]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/mm.h
Merge branch 'for-4.11-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-eoan-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
597b7305
MH
35void init_mm_internals(void);
36
fccc9987 37#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 38extern unsigned long max_mapnr;
fccc9987
JL
39
40static inline void set_max_mapnr(unsigned long limit)
41{
42 max_mapnr = limit;
43}
44#else
45static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
46#endif
47
4481374c 48extern unsigned long totalram_pages;
1da177e4 49extern void * high_memory;
1da177e4
LT
50extern int page_cluster;
51
52#ifdef CONFIG_SYSCTL
53extern int sysctl_legacy_va_layout;
54#else
55#define sysctl_legacy_va_layout 0
56#endif
57
d07e2259
DC
58#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59extern const int mmap_rnd_bits_min;
60extern const int mmap_rnd_bits_max;
61extern int mmap_rnd_bits __read_mostly;
62#endif
63#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64extern const int mmap_rnd_compat_bits_min;
65extern const int mmap_rnd_compat_bits_max;
66extern int mmap_rnd_compat_bits __read_mostly;
67#endif
68
1da177e4
LT
69#include <asm/page.h>
70#include <asm/pgtable.h>
71#include <asm/processor.h>
1da177e4 72
79442ed1
TC
73#ifndef __pa_symbol
74#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
75#endif
76
1dff8083
AB
77#ifndef page_to_virt
78#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
79#endif
80
568c5fe5
LA
81#ifndef lm_alias
82#define lm_alias(x) __va(__pa_symbol(x))
83#endif
84
593befa6
DD
85/*
86 * To prevent common memory management code establishing
87 * a zero page mapping on a read fault.
88 * This macro should be defined within <asm/pgtable.h>.
89 * s390 does this to prevent multiplexing of hardware bits
90 * related to the physical page in case of virtualization.
91 */
92#ifndef mm_forbids_zeropage
93#define mm_forbids_zeropage(X) (0)
94#endif
95
ea606cf5
AR
96/*
97 * Default maximum number of active map areas, this limits the number of vmas
98 * per mm struct. Users can overwrite this number by sysctl but there is a
99 * problem.
100 *
101 * When a program's coredump is generated as ELF format, a section is created
102 * per a vma. In ELF, the number of sections is represented in unsigned short.
103 * This means the number of sections should be smaller than 65535 at coredump.
104 * Because the kernel adds some informative sections to a image of program at
105 * generating coredump, we need some margin. The number of extra sections is
106 * 1-3 now and depends on arch. We use "5" as safe margin, here.
107 *
108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109 * not a hard limit any more. Although some userspace tools can be surprised by
110 * that.
111 */
112#define MAPCOUNT_ELF_CORE_MARGIN (5)
113#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
114
115extern int sysctl_max_map_count;
116
c9b1d098 117extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 118extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 119
49f0ce5f
JM
120extern int sysctl_overcommit_memory;
121extern int sysctl_overcommit_ratio;
122extern unsigned long sysctl_overcommit_kbytes;
123
124extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128
1da177e4
LT
129#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
130
27ac792c
AR
131/* to align the pointer to the (next) page boundary */
132#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
133
0fa73b86 134/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 135#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 136
1da177e4
LT
137/*
138 * Linux kernel virtual memory manager primitives.
139 * The idea being to have a "virtual" mm in the same way
140 * we have a virtual fs - giving a cleaner interface to the
141 * mm details, and allowing different kinds of memory mappings
142 * (from shared memory to executable loading to arbitrary
143 * mmap() functions).
144 */
145
c43692e8
CL
146extern struct kmem_cache *vm_area_cachep;
147
1da177e4 148#ifndef CONFIG_MMU
8feae131
DH
149extern struct rb_root nommu_region_tree;
150extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
151
152extern unsigned int kobjsize(const void *objp);
153#endif
154
155/*
605d9288 156 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 157 * When changing, update also include/trace/events/mmflags.h
1da177e4 158 */
cc2383ec
KK
159#define VM_NONE 0x00000000
160
1da177e4
LT
161#define VM_READ 0x00000001 /* currently active flags */
162#define VM_WRITE 0x00000002
163#define VM_EXEC 0x00000004
164#define VM_SHARED 0x00000008
165
7e2cff42 166/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
167#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
168#define VM_MAYWRITE 0x00000020
169#define VM_MAYEXEC 0x00000040
170#define VM_MAYSHARE 0x00000080
171
172#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 173#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 174#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 175#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 176#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 177
1da177e4
LT
178#define VM_LOCKED 0x00002000
179#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
180
181 /* Used by sys_madvise() */
182#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
183#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
184
185#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
186#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 187#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 188#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 189#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 190#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 191#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 192#define VM_ARCH_2 0x02000000
0103bd16 193#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 194
d9104d1c
CG
195#ifdef CONFIG_MEM_SOFT_DIRTY
196# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
197#else
198# define VM_SOFTDIRTY 0
199#endif
200
b379d790 201#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
202#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
203#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 204#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 205
63c17fb8
DH
206#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
208#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
209#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
210#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
211#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
212#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
213#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
214#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
215#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
216
cc2383ec
KK
217#if defined(CONFIG_X86)
218# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
219#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
220# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
221# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
222# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
223# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
224# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
225#endif
cc2383ec
KK
226#elif defined(CONFIG_PPC)
227# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
228#elif defined(CONFIG_PARISC)
229# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
230#elif defined(CONFIG_METAG)
231# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
232#elif defined(CONFIG_IA64)
233# define VM_GROWSUP VM_ARCH_1
234#elif !defined(CONFIG_MMU)
235# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
236#endif
237
4aae7e43
QR
238#if defined(CONFIG_X86)
239/* MPX specific bounds table or bounds directory */
240# define VM_MPX VM_ARCH_2
241#endif
242
cc2383ec
KK
243#ifndef VM_GROWSUP
244# define VM_GROWSUP VM_NONE
245#endif
246
a8bef8ff
MG
247/* Bits set in the VMA until the stack is in its final location */
248#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
249
1da177e4
LT
250#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
251#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
252#endif
253
254#ifdef CONFIG_STACK_GROWSUP
30bdbb78 255#define VM_STACK VM_GROWSUP
1da177e4 256#else
30bdbb78 257#define VM_STACK VM_GROWSDOWN
1da177e4
LT
258#endif
259
30bdbb78
KK
260#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
261
b291f000 262/*
78f11a25
AA
263 * Special vmas that are non-mergable, non-mlock()able.
264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 265 */
9050d7eb 266#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 267
a0715cc2
AT
268/* This mask defines which mm->def_flags a process can inherit its parent */
269#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
270
de60f5f1
EM
271/* This mask is used to clear all the VMA flags used by mlock */
272#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
273
1da177e4
LT
274/*
275 * mapping from the currently active vm_flags protection bits (the
276 * low four bits) to a page protection mask..
277 */
278extern pgprot_t protection_map[16];
279
d0217ac0 280#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
281#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
282#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
283#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
284#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
285#define FAULT_FLAG_TRIED 0x20 /* Second try */
286#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 287#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 288#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 289
282a8e03
RZ
290#define FAULT_FLAG_TRACE \
291 { FAULT_FLAG_WRITE, "WRITE" }, \
292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
296 { FAULT_FLAG_TRIED, "TRIED" }, \
297 { FAULT_FLAG_USER, "USER" }, \
298 { FAULT_FLAG_REMOTE, "REMOTE" }, \
299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
300
54cb8821 301/*
d0217ac0 302 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
303 * ->fault function. The vma's ->fault is responsible for returning a bitmask
304 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 305 *
c20cd45e
MH
306 * MM layer fills up gfp_mask for page allocations but fault handler might
307 * alter it if its implementation requires a different allocation context.
308 *
9b4bdd2f 309 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 310 */
d0217ac0 311struct vm_fault {
82b0f8c3 312 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 313 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 314 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 315 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 316 unsigned long address; /* Faulting virtual address */
82b0f8c3 317 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 318 * the 'address' */
a2d58167
DJ
319 pud_t *pud; /* Pointer to pud entry matching
320 * the 'address'
321 */
2994302b 322 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 323
3917048d
JK
324 struct page *cow_page; /* Page handler may use for COW fault */
325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 326 struct page *page; /* ->fault handlers should return a
83c54070 327 * page here, unless VM_FAULT_NOPAGE
d0217ac0 328 * is set (which is also implied by
83c54070 329 * VM_FAULT_ERROR).
d0217ac0 330 */
82b0f8c3 331 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
332 pte_t *pte; /* Pointer to pte entry matching
333 * the 'address'. NULL if the page
334 * table hasn't been allocated.
335 */
336 spinlock_t *ptl; /* Page table lock.
337 * Protects pte page table if 'pte'
338 * is not NULL, otherwise pmd.
339 */
7267ec00
KS
340 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
341 * vm_ops->map_pages() calls
342 * alloc_set_pte() from atomic context.
343 * do_fault_around() pre-allocates
344 * page table to avoid allocation from
345 * atomic context.
346 */
54cb8821 347};
1da177e4 348
c791ace1
DJ
349/* page entry size for vm->huge_fault() */
350enum page_entry_size {
351 PE_SIZE_PTE = 0,
352 PE_SIZE_PMD,
353 PE_SIZE_PUD,
354};
355
1da177e4
LT
356/*
357 * These are the virtual MM functions - opening of an area, closing and
358 * unmapping it (needed to keep files on disk up-to-date etc), pointer
359 * to the functions called when a no-page or a wp-page exception occurs.
360 */
361struct vm_operations_struct {
362 void (*open)(struct vm_area_struct * area);
363 void (*close)(struct vm_area_struct * area);
5477e70a 364 int (*mremap)(struct vm_area_struct * area);
11bac800 365 int (*fault)(struct vm_fault *vmf);
c791ace1 366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 367 void (*map_pages)(struct vm_fault *vmf,
bae473a4 368 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
369
370 /* notification that a previously read-only page is about to become
371 * writable, if an error is returned it will cause a SIGBUS */
11bac800 372 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 373
dd906184 374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 375 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 376
28b2ee20
RR
377 /* called by access_process_vm when get_user_pages() fails, typically
378 * for use by special VMAs that can switch between memory and hardware
379 */
380 int (*access)(struct vm_area_struct *vma, unsigned long addr,
381 void *buf, int len, int write);
78d683e8
AL
382
383 /* Called by the /proc/PID/maps code to ask the vma whether it
384 * has a special name. Returning non-NULL will also cause this
385 * vma to be dumped unconditionally. */
386 const char *(*name)(struct vm_area_struct *vma);
387
1da177e4 388#ifdef CONFIG_NUMA
a6020ed7
LS
389 /*
390 * set_policy() op must add a reference to any non-NULL @new mempolicy
391 * to hold the policy upon return. Caller should pass NULL @new to
392 * remove a policy and fall back to surrounding context--i.e. do not
393 * install a MPOL_DEFAULT policy, nor the task or system default
394 * mempolicy.
395 */
1da177e4 396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
397
398 /*
399 * get_policy() op must add reference [mpol_get()] to any policy at
400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
401 * in mm/mempolicy.c will do this automatically.
402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
405 * must return NULL--i.e., do not "fallback" to task or system default
406 * policy.
407 */
1da177e4
LT
408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
409 unsigned long addr);
410#endif
667a0a06
DV
411 /*
412 * Called by vm_normal_page() for special PTEs to find the
413 * page for @addr. This is useful if the default behavior
414 * (using pte_page()) would not find the correct page.
415 */
416 struct page *(*find_special_page)(struct vm_area_struct *vma,
417 unsigned long addr);
1da177e4
LT
418};
419
420struct mmu_gather;
421struct inode;
422
349aef0b
AM
423#define page_private(page) ((page)->private)
424#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 425
5c7fb56e
DW
426#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
427static inline int pmd_devmap(pmd_t pmd)
428{
429 return 0;
430}
a00cc7d9
MW
431static inline int pud_devmap(pud_t pud)
432{
433 return 0;
434}
5c7fb56e
DW
435#endif
436
1da177e4
LT
437/*
438 * FIXME: take this include out, include page-flags.h in
439 * files which need it (119 of them)
440 */
441#include <linux/page-flags.h>
71e3aac0 442#include <linux/huge_mm.h>
1da177e4
LT
443
444/*
445 * Methods to modify the page usage count.
446 *
447 * What counts for a page usage:
448 * - cache mapping (page->mapping)
449 * - private data (page->private)
450 * - page mapped in a task's page tables, each mapping
451 * is counted separately
452 *
453 * Also, many kernel routines increase the page count before a critical
454 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
455 */
456
457/*
da6052f7 458 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 459 */
7c8ee9a8
NP
460static inline int put_page_testzero(struct page *page)
461{
fe896d18
JK
462 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
463 return page_ref_dec_and_test(page);
7c8ee9a8 464}
1da177e4
LT
465
466/*
7c8ee9a8
NP
467 * Try to grab a ref unless the page has a refcount of zero, return false if
468 * that is the case.
8e0861fa
AK
469 * This can be called when MMU is off so it must not access
470 * any of the virtual mappings.
1da177e4 471 */
7c8ee9a8
NP
472static inline int get_page_unless_zero(struct page *page)
473{
fe896d18 474 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 475}
1da177e4 476
53df8fdc 477extern int page_is_ram(unsigned long pfn);
124fe20d
DW
478
479enum {
480 REGION_INTERSECTS,
481 REGION_DISJOINT,
482 REGION_MIXED,
483};
484
1c29f25b
TK
485int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
486 unsigned long desc);
53df8fdc 487
48667e7a 488/* Support for virtually mapped pages */
b3bdda02
CL
489struct page *vmalloc_to_page(const void *addr);
490unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 491
0738c4bb
PM
492/*
493 * Determine if an address is within the vmalloc range
494 *
495 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
496 * is no special casing required.
497 */
bb00a789 498static inline bool is_vmalloc_addr(const void *x)
9e2779fa 499{
0738c4bb 500#ifdef CONFIG_MMU
9e2779fa
CL
501 unsigned long addr = (unsigned long)x;
502
503 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 504#else
bb00a789 505 return false;
8ca3ed87 506#endif
0738c4bb 507}
81ac3ad9
KH
508#ifdef CONFIG_MMU
509extern int is_vmalloc_or_module_addr(const void *x);
510#else
934831d0 511static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
512{
513 return 0;
514}
515#endif
9e2779fa 516
39f1f78d
AV
517extern void kvfree(const void *addr);
518
53f9263b
KS
519static inline atomic_t *compound_mapcount_ptr(struct page *page)
520{
521 return &page[1].compound_mapcount;
522}
523
524static inline int compound_mapcount(struct page *page)
525{
5f527c2b 526 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
527 page = compound_head(page);
528 return atomic_read(compound_mapcount_ptr(page)) + 1;
529}
530
70b50f94
AA
531/*
532 * The atomic page->_mapcount, starts from -1: so that transitions
533 * both from it and to it can be tracked, using atomic_inc_and_test
534 * and atomic_add_negative(-1).
535 */
22b751c3 536static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
537{
538 atomic_set(&(page)->_mapcount, -1);
539}
540
b20ce5e0
KS
541int __page_mapcount(struct page *page);
542
70b50f94
AA
543static inline int page_mapcount(struct page *page)
544{
1d148e21 545 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 546
b20ce5e0
KS
547 if (unlikely(PageCompound(page)))
548 return __page_mapcount(page);
549 return atomic_read(&page->_mapcount) + 1;
550}
551
552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
553int total_mapcount(struct page *page);
6d0a07ed 554int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
555#else
556static inline int total_mapcount(struct page *page)
557{
558 return page_mapcount(page);
70b50f94 559}
6d0a07ed
AA
560static inline int page_trans_huge_mapcount(struct page *page,
561 int *total_mapcount)
562{
563 int mapcount = page_mapcount(page);
564 if (total_mapcount)
565 *total_mapcount = mapcount;
566 return mapcount;
567}
b20ce5e0 568#endif
70b50f94 569
b49af68f
CL
570static inline struct page *virt_to_head_page(const void *x)
571{
572 struct page *page = virt_to_page(x);
ccaafd7f 573
1d798ca3 574 return compound_head(page);
b49af68f
CL
575}
576
ddc58f27
KS
577void __put_page(struct page *page);
578
1d7ea732 579void put_pages_list(struct list_head *pages);
1da177e4 580
8dfcc9ba 581void split_page(struct page *page, unsigned int order);
8dfcc9ba 582
33f2ef89
AW
583/*
584 * Compound pages have a destructor function. Provide a
585 * prototype for that function and accessor functions.
f1e61557 586 * These are _only_ valid on the head of a compound page.
33f2ef89 587 */
f1e61557
KS
588typedef void compound_page_dtor(struct page *);
589
590/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
591enum compound_dtor_id {
592 NULL_COMPOUND_DTOR,
593 COMPOUND_PAGE_DTOR,
594#ifdef CONFIG_HUGETLB_PAGE
595 HUGETLB_PAGE_DTOR,
9a982250
KS
596#endif
597#ifdef CONFIG_TRANSPARENT_HUGEPAGE
598 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
599#endif
600 NR_COMPOUND_DTORS,
601};
602extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
603
604static inline void set_compound_page_dtor(struct page *page,
f1e61557 605 enum compound_dtor_id compound_dtor)
33f2ef89 606{
f1e61557
KS
607 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
608 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
609}
610
611static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
612{
f1e61557
KS
613 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
614 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
615}
616
d00181b9 617static inline unsigned int compound_order(struct page *page)
d85f3385 618{
6d777953 619 if (!PageHead(page))
d85f3385 620 return 0;
e4b294c2 621 return page[1].compound_order;
d85f3385
CL
622}
623
f1e61557 624static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 625{
e4b294c2 626 page[1].compound_order = order;
d85f3385
CL
627}
628
9a982250
KS
629void free_compound_page(struct page *page);
630
3dece370 631#ifdef CONFIG_MMU
14fd403f
AA
632/*
633 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
634 * servicing faults for write access. In the normal case, do always want
635 * pte_mkwrite. But get_user_pages can cause write faults for mappings
636 * that do not have writing enabled, when used by access_process_vm.
637 */
638static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
639{
640 if (likely(vma->vm_flags & VM_WRITE))
641 pte = pte_mkwrite(pte);
642 return pte;
643}
8c6e50b0 644
82b0f8c3 645int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 646 struct page *page);
9118c0cb 647int finish_fault(struct vm_fault *vmf);
66a6197c 648int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 649#endif
14fd403f 650
1da177e4
LT
651/*
652 * Multiple processes may "see" the same page. E.g. for untouched
653 * mappings of /dev/null, all processes see the same page full of
654 * zeroes, and text pages of executables and shared libraries have
655 * only one copy in memory, at most, normally.
656 *
657 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
658 * page_count() == 0 means the page is free. page->lru is then used for
659 * freelist management in the buddy allocator.
da6052f7 660 * page_count() > 0 means the page has been allocated.
1da177e4 661 *
da6052f7
NP
662 * Pages are allocated by the slab allocator in order to provide memory
663 * to kmalloc and kmem_cache_alloc. In this case, the management of the
664 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
665 * unless a particular usage is carefully commented. (the responsibility of
666 * freeing the kmalloc memory is the caller's, of course).
1da177e4 667 *
da6052f7
NP
668 * A page may be used by anyone else who does a __get_free_page().
669 * In this case, page_count still tracks the references, and should only
670 * be used through the normal accessor functions. The top bits of page->flags
671 * and page->virtual store page management information, but all other fields
672 * are unused and could be used privately, carefully. The management of this
673 * page is the responsibility of the one who allocated it, and those who have
674 * subsequently been given references to it.
675 *
676 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
677 * managed by the Linux memory manager: I/O, buffers, swapping etc.
678 * The following discussion applies only to them.
679 *
da6052f7
NP
680 * A pagecache page contains an opaque `private' member, which belongs to the
681 * page's address_space. Usually, this is the address of a circular list of
682 * the page's disk buffers. PG_private must be set to tell the VM to call
683 * into the filesystem to release these pages.
1da177e4 684 *
da6052f7
NP
685 * A page may belong to an inode's memory mapping. In this case, page->mapping
686 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 687 * in units of PAGE_SIZE.
1da177e4 688 *
da6052f7
NP
689 * If pagecache pages are not associated with an inode, they are said to be
690 * anonymous pages. These may become associated with the swapcache, and in that
691 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 692 *
da6052f7
NP
693 * In either case (swapcache or inode backed), the pagecache itself holds one
694 * reference to the page. Setting PG_private should also increment the
695 * refcount. The each user mapping also has a reference to the page.
1da177e4 696 *
da6052f7
NP
697 * The pagecache pages are stored in a per-mapping radix tree, which is
698 * rooted at mapping->page_tree, and indexed by offset.
699 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
700 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 701 *
da6052f7 702 * All pagecache pages may be subject to I/O:
1da177e4
LT
703 * - inode pages may need to be read from disk,
704 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
705 * to be written back to the inode on disk,
706 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
707 * modified may need to be swapped out to swap space and (later) to be read
708 * back into memory.
1da177e4
LT
709 */
710
711/*
712 * The zone field is never updated after free_area_init_core()
713 * sets it, so none of the operations on it need to be atomic.
1da177e4 714 */
348f8b6c 715
90572890 716/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 717#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
718#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
719#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 720#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 721
348f8b6c 722/*
25985edc 723 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
724 * sections we define the shift as 0; that plus a 0 mask ensures
725 * the compiler will optimise away reference to them.
726 */
d41dee36
AW
727#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
728#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
729#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 730#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 731
bce54bbf
WD
732/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
733#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 734#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
735#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
736 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 737#else
89689ae7 738#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
739#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
740 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
741#endif
742
bd8029b6 743#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 744
9223b419
CL
745#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
746#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
747#endif
748
d41dee36
AW
749#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
750#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
751#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 752#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 753#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 754
33dd4e0e 755static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 756{
348f8b6c 757 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 758}
1da177e4 759
260ae3f7 760#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
761void get_zone_device_page(struct page *page);
762void put_zone_device_page(struct page *page);
260ae3f7
DW
763static inline bool is_zone_device_page(const struct page *page)
764{
765 return page_zonenum(page) == ZONE_DEVICE;
766}
767#else
3565fce3
DW
768static inline void get_zone_device_page(struct page *page)
769{
770}
771static inline void put_zone_device_page(struct page *page)
772{
773}
260ae3f7
DW
774static inline bool is_zone_device_page(const struct page *page)
775{
776 return false;
777}
778#endif
779
3565fce3
DW
780static inline void get_page(struct page *page)
781{
782 page = compound_head(page);
783 /*
784 * Getting a normal page or the head of a compound page
0139aa7b 785 * requires to already have an elevated page->_refcount.
3565fce3 786 */
fe896d18
JK
787 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
788 page_ref_inc(page);
3565fce3
DW
789
790 if (unlikely(is_zone_device_page(page)))
791 get_zone_device_page(page);
792}
793
794static inline void put_page(struct page *page)
795{
796 page = compound_head(page);
797
798 if (put_page_testzero(page))
799 __put_page(page);
800
801 if (unlikely(is_zone_device_page(page)))
802 put_zone_device_page(page);
803}
804
9127ab4f
CS
805#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
806#define SECTION_IN_PAGE_FLAGS
807#endif
808
89689ae7 809/*
7a8010cd
VB
810 * The identification function is mainly used by the buddy allocator for
811 * determining if two pages could be buddies. We are not really identifying
812 * the zone since we could be using the section number id if we do not have
813 * node id available in page flags.
814 * We only guarantee that it will return the same value for two combinable
815 * pages in a zone.
89689ae7 816 */
cb2b95e1
AW
817static inline int page_zone_id(struct page *page)
818{
89689ae7 819 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
820}
821
25ba77c1 822static inline int zone_to_nid(struct zone *zone)
89fa3024 823{
d5f541ed
CL
824#ifdef CONFIG_NUMA
825 return zone->node;
826#else
827 return 0;
828#endif
89fa3024
CL
829}
830
89689ae7 831#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 832extern int page_to_nid(const struct page *page);
89689ae7 833#else
33dd4e0e 834static inline int page_to_nid(const struct page *page)
d41dee36 835{
89689ae7 836 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 837}
89689ae7
CL
838#endif
839
57e0a030 840#ifdef CONFIG_NUMA_BALANCING
90572890 841static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 842{
90572890 843 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
844}
845
90572890 846static inline int cpupid_to_pid(int cpupid)
57e0a030 847{
90572890 848 return cpupid & LAST__PID_MASK;
57e0a030 849}
b795854b 850
90572890 851static inline int cpupid_to_cpu(int cpupid)
b795854b 852{
90572890 853 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
854}
855
90572890 856static inline int cpupid_to_nid(int cpupid)
b795854b 857{
90572890 858 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
859}
860
90572890 861static inline bool cpupid_pid_unset(int cpupid)
57e0a030 862{
90572890 863 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
864}
865
90572890 866static inline bool cpupid_cpu_unset(int cpupid)
b795854b 867{
90572890 868 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
869}
870
8c8a743c
PZ
871static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
872{
873 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
874}
875
876#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
877#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
878static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 879{
1ae71d03 880 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 881}
90572890
PZ
882
883static inline int page_cpupid_last(struct page *page)
884{
885 return page->_last_cpupid;
886}
887static inline void page_cpupid_reset_last(struct page *page)
b795854b 888{
1ae71d03 889 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
890}
891#else
90572890 892static inline int page_cpupid_last(struct page *page)
75980e97 893{
90572890 894 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
895}
896
90572890 897extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 898
90572890 899static inline void page_cpupid_reset_last(struct page *page)
75980e97 900{
09940a4f 901 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 902}
90572890
PZ
903#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
904#else /* !CONFIG_NUMA_BALANCING */
905static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 906{
90572890 907 return page_to_nid(page); /* XXX */
57e0a030
MG
908}
909
90572890 910static inline int page_cpupid_last(struct page *page)
57e0a030 911{
90572890 912 return page_to_nid(page); /* XXX */
57e0a030
MG
913}
914
90572890 915static inline int cpupid_to_nid(int cpupid)
b795854b
MG
916{
917 return -1;
918}
919
90572890 920static inline int cpupid_to_pid(int cpupid)
b795854b
MG
921{
922 return -1;
923}
924
90572890 925static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
926{
927 return -1;
928}
929
90572890
PZ
930static inline int cpu_pid_to_cpupid(int nid, int pid)
931{
932 return -1;
933}
934
935static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
936{
937 return 1;
938}
939
90572890 940static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
941{
942}
8c8a743c
PZ
943
944static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
945{
946 return false;
947}
90572890 948#endif /* CONFIG_NUMA_BALANCING */
57e0a030 949
33dd4e0e 950static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
951{
952 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
953}
954
75ef7184
MG
955static inline pg_data_t *page_pgdat(const struct page *page)
956{
957 return NODE_DATA(page_to_nid(page));
958}
959
9127ab4f 960#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
961static inline void set_page_section(struct page *page, unsigned long section)
962{
963 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
964 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
965}
966
aa462abe 967static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
968{
969 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
970}
308c05e3 971#endif
d41dee36 972
2f1b6248 973static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
974{
975 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
976 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
977}
2f1b6248 978
348f8b6c
DH
979static inline void set_page_node(struct page *page, unsigned long node)
980{
981 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
982 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 983}
89689ae7 984
2f1b6248 985static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 986 unsigned long node, unsigned long pfn)
1da177e4 987{
348f8b6c
DH
988 set_page_zone(page, zone);
989 set_page_node(page, node);
9127ab4f 990#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 991 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 992#endif
1da177e4
LT
993}
994
0610c25d
GT
995#ifdef CONFIG_MEMCG
996static inline struct mem_cgroup *page_memcg(struct page *page)
997{
998 return page->mem_cgroup;
999}
55779ec7
JW
1000static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1001{
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1003 return READ_ONCE(page->mem_cgroup);
1004}
0610c25d
GT
1005#else
1006static inline struct mem_cgroup *page_memcg(struct page *page)
1007{
1008 return NULL;
1009}
55779ec7
JW
1010static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1011{
1012 WARN_ON_ONCE(!rcu_read_lock_held());
1013 return NULL;
1014}
0610c25d
GT
1015#endif
1016
f6ac2354
CL
1017/*
1018 * Some inline functions in vmstat.h depend on page_zone()
1019 */
1020#include <linux/vmstat.h>
1021
33dd4e0e 1022static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1023{
1dff8083 1024 return page_to_virt(page);
1da177e4
LT
1025}
1026
1027#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1028#define HASHED_PAGE_VIRTUAL
1029#endif
1030
1031#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1032static inline void *page_address(const struct page *page)
1033{
1034 return page->virtual;
1035}
1036static inline void set_page_address(struct page *page, void *address)
1037{
1038 page->virtual = address;
1039}
1da177e4
LT
1040#define page_address_init() do { } while(0)
1041#endif
1042
1043#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1044void *page_address(const struct page *page);
1da177e4
LT
1045void set_page_address(struct page *page, void *virtual);
1046void page_address_init(void);
1047#endif
1048
1049#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1050#define page_address(page) lowmem_page_address(page)
1051#define set_page_address(page, address) do { } while(0)
1052#define page_address_init() do { } while(0)
1053#endif
1054
e39155ea
KS
1055extern void *page_rmapping(struct page *page);
1056extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1057extern struct address_space *page_mapping(struct page *page);
1da177e4 1058
f981c595
MG
1059extern struct address_space *__page_file_mapping(struct page *);
1060
1061static inline
1062struct address_space *page_file_mapping(struct page *page)
1063{
1064 if (unlikely(PageSwapCache(page)))
1065 return __page_file_mapping(page);
1066
1067 return page->mapping;
1068}
1069
f6ab1f7f
HY
1070extern pgoff_t __page_file_index(struct page *page);
1071
1da177e4
LT
1072/*
1073 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1074 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1075 */
1076static inline pgoff_t page_index(struct page *page)
1077{
1078 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1079 return __page_file_index(page);
1da177e4
LT
1080 return page->index;
1081}
1082
1aa8aea5 1083bool page_mapped(struct page *page);
bda807d4 1084struct address_space *page_mapping(struct page *page);
1da177e4 1085
2f064f34
MH
1086/*
1087 * Return true only if the page has been allocated with
1088 * ALLOC_NO_WATERMARKS and the low watermark was not
1089 * met implying that the system is under some pressure.
1090 */
1091static inline bool page_is_pfmemalloc(struct page *page)
1092{
1093 /*
1094 * Page index cannot be this large so this must be
1095 * a pfmemalloc page.
1096 */
1097 return page->index == -1UL;
1098}
1099
1100/*
1101 * Only to be called by the page allocator on a freshly allocated
1102 * page.
1103 */
1104static inline void set_page_pfmemalloc(struct page *page)
1105{
1106 page->index = -1UL;
1107}
1108
1109static inline void clear_page_pfmemalloc(struct page *page)
1110{
1111 page->index = 0;
1112}
1113
1da177e4
LT
1114/*
1115 * Different kinds of faults, as returned by handle_mm_fault().
1116 * Used to decide whether a process gets delivered SIGBUS or
1117 * just gets major/minor fault counters bumped up.
1118 */
d0217ac0 1119
83c54070
NP
1120#define VM_FAULT_OOM 0x0001
1121#define VM_FAULT_SIGBUS 0x0002
1122#define VM_FAULT_MAJOR 0x0004
1123#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1124#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1125#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1126#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1127
83c54070
NP
1128#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1129#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1130#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1131#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1132#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1da177e4 1133
aa50d3a7
AK
1134#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1135
33692f27
LT
1136#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1137 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1138 VM_FAULT_FALLBACK)
aa50d3a7 1139
282a8e03
RZ
1140#define VM_FAULT_RESULT_TRACE \
1141 { VM_FAULT_OOM, "OOM" }, \
1142 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1143 { VM_FAULT_MAJOR, "MAJOR" }, \
1144 { VM_FAULT_WRITE, "WRITE" }, \
1145 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1146 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1147 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1148 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1149 { VM_FAULT_LOCKED, "LOCKED" }, \
1150 { VM_FAULT_RETRY, "RETRY" }, \
1151 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1152 { VM_FAULT_DONE_COW, "DONE_COW" }
1153
aa50d3a7
AK
1154/* Encode hstate index for a hwpoisoned large page */
1155#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1156#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1157
1c0fe6e3
NP
1158/*
1159 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1160 */
1161extern void pagefault_out_of_memory(void);
1162
1da177e4
LT
1163#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1164
ddd588b5 1165/*
7bf02ea2 1166 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1167 * various contexts.
1168 */
4b59e6c4 1169#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1170
9af744d7 1171extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1172
7f43add4 1173extern bool can_do_mlock(void);
1da177e4
LT
1174extern int user_shm_lock(size_t, struct user_struct *);
1175extern void user_shm_unlock(size_t, struct user_struct *);
1176
1177/*
1178 * Parameter block passed down to zap_pte_range in exceptional cases.
1179 */
1180struct zap_details {
1da177e4
LT
1181 struct address_space *check_mapping; /* Check page->mapping if set */
1182 pgoff_t first_index; /* Lowest page->index to unmap */
1183 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1184};
1185
7e675137
NP
1186struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1187 pte_t pte);
28093f9f
GS
1188struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1189 pmd_t pmd);
7e675137 1190
c627f9cc
JS
1191int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1192 unsigned long size);
14f5ff5d 1193void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1194 unsigned long size);
4f74d2c8
LT
1195void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1196 unsigned long start, unsigned long end);
e6473092
MM
1197
1198/**
1199 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1200 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1201 * this handler should only handle pud_trans_huge() puds.
1202 * the pmd_entry or pte_entry callbacks will be used for
1203 * regular PUDs.
e6473092 1204 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1205 * this handler is required to be able to handle
1206 * pmd_trans_huge() pmds. They may simply choose to
1207 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1208 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1209 * @pte_hole: if set, called for each hole at all levels
5dc37642 1210 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1211 * @test_walk: caller specific callback function to determine whether
f7e2355f 1212 * we walk over the current vma or not. Returning 0
fafaa426
NH
1213 * value means "do page table walk over the current vma,"
1214 * and a negative one means "abort current page table walk
f7e2355f 1215 * right now." 1 means "skip the current vma."
fafaa426
NH
1216 * @mm: mm_struct representing the target process of page table walk
1217 * @vma: vma currently walked (NULL if walking outside vmas)
1218 * @private: private data for callbacks' usage
e6473092 1219 *
fafaa426 1220 * (see the comment on walk_page_range() for more details)
e6473092
MM
1221 */
1222struct mm_walk {
a00cc7d9
MW
1223 int (*pud_entry)(pud_t *pud, unsigned long addr,
1224 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1225 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1226 unsigned long next, struct mm_walk *walk);
1227 int (*pte_entry)(pte_t *pte, unsigned long addr,
1228 unsigned long next, struct mm_walk *walk);
1229 int (*pte_hole)(unsigned long addr, unsigned long next,
1230 struct mm_walk *walk);
1231 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1232 unsigned long addr, unsigned long next,
1233 struct mm_walk *walk);
fafaa426
NH
1234 int (*test_walk)(unsigned long addr, unsigned long next,
1235 struct mm_walk *walk);
2165009b 1236 struct mm_struct *mm;
fafaa426 1237 struct vm_area_struct *vma;
2165009b 1238 void *private;
e6473092
MM
1239};
1240
2165009b
DH
1241int walk_page_range(unsigned long addr, unsigned long end,
1242 struct mm_walk *walk);
900fc5f1 1243int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1244void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1245 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1246int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1247 struct vm_area_struct *vma);
1da177e4
LT
1248void unmap_mapping_range(struct address_space *mapping,
1249 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395
RZ
1250int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1251 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1252int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1253 unsigned long *pfn);
d87fe660 1254int follow_phys(struct vm_area_struct *vma, unsigned long address,
1255 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1256int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1257 void *buf, int len, int write);
1da177e4
LT
1258
1259static inline void unmap_shared_mapping_range(struct address_space *mapping,
1260 loff_t const holebegin, loff_t const holelen)
1261{
1262 unmap_mapping_range(mapping, holebegin, holelen, 0);
1263}
1264
7caef267 1265extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1266extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1267void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1268void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1269int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1270int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1271int invalidate_inode_page(struct page *page);
1272
7ee1dd3f 1273#ifdef CONFIG_MMU
dcddffd4
KS
1274extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1275 unsigned int flags);
5c723ba5 1276extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1277 unsigned long address, unsigned int fault_flags,
1278 bool *unlocked);
7ee1dd3f 1279#else
dcddffd4
KS
1280static inline int handle_mm_fault(struct vm_area_struct *vma,
1281 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1282{
1283 /* should never happen if there's no MMU */
1284 BUG();
1285 return VM_FAULT_SIGBUS;
1286}
5c723ba5
PZ
1287static inline int fixup_user_fault(struct task_struct *tsk,
1288 struct mm_struct *mm, unsigned long address,
4a9e1cda 1289 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1290{
1291 /* should never happen if there's no MMU */
1292 BUG();
1293 return -EFAULT;
1294}
7ee1dd3f 1295#endif
f33ea7f4 1296
f307ab6d
LS
1297extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1298 unsigned int gup_flags);
5ddd36b9 1299extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1300 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1301extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1302 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1303
1e987790
DH
1304long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1305 unsigned long start, unsigned long nr_pages,
9beae1ea 1306 unsigned int gup_flags, struct page **pages,
5b56d49f 1307 struct vm_area_struct **vmas, int *locked);
c12d2da5 1308long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1309 unsigned int gup_flags, struct page **pages,
cde70140 1310 struct vm_area_struct **vmas);
c12d2da5 1311long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1312 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1313long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1314 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1315int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1316 struct page **pages);
8025e5dd
JK
1317
1318/* Container for pinned pfns / pages */
1319struct frame_vector {
1320 unsigned int nr_allocated; /* Number of frames we have space for */
1321 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1322 bool got_ref; /* Did we pin pages by getting page ref? */
1323 bool is_pfns; /* Does array contain pages or pfns? */
1324 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1325 * pfns_vector_pages() or pfns_vector_pfns()
1326 * for access */
1327};
1328
1329struct frame_vector *frame_vector_create(unsigned int nr_frames);
1330void frame_vector_destroy(struct frame_vector *vec);
1331int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1332 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1333void put_vaddr_frames(struct frame_vector *vec);
1334int frame_vector_to_pages(struct frame_vector *vec);
1335void frame_vector_to_pfns(struct frame_vector *vec);
1336
1337static inline unsigned int frame_vector_count(struct frame_vector *vec)
1338{
1339 return vec->nr_frames;
1340}
1341
1342static inline struct page **frame_vector_pages(struct frame_vector *vec)
1343{
1344 if (vec->is_pfns) {
1345 int err = frame_vector_to_pages(vec);
1346
1347 if (err)
1348 return ERR_PTR(err);
1349 }
1350 return (struct page **)(vec->ptrs);
1351}
1352
1353static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1354{
1355 if (!vec->is_pfns)
1356 frame_vector_to_pfns(vec);
1357 return (unsigned long *)(vec->ptrs);
1358}
1359
18022c5d
MG
1360struct kvec;
1361int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1362 struct page **pages);
1363int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1364struct page *get_dump_page(unsigned long addr);
1da177e4 1365
cf9a2ae8 1366extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1367extern void do_invalidatepage(struct page *page, unsigned int offset,
1368 unsigned int length);
cf9a2ae8 1369
1da177e4 1370int __set_page_dirty_nobuffers(struct page *page);
76719325 1371int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1372int redirty_page_for_writepage(struct writeback_control *wbc,
1373 struct page *page);
62cccb8c 1374void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1375void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1376 struct bdi_writeback *wb);
b3c97528 1377int set_page_dirty(struct page *page);
1da177e4 1378int set_page_dirty_lock(struct page *page);
11f81bec 1379void cancel_dirty_page(struct page *page);
1da177e4 1380int clear_page_dirty_for_io(struct page *page);
b9ea2515 1381
a9090253 1382int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1383
39aa3cb3 1384/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1385static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1386{
1387 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1388}
1389
b5330628
ON
1390static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1391{
1392 return !vma->vm_ops;
1393}
1394
b0506e48
MR
1395#ifdef CONFIG_SHMEM
1396/*
1397 * The vma_is_shmem is not inline because it is used only by slow
1398 * paths in userfault.
1399 */
1400bool vma_is_shmem(struct vm_area_struct *vma);
1401#else
1402static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1403#endif
1404
a09a79f6
MP
1405static inline int stack_guard_page_start(struct vm_area_struct *vma,
1406 unsigned long addr)
1407{
1408 return (vma->vm_flags & VM_GROWSDOWN) &&
1409 (vma->vm_start == addr) &&
1410 !vma_growsdown(vma->vm_prev, addr);
1411}
1412
1413/* Is the vma a continuation of the stack vma below it? */
1414static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1415{
1416 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1417}
1418
1419static inline int stack_guard_page_end(struct vm_area_struct *vma,
1420 unsigned long addr)
1421{
1422 return (vma->vm_flags & VM_GROWSUP) &&
1423 (vma->vm_end == addr) &&
1424 !vma_growsup(vma->vm_next, addr);
1425}
1426
d17af505 1427int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1428
b6a2fea3
OW
1429extern unsigned long move_page_tables(struct vm_area_struct *vma,
1430 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1431 unsigned long new_addr, unsigned long len,
1432 bool need_rmap_locks);
7da4d641
PZ
1433extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1434 unsigned long end, pgprot_t newprot,
4b10e7d5 1435 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1436extern int mprotect_fixup(struct vm_area_struct *vma,
1437 struct vm_area_struct **pprev, unsigned long start,
1438 unsigned long end, unsigned long newflags);
1da177e4 1439
465a454f
PZ
1440/*
1441 * doesn't attempt to fault and will return short.
1442 */
1443int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1444 struct page **pages);
d559db08
KH
1445/*
1446 * per-process(per-mm_struct) statistics.
1447 */
d559db08
KH
1448static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1449{
69c97823
KK
1450 long val = atomic_long_read(&mm->rss_stat.count[member]);
1451
1452#ifdef SPLIT_RSS_COUNTING
1453 /*
1454 * counter is updated in asynchronous manner and may go to minus.
1455 * But it's never be expected number for users.
1456 */
1457 if (val < 0)
1458 val = 0;
172703b0 1459#endif
69c97823
KK
1460 return (unsigned long)val;
1461}
d559db08
KH
1462
1463static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1464{
172703b0 1465 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1466}
1467
1468static inline void inc_mm_counter(struct mm_struct *mm, int member)
1469{
172703b0 1470 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1471}
1472
1473static inline void dec_mm_counter(struct mm_struct *mm, int member)
1474{
172703b0 1475 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1476}
1477
eca56ff9
JM
1478/* Optimized variant when page is already known not to be PageAnon */
1479static inline int mm_counter_file(struct page *page)
1480{
1481 if (PageSwapBacked(page))
1482 return MM_SHMEMPAGES;
1483 return MM_FILEPAGES;
1484}
1485
1486static inline int mm_counter(struct page *page)
1487{
1488 if (PageAnon(page))
1489 return MM_ANONPAGES;
1490 return mm_counter_file(page);
1491}
1492
d559db08
KH
1493static inline unsigned long get_mm_rss(struct mm_struct *mm)
1494{
1495 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1496 get_mm_counter(mm, MM_ANONPAGES) +
1497 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1498}
1499
1500static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1501{
1502 return max(mm->hiwater_rss, get_mm_rss(mm));
1503}
1504
1505static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1506{
1507 return max(mm->hiwater_vm, mm->total_vm);
1508}
1509
1510static inline void update_hiwater_rss(struct mm_struct *mm)
1511{
1512 unsigned long _rss = get_mm_rss(mm);
1513
1514 if ((mm)->hiwater_rss < _rss)
1515 (mm)->hiwater_rss = _rss;
1516}
1517
1518static inline void update_hiwater_vm(struct mm_struct *mm)
1519{
1520 if (mm->hiwater_vm < mm->total_vm)
1521 mm->hiwater_vm = mm->total_vm;
1522}
1523
695f0559
PC
1524static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1525{
1526 mm->hiwater_rss = get_mm_rss(mm);
1527}
1528
d559db08
KH
1529static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1530 struct mm_struct *mm)
1531{
1532 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1533
1534 if (*maxrss < hiwater_rss)
1535 *maxrss = hiwater_rss;
1536}
1537
53bddb4e 1538#if defined(SPLIT_RSS_COUNTING)
05af2e10 1539void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1540#else
05af2e10 1541static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1542{
1543}
1544#endif
465a454f 1545
3565fce3
DW
1546#ifndef __HAVE_ARCH_PTE_DEVMAP
1547static inline int pte_devmap(pte_t pte)
1548{
1549 return 0;
1550}
1551#endif
1552
6d2329f8 1553int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1554
25ca1d6c
NK
1555extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1556 spinlock_t **ptl);
1557static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1558 spinlock_t **ptl)
1559{
1560 pte_t *ptep;
1561 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1562 return ptep;
1563}
c9cfcddf 1564
c2febafc
KS
1565#ifdef __PAGETABLE_P4D_FOLDED
1566static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1567 unsigned long address)
1568{
1569 return 0;
1570}
1571#else
1572int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1573#endif
1574
5f22df00 1575#ifdef __PAGETABLE_PUD_FOLDED
c2febafc 1576static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1577 unsigned long address)
1578{
1579 return 0;
1580}
1581#else
c2febafc 1582int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
5f22df00
NP
1583#endif
1584
2d2f5119 1585#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1586static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1587 unsigned long address)
1588{
1589 return 0;
1590}
dc6c9a35 1591
2d2f5119
KS
1592static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1593
dc6c9a35
KS
1594static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1595{
1596 return 0;
1597}
1598
1599static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1600static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1601
5f22df00 1602#else
1bb3630e 1603int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1604
2d2f5119
KS
1605static inline void mm_nr_pmds_init(struct mm_struct *mm)
1606{
1607 atomic_long_set(&mm->nr_pmds, 0);
1608}
1609
dc6c9a35
KS
1610static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1611{
1612 return atomic_long_read(&mm->nr_pmds);
1613}
1614
1615static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1616{
1617 atomic_long_inc(&mm->nr_pmds);
1618}
1619
1620static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1621{
1622 atomic_long_dec(&mm->nr_pmds);
1623}
5f22df00
NP
1624#endif
1625
3ed3a4f0 1626int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1627int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1628
1da177e4
LT
1629/*
1630 * The following ifdef needed to get the 4level-fixup.h header to work.
1631 * Remove it when 4level-fixup.h has been removed.
1632 */
1bb3630e 1633#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1634
1635#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1636static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1637 unsigned long address)
1638{
1639 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1640 NULL : p4d_offset(pgd, address);
1641}
1642
1643static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1644 unsigned long address)
1da177e4 1645{
c2febafc
KS
1646 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1647 NULL : pud_offset(p4d, address);
1da177e4 1648}
505a60e2 1649#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1650
1651static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1652{
1bb3630e
HD
1653 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1654 NULL: pmd_offset(pud, address);
1da177e4 1655}
1bb3630e
HD
1656#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1657
57c1ffce 1658#if USE_SPLIT_PTE_PTLOCKS
597d795a 1659#if ALLOC_SPLIT_PTLOCKS
b35f1819 1660void __init ptlock_cache_init(void);
539edb58
PZ
1661extern bool ptlock_alloc(struct page *page);
1662extern void ptlock_free(struct page *page);
1663
1664static inline spinlock_t *ptlock_ptr(struct page *page)
1665{
1666 return page->ptl;
1667}
597d795a 1668#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1669static inline void ptlock_cache_init(void)
1670{
1671}
1672
49076ec2
KS
1673static inline bool ptlock_alloc(struct page *page)
1674{
49076ec2
KS
1675 return true;
1676}
539edb58 1677
49076ec2
KS
1678static inline void ptlock_free(struct page *page)
1679{
49076ec2
KS
1680}
1681
1682static inline spinlock_t *ptlock_ptr(struct page *page)
1683{
539edb58 1684 return &page->ptl;
49076ec2 1685}
597d795a 1686#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1687
1688static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1689{
1690 return ptlock_ptr(pmd_page(*pmd));
1691}
1692
1693static inline bool ptlock_init(struct page *page)
1694{
1695 /*
1696 * prep_new_page() initialize page->private (and therefore page->ptl)
1697 * with 0. Make sure nobody took it in use in between.
1698 *
1699 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1700 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1701 */
309381fe 1702 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1703 if (!ptlock_alloc(page))
1704 return false;
1705 spin_lock_init(ptlock_ptr(page));
1706 return true;
1707}
1708
1709/* Reset page->mapping so free_pages_check won't complain. */
1710static inline void pte_lock_deinit(struct page *page)
1711{
1712 page->mapping = NULL;
1713 ptlock_free(page);
1714}
1715
57c1ffce 1716#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1717/*
1718 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1719 */
49076ec2
KS
1720static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1721{
1722 return &mm->page_table_lock;
1723}
b35f1819 1724static inline void ptlock_cache_init(void) {}
49076ec2
KS
1725static inline bool ptlock_init(struct page *page) { return true; }
1726static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1727#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1728
b35f1819
KS
1729static inline void pgtable_init(void)
1730{
1731 ptlock_cache_init();
1732 pgtable_cache_init();
1733}
1734
390f44e2 1735static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1736{
706874e9
VD
1737 if (!ptlock_init(page))
1738 return false;
2f569afd 1739 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1740 return true;
2f569afd
MS
1741}
1742
1743static inline void pgtable_page_dtor(struct page *page)
1744{
1745 pte_lock_deinit(page);
1746 dec_zone_page_state(page, NR_PAGETABLE);
1747}
1748
c74df32c
HD
1749#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1750({ \
4c21e2f2 1751 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1752 pte_t *__pte = pte_offset_map(pmd, address); \
1753 *(ptlp) = __ptl; \
1754 spin_lock(__ptl); \
1755 __pte; \
1756})
1757
1758#define pte_unmap_unlock(pte, ptl) do { \
1759 spin_unlock(ptl); \
1760 pte_unmap(pte); \
1761} while (0)
1762
3ed3a4f0
KS
1763#define pte_alloc(mm, pmd, address) \
1764 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1765
1766#define pte_alloc_map(mm, pmd, address) \
1767 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1768
c74df32c 1769#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1770 (pte_alloc(mm, pmd, address) ? \
1771 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1772
1bb3630e 1773#define pte_alloc_kernel(pmd, address) \
8ac1f832 1774 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1775 NULL: pte_offset_kernel(pmd, address))
1da177e4 1776
e009bb30
KS
1777#if USE_SPLIT_PMD_PTLOCKS
1778
634391ac
MS
1779static struct page *pmd_to_page(pmd_t *pmd)
1780{
1781 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1782 return virt_to_page((void *)((unsigned long) pmd & mask));
1783}
1784
e009bb30
KS
1785static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1786{
634391ac 1787 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1788}
1789
1790static inline bool pgtable_pmd_page_ctor(struct page *page)
1791{
e009bb30
KS
1792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1793 page->pmd_huge_pte = NULL;
1794#endif
49076ec2 1795 return ptlock_init(page);
e009bb30
KS
1796}
1797
1798static inline void pgtable_pmd_page_dtor(struct page *page)
1799{
1800#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1801 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1802#endif
49076ec2 1803 ptlock_free(page);
e009bb30
KS
1804}
1805
634391ac 1806#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1807
1808#else
1809
9a86cb7b
KS
1810static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1811{
1812 return &mm->page_table_lock;
1813}
1814
e009bb30
KS
1815static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1816static inline void pgtable_pmd_page_dtor(struct page *page) {}
1817
c389a250 1818#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1819
e009bb30
KS
1820#endif
1821
9a86cb7b
KS
1822static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1823{
1824 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1825 spin_lock(ptl);
1826 return ptl;
1827}
1828
a00cc7d9
MW
1829/*
1830 * No scalability reason to split PUD locks yet, but follow the same pattern
1831 * as the PMD locks to make it easier if we decide to. The VM should not be
1832 * considered ready to switch to split PUD locks yet; there may be places
1833 * which need to be converted from page_table_lock.
1834 */
1835static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1836{
1837 return &mm->page_table_lock;
1838}
1839
1840static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1841{
1842 spinlock_t *ptl = pud_lockptr(mm, pud);
1843
1844 spin_lock(ptl);
1845 return ptl;
1846}
62906027 1847
a00cc7d9 1848extern void __init pagecache_init(void);
1da177e4 1849extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1850extern void free_area_init_node(int nid, unsigned long * zones_size,
1851 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1852extern void free_initmem(void);
1853
69afade7
JL
1854/*
1855 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1856 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1857 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1858 * Return pages freed into the buddy system.
1859 */
11199692 1860extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1861 int poison, char *s);
c3d5f5f0 1862
cfa11e08
JL
1863#ifdef CONFIG_HIGHMEM
1864/*
1865 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1866 * and totalram_pages.
1867 */
1868extern void free_highmem_page(struct page *page);
1869#endif
69afade7 1870
c3d5f5f0 1871extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1872extern void mem_init_print_info(const char *str);
69afade7 1873
4b50bcc7 1874extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1875
69afade7
JL
1876/* Free the reserved page into the buddy system, so it gets managed. */
1877static inline void __free_reserved_page(struct page *page)
1878{
1879 ClearPageReserved(page);
1880 init_page_count(page);
1881 __free_page(page);
1882}
1883
1884static inline void free_reserved_page(struct page *page)
1885{
1886 __free_reserved_page(page);
1887 adjust_managed_page_count(page, 1);
1888}
1889
1890static inline void mark_page_reserved(struct page *page)
1891{
1892 SetPageReserved(page);
1893 adjust_managed_page_count(page, -1);
1894}
1895
1896/*
1897 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1898 * The freed pages will be poisoned with pattern "poison" if it's within
1899 * range [0, UCHAR_MAX].
1900 * Return pages freed into the buddy system.
69afade7
JL
1901 */
1902static inline unsigned long free_initmem_default(int poison)
1903{
1904 extern char __init_begin[], __init_end[];
1905
11199692 1906 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1907 poison, "unused kernel");
1908}
1909
7ee3d4e8
JL
1910static inline unsigned long get_num_physpages(void)
1911{
1912 int nid;
1913 unsigned long phys_pages = 0;
1914
1915 for_each_online_node(nid)
1916 phys_pages += node_present_pages(nid);
1917
1918 return phys_pages;
1919}
1920
0ee332c1 1921#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1922/*
0ee332c1 1923 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1924 * zones, allocate the backing mem_map and account for memory holes in a more
1925 * architecture independent manner. This is a substitute for creating the
1926 * zone_sizes[] and zholes_size[] arrays and passing them to
1927 * free_area_init_node()
1928 *
1929 * An architecture is expected to register range of page frames backed by
0ee332c1 1930 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1931 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1932 * usage, an architecture is expected to do something like
1933 *
1934 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1935 * max_highmem_pfn};
1936 * for_each_valid_physical_page_range()
0ee332c1 1937 * memblock_add_node(base, size, nid)
c713216d
MG
1938 * free_area_init_nodes(max_zone_pfns);
1939 *
0ee332c1
TH
1940 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1941 * registered physical page range. Similarly
1942 * sparse_memory_present_with_active_regions() calls memory_present() for
1943 * each range when SPARSEMEM is enabled.
c713216d
MG
1944 *
1945 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1946 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1947 */
1948extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1949unsigned long node_map_pfn_alignment(void);
32996250
YL
1950unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1951 unsigned long end_pfn);
c713216d
MG
1952extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1953 unsigned long end_pfn);
1954extern void get_pfn_range_for_nid(unsigned int nid,
1955 unsigned long *start_pfn, unsigned long *end_pfn);
1956extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1957extern void free_bootmem_with_active_regions(int nid,
1958 unsigned long max_low_pfn);
1959extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1960
0ee332c1 1961#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1962
0ee332c1 1963#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1964 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1965static inline int __early_pfn_to_nid(unsigned long pfn,
1966 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1967{
1968 return 0;
1969}
1970#else
1971/* please see mm/page_alloc.c */
1972extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1973/* there is a per-arch backend function. */
8a942fde
MG
1974extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1975 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1976#endif
1977
0e0b864e 1978extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1979extern void memmap_init_zone(unsigned long, int, unsigned long,
1980 unsigned long, enum memmap_context);
bc75d33f 1981extern void setup_per_zone_wmarks(void);
1b79acc9 1982extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1983extern void mem_init(void);
8feae131 1984extern void __init mmap_init(void);
9af744d7 1985extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 1986extern long si_mem_available(void);
1da177e4
LT
1987extern void si_meminfo(struct sysinfo * val);
1988extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
1989#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1990extern unsigned long arch_reserved_kernel_pages(void);
1991#endif
1da177e4 1992
a8e99259
MH
1993extern __printf(3, 4)
1994void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 1995
e7c8d5c9 1996extern void setup_per_cpu_pageset(void);
e7c8d5c9 1997
112067f0 1998extern void zone_pcp_update(struct zone *zone);
340175b7 1999extern void zone_pcp_reset(struct zone *zone);
112067f0 2000
75f7ad8e
PS
2001/* page_alloc.c */
2002extern int min_free_kbytes;
795ae7a0 2003extern int watermark_scale_factor;
75f7ad8e 2004
8feae131 2005/* nommu.c */
33e5d769 2006extern atomic_long_t mmap_pages_allocated;
7e660872 2007extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2008
6b2dbba8 2009/* interval_tree.c */
6b2dbba8
ML
2010void vma_interval_tree_insert(struct vm_area_struct *node,
2011 struct rb_root *root);
9826a516
ML
2012void vma_interval_tree_insert_after(struct vm_area_struct *node,
2013 struct vm_area_struct *prev,
2014 struct rb_root *root);
6b2dbba8
ML
2015void vma_interval_tree_remove(struct vm_area_struct *node,
2016 struct rb_root *root);
2017struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2018 unsigned long start, unsigned long last);
2019struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2020 unsigned long start, unsigned long last);
2021
2022#define vma_interval_tree_foreach(vma, root, start, last) \
2023 for (vma = vma_interval_tree_iter_first(root, start, last); \
2024 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2025
bf181b9f
ML
2026void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2027 struct rb_root *root);
2028void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2029 struct rb_root *root);
2030struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2031 struct rb_root *root, unsigned long start, unsigned long last);
2032struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2033 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2034#ifdef CONFIG_DEBUG_VM_RB
2035void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2036#endif
bf181b9f
ML
2037
2038#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2039 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2040 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2041
1da177e4 2042/* mmap.c */
34b4e4aa 2043extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2044extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2045 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2046 struct vm_area_struct *expand);
2047static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2048 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2049{
2050 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2051}
1da177e4
LT
2052extern struct vm_area_struct *vma_merge(struct mm_struct *,
2053 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2054 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2055 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2056extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2057extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2058 unsigned long addr, int new_below);
2059extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2060 unsigned long addr, int new_below);
1da177e4
LT
2061extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2062extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2063 struct rb_node **, struct rb_node *);
a8fb5618 2064extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2065extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2066 unsigned long addr, unsigned long len, pgoff_t pgoff,
2067 bool *need_rmap_locks);
1da177e4 2068extern void exit_mmap(struct mm_struct *);
925d1c40 2069
9c599024
CG
2070static inline int check_data_rlimit(unsigned long rlim,
2071 unsigned long new,
2072 unsigned long start,
2073 unsigned long end_data,
2074 unsigned long start_data)
2075{
2076 if (rlim < RLIM_INFINITY) {
2077 if (((new - start) + (end_data - start_data)) > rlim)
2078 return -ENOSPC;
2079 }
2080
2081 return 0;
2082}
2083
7906d00c
AA
2084extern int mm_take_all_locks(struct mm_struct *mm);
2085extern void mm_drop_all_locks(struct mm_struct *mm);
2086
38646013
JS
2087extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2088extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2089extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2090
84638335
KK
2091extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2092extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2093
2eefd878
DS
2094extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2095 const struct vm_special_mapping *sm);
3935ed6a
SS
2096extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2097 unsigned long addr, unsigned long len,
a62c34bd
AL
2098 unsigned long flags,
2099 const struct vm_special_mapping *spec);
2100/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2101extern int install_special_mapping(struct mm_struct *mm,
2102 unsigned long addr, unsigned long len,
2103 unsigned long flags, struct page **pages);
1da177e4
LT
2104
2105extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2106
0165ab44 2107extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2108 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2109 struct list_head *uf);
1fcfd8db 2110extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2111 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2112 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2113 struct list_head *uf);
2114extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2115 struct list_head *uf);
1da177e4 2116
1fcfd8db
ON
2117static inline unsigned long
2118do_mmap_pgoff(struct file *file, unsigned long addr,
2119 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2120 unsigned long pgoff, unsigned long *populate,
2121 struct list_head *uf)
1fcfd8db 2122{
897ab3e0 2123 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2124}
2125
bebeb3d6
ML
2126#ifdef CONFIG_MMU
2127extern int __mm_populate(unsigned long addr, unsigned long len,
2128 int ignore_errors);
2129static inline void mm_populate(unsigned long addr, unsigned long len)
2130{
2131 /* Ignore errors */
2132 (void) __mm_populate(addr, len, 1);
2133}
2134#else
2135static inline void mm_populate(unsigned long addr, unsigned long len) {}
2136#endif
2137
e4eb1ff6 2138/* These take the mm semaphore themselves */
5d22fc25 2139extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2140extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2141extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2142extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2143 unsigned long, unsigned long,
2144 unsigned long, unsigned long);
1da177e4 2145
db4fbfb9
ML
2146struct vm_unmapped_area_info {
2147#define VM_UNMAPPED_AREA_TOPDOWN 1
2148 unsigned long flags;
2149 unsigned long length;
2150 unsigned long low_limit;
2151 unsigned long high_limit;
2152 unsigned long align_mask;
2153 unsigned long align_offset;
2154};
2155
2156extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2157extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2158
2159/*
2160 * Search for an unmapped address range.
2161 *
2162 * We are looking for a range that:
2163 * - does not intersect with any VMA;
2164 * - is contained within the [low_limit, high_limit) interval;
2165 * - is at least the desired size.
2166 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2167 */
2168static inline unsigned long
2169vm_unmapped_area(struct vm_unmapped_area_info *info)
2170{
cdd7875e 2171 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2172 return unmapped_area_topdown(info);
cdd7875e
BP
2173 else
2174 return unmapped_area(info);
db4fbfb9
ML
2175}
2176
85821aab 2177/* truncate.c */
1da177e4 2178extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2179extern void truncate_inode_pages_range(struct address_space *,
2180 loff_t lstart, loff_t lend);
91b0abe3 2181extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2182
2183/* generic vm_area_ops exported for stackable file systems */
11bac800 2184extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2185extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2186 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2187extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2188
2189/* mm/page-writeback.c */
2190int write_one_page(struct page *page, int wait);
1cf6e7d8 2191void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2192
2193/* readahead.c */
2194#define VM_MAX_READAHEAD 128 /* kbytes */
2195#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2196
1da177e4 2197int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2198 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2199
2200void page_cache_sync_readahead(struct address_space *mapping,
2201 struct file_ra_state *ra,
2202 struct file *filp,
2203 pgoff_t offset,
2204 unsigned long size);
2205
2206void page_cache_async_readahead(struct address_space *mapping,
2207 struct file_ra_state *ra,
2208 struct file *filp,
2209 struct page *pg,
2210 pgoff_t offset,
2211 unsigned long size);
2212
d05f3169 2213/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2214extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2215
2216/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2217extern int expand_downwards(struct vm_area_struct *vma,
2218 unsigned long address);
8ca3eb08 2219#if VM_GROWSUP
46dea3d0 2220extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2221#else
fee7e49d 2222 #define expand_upwards(vma, address) (0)
9ab88515 2223#endif
1da177e4
LT
2224
2225/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2226extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2227extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2228 struct vm_area_struct **pprev);
2229
2230/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2231 NULL if none. Assume start_addr < end_addr. */
2232static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2233{
2234 struct vm_area_struct * vma = find_vma(mm,start_addr);
2235
2236 if (vma && end_addr <= vma->vm_start)
2237 vma = NULL;
2238 return vma;
2239}
2240
2241static inline unsigned long vma_pages(struct vm_area_struct *vma)
2242{
2243 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2244}
2245
640708a2
PE
2246/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2247static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2248 unsigned long vm_start, unsigned long vm_end)
2249{
2250 struct vm_area_struct *vma = find_vma(mm, vm_start);
2251
2252 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2253 vma = NULL;
2254
2255 return vma;
2256}
2257
bad849b3 2258#ifdef CONFIG_MMU
804af2cf 2259pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2260void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2261#else
2262static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2263{
2264 return __pgprot(0);
2265}
64e45507
PF
2266static inline void vma_set_page_prot(struct vm_area_struct *vma)
2267{
2268 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2269}
bad849b3
DH
2270#endif
2271
5877231f 2272#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2273unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2274 unsigned long start, unsigned long end);
2275#endif
2276
deceb6cd 2277struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2278int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2279 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2280int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2281int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2282 unsigned long pfn);
1745cbc5
AL
2283int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2284 unsigned long pfn, pgprot_t pgprot);
423bad60 2285int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2286 pfn_t pfn);
b4cbb197
LT
2287int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2288
deceb6cd 2289
240aadee
ML
2290struct page *follow_page_mask(struct vm_area_struct *vma,
2291 unsigned long address, unsigned int foll_flags,
2292 unsigned int *page_mask);
2293
2294static inline struct page *follow_page(struct vm_area_struct *vma,
2295 unsigned long address, unsigned int foll_flags)
2296{
2297 unsigned int unused_page_mask;
2298 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2299}
2300
deceb6cd
HD
2301#define FOLL_WRITE 0x01 /* check pte is writable */
2302#define FOLL_TOUCH 0x02 /* mark page accessed */
2303#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2304#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2305#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2306#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2307 * and return without waiting upon it */
84d33df2 2308#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2309#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2310#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2311#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2312#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2313#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2314#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2315#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2316#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2317
2f569afd 2318typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2319 void *data);
2320extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2321 unsigned long size, pte_fn_t fn, void *data);
2322
1da177e4 2323
8823b1db
LA
2324#ifdef CONFIG_PAGE_POISONING
2325extern bool page_poisoning_enabled(void);
2326extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2327extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2328#else
2329static inline bool page_poisoning_enabled(void) { return false; }
2330static inline void kernel_poison_pages(struct page *page, int numpages,
2331 int enable) { }
1414c7f4 2332static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2333#endif
2334
12d6f21e 2335#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2336extern bool _debug_pagealloc_enabled;
2337extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2338
2339static inline bool debug_pagealloc_enabled(void)
2340{
2341 return _debug_pagealloc_enabled;
2342}
2343
2344static inline void
2345kernel_map_pages(struct page *page, int numpages, int enable)
2346{
2347 if (!debug_pagealloc_enabled())
2348 return;
2349
2350 __kernel_map_pages(page, numpages, enable);
2351}
8a235efa
RW
2352#ifdef CONFIG_HIBERNATION
2353extern bool kernel_page_present(struct page *page);
40b44137
JK
2354#endif /* CONFIG_HIBERNATION */
2355#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2356static inline void
9858db50 2357kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2358#ifdef CONFIG_HIBERNATION
2359static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2360#endif /* CONFIG_HIBERNATION */
2361static inline bool debug_pagealloc_enabled(void)
2362{
2363 return false;
2364}
2365#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2366
a6c19dfe 2367#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2368extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2369extern int in_gate_area_no_mm(unsigned long addr);
2370extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2371#else
a6c19dfe
AL
2372static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2373{
2374 return NULL;
2375}
2376static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2377static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2378{
2379 return 0;
2380}
1da177e4
LT
2381#endif /* __HAVE_ARCH_GATE_AREA */
2382
44a70ade
MH
2383extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2384
146732ce
JT
2385#ifdef CONFIG_SYSCTL
2386extern int sysctl_drop_caches;
8d65af78 2387int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2388 void __user *, size_t *, loff_t *);
146732ce
JT
2389#endif
2390
cb731d6c
VD
2391void drop_slab(void);
2392void drop_slab_node(int nid);
9d0243bc 2393
7a9166e3
LY
2394#ifndef CONFIG_MMU
2395#define randomize_va_space 0
2396#else
a62eaf15 2397extern int randomize_va_space;
7a9166e3 2398#endif
a62eaf15 2399
045e72ac 2400const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2401void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2402
9bdac914
YL
2403void sparse_mem_maps_populate_node(struct page **map_map,
2404 unsigned long pnum_begin,
2405 unsigned long pnum_end,
2406 unsigned long map_count,
2407 int nodeid);
2408
98f3cfc1 2409struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111 2410pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2411p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2412pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2413pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2414pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2415void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2416struct vmem_altmap;
2417void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2418 struct vmem_altmap *altmap);
2419static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2420{
2421 return __vmemmap_alloc_block_buf(size, node, NULL);
2422}
2423
8f6aac41 2424void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2425int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2426 int node);
2427int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2428void vmemmap_populate_print_last(void);
0197518c 2429#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2430void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2431#endif
46723bfa
YI
2432void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2433 unsigned long size);
6a46079c 2434
82ba011b
AK
2435enum mf_flags {
2436 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2437 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2438 MF_MUST_KILL = 1 << 2,
cf870c70 2439 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2440};
cd42f4a3 2441extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2442extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2443extern int unpoison_memory(unsigned long pfn);
ead07f6a 2444extern int get_hwpoison_page(struct page *page);
4e41a30c 2445#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2446extern int sysctl_memory_failure_early_kill;
2447extern int sysctl_memory_failure_recovery;
facb6011 2448extern void shake_page(struct page *p, int access);
293c07e3 2449extern atomic_long_t num_poisoned_pages;
facb6011 2450extern int soft_offline_page(struct page *page, int flags);
6a46079c 2451
cc637b17
XX
2452
2453/*
2454 * Error handlers for various types of pages.
2455 */
cc3e2af4 2456enum mf_result {
cc637b17
XX
2457 MF_IGNORED, /* Error: cannot be handled */
2458 MF_FAILED, /* Error: handling failed */
2459 MF_DELAYED, /* Will be handled later */
2460 MF_RECOVERED, /* Successfully recovered */
2461};
2462
2463enum mf_action_page_type {
2464 MF_MSG_KERNEL,
2465 MF_MSG_KERNEL_HIGH_ORDER,
2466 MF_MSG_SLAB,
2467 MF_MSG_DIFFERENT_COMPOUND,
2468 MF_MSG_POISONED_HUGE,
2469 MF_MSG_HUGE,
2470 MF_MSG_FREE_HUGE,
2471 MF_MSG_UNMAP_FAILED,
2472 MF_MSG_DIRTY_SWAPCACHE,
2473 MF_MSG_CLEAN_SWAPCACHE,
2474 MF_MSG_DIRTY_MLOCKED_LRU,
2475 MF_MSG_CLEAN_MLOCKED_LRU,
2476 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2477 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2478 MF_MSG_DIRTY_LRU,
2479 MF_MSG_CLEAN_LRU,
2480 MF_MSG_TRUNCATED_LRU,
2481 MF_MSG_BUDDY,
2482 MF_MSG_BUDDY_2ND,
2483 MF_MSG_UNKNOWN,
2484};
2485
47ad8475
AA
2486#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2487extern void clear_huge_page(struct page *page,
2488 unsigned long addr,
2489 unsigned int pages_per_huge_page);
2490extern void copy_user_huge_page(struct page *dst, struct page *src,
2491 unsigned long addr, struct vm_area_struct *vma,
2492 unsigned int pages_per_huge_page);
fa4d75c1
MK
2493extern long copy_huge_page_from_user(struct page *dst_page,
2494 const void __user *usr_src,
810a56b9
MK
2495 unsigned int pages_per_huge_page,
2496 bool allow_pagefault);
47ad8475
AA
2497#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2498
e30825f1
JK
2499extern struct page_ext_operations debug_guardpage_ops;
2500extern struct page_ext_operations page_poisoning_ops;
2501
c0a32fc5
SG
2502#ifdef CONFIG_DEBUG_PAGEALLOC
2503extern unsigned int _debug_guardpage_minorder;
e30825f1 2504extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2505
2506static inline unsigned int debug_guardpage_minorder(void)
2507{
2508 return _debug_guardpage_minorder;
2509}
2510
e30825f1
JK
2511static inline bool debug_guardpage_enabled(void)
2512{
2513 return _debug_guardpage_enabled;
2514}
2515
c0a32fc5
SG
2516static inline bool page_is_guard(struct page *page)
2517{
e30825f1
JK
2518 struct page_ext *page_ext;
2519
2520 if (!debug_guardpage_enabled())
2521 return false;
2522
2523 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2524 if (unlikely(!page_ext))
2525 return false;
2526
e30825f1 2527 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2528}
2529#else
2530static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2531static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2532static inline bool page_is_guard(struct page *page) { return false; }
2533#endif /* CONFIG_DEBUG_PAGEALLOC */
2534
f9872caf
CS
2535#if MAX_NUMNODES > 1
2536void __init setup_nr_node_ids(void);
2537#else
2538static inline void setup_nr_node_ids(void) {}
2539#endif
2540
1da177e4
LT
2541#endif /* __KERNEL__ */
2542#endif /* _LINUX_MM_H */