
1909{
1910 struct vm_area_struct *vma = find_vma(mm, vm_start);
1911
1912 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1913 vma = NULL;
1914
1915 return vma;
1916}
1917
bad849b3 1918#ifdef CONFIG_MMU
804af2cf 1919pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1920#else
1921static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1922{
1923 return __pgprot(0);
1924}
1925#endif
1926
5877231f 1927#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 1928unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1929 unsigned long start, unsigned long end);
1930#endif
1931
deceb6cd 1932struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1933int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1934 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1935int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1936int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1937 unsigned long pfn);
423bad60
NP
1938int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1939 unsigned long pfn);
b4cbb197
LT
1940int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1941
deceb6cd 1942
240aadee
ML
1943struct page *follow_page_mask(struct vm_area_struct *vma,
1944 unsigned long address, unsigned int foll_flags,
1945 unsigned int *page_mask);
1946
1947static inline struct page *follow_page(struct vm_area_struct *vma,
1948 unsigned long address, unsigned int foll_flags)
1949{
1950 unsigned int unused_page_mask;
1951 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1952}
1953
deceb6cd
HD
1954#define FOLL_WRITE 0x01 /* check pte is writable */
1955#define FOLL_TOUCH 0x02 /* mark page accessed */
1956#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1957#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1958#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1959#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1960 * and return without waiting upon it */
110d74a9 1961#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1962#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1963#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1964#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1965#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1966
2f569afd 1967typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1968 void *data);
1969extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1970 unsigned long size, pte_fn_t fn, void *data);
1971
1da177e4 1972#ifdef CONFIG_PROC_FS
ab50b8ed 1973void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1974#else
ab50b8ed 1975static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1976 unsigned long flags, struct file *file, long pages)
1977{
44de9d0c 1978 mm->total_vm += pages;
1da177e4
LT
1979}
1980#endif /* CONFIG_PROC_FS */
1981
12d6f21e 1982#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1983extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1984#ifdef CONFIG_HIBERNATION
1985extern bool kernel_page_present(struct page *page);
1986#endif /* CONFIG_HIBERNATION */
12d6f21e 1987#else
1da177e4 1988static inline void
9858db50 1989kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1990#ifdef CONFIG_HIBERNATION
1991static inline bool kernel_page_present(struct page *page) { return true; }
1992#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1993#endif
1994
31db58b3 1995extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1996#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1997int in_gate_area_no_mm(unsigned long addr);
83b964bb 1998int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1999#else
cae5d390
SW
2000int in_gate_area_no_mm(unsigned long addr);
2001#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
2002#endif /* __HAVE_ARCH_GATE_AREA */
2003
146732ce
JT
2004#ifdef CONFIG_SYSCTL
2005extern int sysctl_drop_caches;
8d65af78 2006int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2007 void __user *, size_t *, loff_t *);
146732ce
JT
2008#endif
2009
a09ed5e0 2010unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
2011 unsigned long nr_pages_scanned,
2012 unsigned long lru_pages);
9d0243bc 2013
7a9166e3
LY
2014#ifndef CONFIG_MMU
2015#define randomize_va_space 0
2016#else
a62eaf15 2017extern int randomize_va_space;
7a9166e3 2018#endif
a62eaf15 2019
045e72ac 2020const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2021void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2022
9bdac914
YL
2023void sparse_mem_maps_populate_node(struct page **map_map,
2024 unsigned long pnum_begin,
2025 unsigned long pnum_end,
2026 unsigned long map_count,
2027 int nodeid);
2028
98f3cfc1 2029struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2030pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2031pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2032pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2033pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2034void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2035void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2036void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2037int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2038 int node);
2039int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2040void vmemmap_populate_print_last(void);
0197518c 2041#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2042void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2043#endif
46723bfa
YI
2044void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2045 unsigned long size);
6a46079c 2046
82ba011b
AK
2047enum mf_flags {
2048 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2049 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2050 MF_MUST_KILL = 1 << 2,
cf870c70 2051 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2052};
cd42f4a3 2053extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2054extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2055extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2056extern int sysctl_memory_failure_early_kill;
2057extern int sysctl_memory_failure_recovery;
facb6011 2058extern void shake_page(struct page *p, int access);
293c07e3 2059extern atomic_long_t num_poisoned_pages;
facb6011 2060extern int soft_offline_page(struct page *page, int flags);
6a46079c 2061
47ad8475
AA
2062#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2063extern void clear_huge_page(struct page *page,
2064 unsigned long addr,
2065 unsigned int pages_per_huge_page);
2066extern void copy_user_huge_page(struct page *dst, struct page *src,
2067 unsigned long addr, struct vm_area_struct *vma,
2068 unsigned int pages_per_huge_page);
2069#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2070
c0a32fc5
SG
2071#ifdef CONFIG_DEBUG_PAGEALLOC
2072extern unsigned int _debug_guardpage_minorder;
2073
2074static inline unsigned int debug_guardpage_minorder(void)
2075{
2076 return _debug_guardpage_minorder;
2077}
2078
2079static inline bool page_is_guard(struct page *page)
2080{
2081 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2082}
2083#else
2084static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2085static inline bool page_is_guard(struct page *page) { return false; }
2086#endif /* CONFIG_DEBUG_PAGEALLOC */
2087
f9872caf
CS
2088#if MAX_NUMNODES > 1
2089void __init setup_nr_node_ids(void);
2090#else
2091static inline void setup_nr_node_ids(void) {}
2092#endif
2093
1da177e4
LT
2094#endif /* __KERNEL__ */
2095#endif /* _LINUX_MM_H */