]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/mm.h
mmap locking API: convert mmap_sem comments
[mirror_ubuntu-hirsute-kernel.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
fe896d18 27#include <linux/page_ref.h>
7b2d55d2 28#include <linux/memremap.h>
3b3b1a29 29#include <linux/overflow.h>
b5420237 30#include <linux/sizes.h>
7969f226 31#include <linux/sched.h>
65fddcfc 32#include <linux/pgtable.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
4e950f6f 37struct file_ra_state;
e8edc6e0 38struct user_struct;
4e950f6f 39struct writeback_control;
682aa8e1 40struct bdi_writeback;
1da177e4 41
597b7305
MH
42void init_mm_internals(void);
43
fccc9987 44#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 45extern unsigned long max_mapnr;
fccc9987
JL
46
47static inline void set_max_mapnr(unsigned long limit)
48{
49 max_mapnr = limit;
50}
51#else
52static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
53#endif
54
ca79b0c2
AK
55extern atomic_long_t _totalram_pages;
56static inline unsigned long totalram_pages(void)
57{
58 return (unsigned long)atomic_long_read(&_totalram_pages);
59}
60
61static inline void totalram_pages_inc(void)
62{
63 atomic_long_inc(&_totalram_pages);
64}
65
66static inline void totalram_pages_dec(void)
67{
68 atomic_long_dec(&_totalram_pages);
69}
70
71static inline void totalram_pages_add(long count)
72{
73 atomic_long_add(count, &_totalram_pages);
74}
75
1da177e4 76extern void * high_memory;
1da177e4
LT
77extern int page_cluster;
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
104 * It's defined as noop for arcitectures that don't support memory tagging.
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
143 * combine write statments if they are both assignments and can be reordered,
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
158 _pp[9] = 0; /* fallthrough */
159 case 72:
160 _pp[8] = 0; /* fallthrough */
161 case 64:
162 _pp[7] = 0; /* fallthrough */
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
49f0ce5f 209
1da177e4
LT
210#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
211
27ac792c
AR
212/* to align the pointer to the (next) page boundary */
213#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
214
0fa73b86 215/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 216#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 217
f86196ea
NB
218#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
219
1da177e4
LT
220/*
221 * Linux kernel virtual memory manager primitives.
222 * The idea being to have a "virtual" mm in the same way
223 * we have a virtual fs - giving a cleaner interface to the
224 * mm details, and allowing different kinds of memory mappings
225 * (from shared memory to executable loading to arbitrary
226 * mmap() functions).
227 */
228
490fc053 229struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
230struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
231void vm_area_free(struct vm_area_struct *);
c43692e8 232
1da177e4 233#ifndef CONFIG_MMU
8feae131
DH
234extern struct rb_root nommu_region_tree;
235extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
236
237extern unsigned int kobjsize(const void *objp);
238#endif
239
240/*
605d9288 241 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 242 * When changing, update also include/trace/events/mmflags.h
1da177e4 243 */
cc2383ec
KK
244#define VM_NONE 0x00000000
245
1da177e4
LT
246#define VM_READ 0x00000001 /* currently active flags */
247#define VM_WRITE 0x00000002
248#define VM_EXEC 0x00000004
249#define VM_SHARED 0x00000008
250
7e2cff42 251/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
252#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
253#define VM_MAYWRITE 0x00000020
254#define VM_MAYEXEC 0x00000040
255#define VM_MAYSHARE 0x00000080
256
257#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 258#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 259#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 260#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 261#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 262
1da177e4
LT
263#define VM_LOCKED 0x00002000
264#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
265
266 /* Used by sys_madvise() */
267#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
268#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
269
270#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
271#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 272#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 273#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 274#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 275#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 276#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 277#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 278#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 279#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 280
d9104d1c
CG
281#ifdef CONFIG_MEM_SOFT_DIRTY
282# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
283#else
284# define VM_SOFTDIRTY 0
285#endif
286
b379d790 287#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
288#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
289#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 290#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 291
63c17fb8
DH
292#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
293#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
294#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
295#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
296#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 297#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
298#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
299#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
300#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
301#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 302#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
303#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
304
5212213a 305#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
306# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
307# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 308# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
309# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
310# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
311#ifdef CONFIG_PPC
312# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
313#else
314# define VM_PKEY_BIT4 0
8f62c883 315#endif
5212213a
RP
316#endif /* CONFIG_ARCH_HAS_PKEYS */
317
318#if defined(CONFIG_X86)
319# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
320#elif defined(CONFIG_PPC)
321# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
322#elif defined(CONFIG_PARISC)
323# define VM_GROWSUP VM_ARCH_1
324#elif defined(CONFIG_IA64)
325# define VM_GROWSUP VM_ARCH_1
74a04967
KA
326#elif defined(CONFIG_SPARC64)
327# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
328# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
329#elif defined(CONFIG_ARM64)
330# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
331# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
336#ifndef VM_GROWSUP
337# define VM_GROWSUP VM_NONE
338#endif
339
a8bef8ff
MG
340/* Bits set in the VMA until the stack is in its final location */
341#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
342
c62da0c3
AK
343#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
344
345/* Common data flag combinations */
346#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
347 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
348#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
349 VM_MAYWRITE | VM_MAYEXEC)
350#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
351 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
352
353#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
354#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
355#endif
356
1da177e4
LT
357#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
358#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
359#endif
360
361#ifdef CONFIG_STACK_GROWSUP
30bdbb78 362#define VM_STACK VM_GROWSUP
1da177e4 363#else
30bdbb78 364#define VM_STACK VM_GROWSDOWN
1da177e4
LT
365#endif
366
30bdbb78
KK
367#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
368
6cb4d9a2
AK
369/* VMA basic access permission flags */
370#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
371
372
b291f000 373/*
78f11a25 374 * Special vmas that are non-mergable, non-mlock()able.
b291f000 375 */
9050d7eb 376#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 377
b4443772
AK
378/* This mask prevents VMA from being scanned with khugepaged */
379#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
380
a0715cc2
AT
381/* This mask defines which mm->def_flags a process can inherit its parent */
382#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
383
de60f5f1
EM
384/* This mask is used to clear all the VMA flags used by mlock */
385#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
386
2c2d57b5
KA
387/* Arch-specific flags to clear when updating VM flags on protection change */
388#ifndef VM_ARCH_CLEAR
389# define VM_ARCH_CLEAR VM_NONE
390#endif
391#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
392
1da177e4
LT
393/*
394 * mapping from the currently active vm_flags protection bits (the
395 * low four bits) to a page protection mask..
396 */
397extern pgprot_t protection_map[16];
398
c270a7ee
PX
399/**
400 * Fault flag definitions.
401 *
402 * @FAULT_FLAG_WRITE: Fault was a write fault.
403 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
404 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 405 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
406 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
407 * @FAULT_FLAG_TRIED: The fault has been tried once.
408 * @FAULT_FLAG_USER: The fault originated in userspace.
409 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
410 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
411 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
412 *
413 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
414 * whether we would allow page faults to retry by specifying these two
415 * fault flags correctly. Currently there can be three legal combinations:
416 *
417 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
418 * this is the first try
419 *
420 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
421 * we've already tried at least once
422 *
423 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
424 *
425 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
426 * be used. Note that page faults can be allowed to retry for multiple times,
427 * in which case we'll have an initial fault with flags (a) then later on
428 * continuous faults with flags (b). We should always try to detect pending
429 * signals before a retry to make sure the continuous page faults can still be
430 * interrupted if necessary.
c270a7ee
PX
431 */
432#define FAULT_FLAG_WRITE 0x01
433#define FAULT_FLAG_MKWRITE 0x02
434#define FAULT_FLAG_ALLOW_RETRY 0x04
435#define FAULT_FLAG_RETRY_NOWAIT 0x08
436#define FAULT_FLAG_KILLABLE 0x10
437#define FAULT_FLAG_TRIED 0x20
438#define FAULT_FLAG_USER 0x40
439#define FAULT_FLAG_REMOTE 0x80
440#define FAULT_FLAG_INSTRUCTION 0x100
441#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 442
dde16072
PX
443/*
444 * The default fault flags that should be used by most of the
445 * arch-specific page fault handlers.
446 */
447#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
448 FAULT_FLAG_KILLABLE | \
449 FAULT_FLAG_INTERRUPTIBLE)
dde16072 450
4064b982
PX
451/**
452 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
453 *
454 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 455 * the mmap_lock for too long a time when waiting for another condition
4064b982 456 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
457 * mmap_lock in the first round to avoid potential starvation of other
458 * processes that would also want the mmap_lock.
4064b982
PX
459 *
460 * Return: true if the page fault allows retry and this is the first
461 * attempt of the fault handling; false otherwise.
462 */
463static inline bool fault_flag_allow_retry_first(unsigned int flags)
464{
465 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
466 (!(flags & FAULT_FLAG_TRIED));
467}
468
282a8e03
RZ
469#define FAULT_FLAG_TRACE \
470 { FAULT_FLAG_WRITE, "WRITE" }, \
471 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
472 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
473 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
474 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
475 { FAULT_FLAG_TRIED, "TRIED" }, \
476 { FAULT_FLAG_USER, "USER" }, \
477 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
478 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
479 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 480
54cb8821 481/*
d0217ac0 482 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
483 * ->fault function. The vma's ->fault is responsible for returning a bitmask
484 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 485 *
c20cd45e
MH
486 * MM layer fills up gfp_mask for page allocations but fault handler might
487 * alter it if its implementation requires a different allocation context.
488 *
9b4bdd2f 489 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 490 */
d0217ac0 491struct vm_fault {
82b0f8c3 492 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 493 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 494 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 495 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 496 unsigned long address; /* Faulting virtual address */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
2994302b 502 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 503
3917048d 504 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 505 struct page *page; /* ->fault handlers should return a
83c54070 506 * page here, unless VM_FAULT_NOPAGE
d0217ac0 507 * is set (which is also implied by
83c54070 508 * VM_FAULT_ERROR).
d0217ac0 509 */
82b0f8c3 510 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
511 pte_t *pte; /* Pointer to pte entry matching
512 * the 'address'. NULL if the page
513 * table hasn't been allocated.
514 */
515 spinlock_t *ptl; /* Page table lock.
516 * Protects pte page table if 'pte'
517 * is not NULL, otherwise pmd.
518 */
7267ec00
KS
519 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
520 * vm_ops->map_pages() calls
521 * alloc_set_pte() from atomic context.
522 * do_fault_around() pre-allocates
523 * page table to avoid allocation from
524 * atomic context.
525 */
54cb8821 526};
1da177e4 527
c791ace1
DJ
528/* page entry size for vm->huge_fault() */
529enum page_entry_size {
530 PE_SIZE_PTE = 0,
531 PE_SIZE_PMD,
532 PE_SIZE_PUD,
533};
534
1da177e4
LT
535/*
536 * These are the virtual MM functions - opening of an area, closing and
537 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 538 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
539 */
540struct vm_operations_struct {
541 void (*open)(struct vm_area_struct * area);
542 void (*close)(struct vm_area_struct * area);
31383c68 543 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 544 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
545 vm_fault_t (*fault)(struct vm_fault *vmf);
546 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
547 enum page_entry_size pe_size);
82b0f8c3 548 void (*map_pages)(struct vm_fault *vmf,
bae473a4 549 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 550 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
551
552 /* notification that a previously read-only page is about to become
553 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 554 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 555
dd906184 556 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 557 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 558
28b2ee20
RR
559 /* called by access_process_vm when get_user_pages() fails, typically
560 * for use by special VMAs that can switch between memory and hardware
561 */
562 int (*access)(struct vm_area_struct *vma, unsigned long addr,
563 void *buf, int len, int write);
78d683e8
AL
564
565 /* Called by the /proc/PID/maps code to ask the vma whether it
566 * has a special name. Returning non-NULL will also cause this
567 * vma to be dumped unconditionally. */
568 const char *(*name)(struct vm_area_struct *vma);
569
1da177e4 570#ifdef CONFIG_NUMA
a6020ed7
LS
571 /*
572 * set_policy() op must add a reference to any non-NULL @new mempolicy
573 * to hold the policy upon return. Caller should pass NULL @new to
574 * remove a policy and fall back to surrounding context--i.e. do not
575 * install a MPOL_DEFAULT policy, nor the task or system default
576 * mempolicy.
577 */
1da177e4 578 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
579
580 /*
581 * get_policy() op must add reference [mpol_get()] to any policy at
582 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
583 * in mm/mempolicy.c will do this automatically.
584 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 585 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
586 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
587 * must return NULL--i.e., do not "fallback" to task or system default
588 * policy.
589 */
1da177e4
LT
590 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
591 unsigned long addr);
592#endif
667a0a06
DV
593 /*
594 * Called by vm_normal_page() for special PTEs to find the
595 * page for @addr. This is useful if the default behavior
596 * (using pte_page()) would not find the correct page.
597 */
598 struct page *(*find_special_page)(struct vm_area_struct *vma,
599 unsigned long addr);
1da177e4
LT
600};
601
027232da
KS
602static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
603{
bfd40eaf
KS
604 static const struct vm_operations_struct dummy_vm_ops = {};
605
a670468f 606 memset(vma, 0, sizeof(*vma));
027232da 607 vma->vm_mm = mm;
bfd40eaf 608 vma->vm_ops = &dummy_vm_ops;
027232da
KS
609 INIT_LIST_HEAD(&vma->anon_vma_chain);
610}
611
bfd40eaf
KS
612static inline void vma_set_anonymous(struct vm_area_struct *vma)
613{
614 vma->vm_ops = NULL;
615}
616
43675e6f
YS
617static inline bool vma_is_anonymous(struct vm_area_struct *vma)
618{
619 return !vma->vm_ops;
620}
621
222100ee
AK
622static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
623{
624 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
625
626 if (!maybe_stack)
627 return false;
628
629 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
630 VM_STACK_INCOMPLETE_SETUP)
631 return true;
632
633 return false;
634}
635
7969f226
AK
636static inline bool vma_is_foreign(struct vm_area_struct *vma)
637{
638 if (!current->mm)
639 return true;
640
641 if (current->mm != vma->vm_mm)
642 return true;
643
644 return false;
645}
3122e80e
AK
646
647static inline bool vma_is_accessible(struct vm_area_struct *vma)
648{
6cb4d9a2 649 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
650}
651
43675e6f
YS
652#ifdef CONFIG_SHMEM
653/*
654 * The vma_is_shmem is not inline because it is used only by slow
655 * paths in userfault.
656 */
657bool vma_is_shmem(struct vm_area_struct *vma);
658#else
659static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
660#endif
661
662int vma_is_stack_for_current(struct vm_area_struct *vma);
663
8b11ec1b
LT
664/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
665#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
666
1da177e4
LT
667struct mmu_gather;
668struct inode;
669
1da177e4
LT
670/*
671 * FIXME: take this include out, include page-flags.h in
672 * files which need it (119 of them)
673 */
674#include <linux/page-flags.h>
71e3aac0 675#include <linux/huge_mm.h>
1da177e4
LT
676
677/*
678 * Methods to modify the page usage count.
679 *
680 * What counts for a page usage:
681 * - cache mapping (page->mapping)
682 * - private data (page->private)
683 * - page mapped in a task's page tables, each mapping
684 * is counted separately
685 *
686 * Also, many kernel routines increase the page count before a critical
687 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
688 */
689
690/*
da6052f7 691 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 692 */
7c8ee9a8
NP
693static inline int put_page_testzero(struct page *page)
694{
fe896d18
JK
695 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
696 return page_ref_dec_and_test(page);
7c8ee9a8 697}
1da177e4
LT
698
699/*
7c8ee9a8
NP
700 * Try to grab a ref unless the page has a refcount of zero, return false if
701 * that is the case.
8e0861fa
AK
702 * This can be called when MMU is off so it must not access
703 * any of the virtual mappings.
1da177e4 704 */
7c8ee9a8
NP
705static inline int get_page_unless_zero(struct page *page)
706{
fe896d18 707 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 708}
1da177e4 709
53df8fdc 710extern int page_is_ram(unsigned long pfn);
124fe20d
DW
711
712enum {
713 REGION_INTERSECTS,
714 REGION_DISJOINT,
715 REGION_MIXED,
716};
717
1c29f25b
TK
718int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
719 unsigned long desc);
53df8fdc 720
48667e7a 721/* Support for virtually mapped pages */
b3bdda02
CL
722struct page *vmalloc_to_page(const void *addr);
723unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 724
0738c4bb
PM
725/*
726 * Determine if an address is within the vmalloc range
727 *
728 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
729 * is no special casing required.
730 */
9bd3bb67
AK
731
732#ifndef is_ioremap_addr
733#define is_ioremap_addr(x) is_vmalloc_addr(x)
734#endif
735
81ac3ad9 736#ifdef CONFIG_MMU
186525bd 737extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
738extern int is_vmalloc_or_module_addr(const void *x);
739#else
186525bd
IM
740static inline bool is_vmalloc_addr(const void *x)
741{
742 return false;
743}
934831d0 744static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
745{
746 return 0;
747}
748#endif
9e2779fa 749
a7c3e901
MH
750extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
751static inline void *kvmalloc(size_t size, gfp_t flags)
752{
753 return kvmalloc_node(size, flags, NUMA_NO_NODE);
754}
755static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
756{
757 return kvmalloc_node(size, flags | __GFP_ZERO, node);
758}
759static inline void *kvzalloc(size_t size, gfp_t flags)
760{
761 return kvmalloc(size, flags | __GFP_ZERO);
762}
763
752ade68
MH
764static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
765{
3b3b1a29
KC
766 size_t bytes;
767
768 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
769 return NULL;
770
3b3b1a29 771 return kvmalloc(bytes, flags);
752ade68
MH
772}
773
1c542f38
KC
774static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
775{
776 return kvmalloc_array(n, size, flags | __GFP_ZERO);
777}
778
39f1f78d 779extern void kvfree(const void *addr);
d4eaa283 780extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 781
6988f31d
KK
782/*
783 * Mapcount of compound page as a whole, does not include mapped sub-pages.
784 *
785 * Must be called only for compound pages or any their tail sub-pages.
786 */
53f9263b
KS
787static inline int compound_mapcount(struct page *page)
788{
5f527c2b 789 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
790 page = compound_head(page);
791 return atomic_read(compound_mapcount_ptr(page)) + 1;
792}
793
70b50f94
AA
794/*
795 * The atomic page->_mapcount, starts from -1: so that transitions
796 * both from it and to it can be tracked, using atomic_inc_and_test
797 * and atomic_add_negative(-1).
798 */
22b751c3 799static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
800{
801 atomic_set(&(page)->_mapcount, -1);
802}
803
b20ce5e0
KS
804int __page_mapcount(struct page *page);
805
6988f31d
KK
806/*
807 * Mapcount of 0-order page; when compound sub-page, includes
808 * compound_mapcount().
809 *
810 * Result is undefined for pages which cannot be mapped into userspace.
811 * For example SLAB or special types of pages. See function page_has_type().
812 * They use this place in struct page differently.
813 */
70b50f94
AA
814static inline int page_mapcount(struct page *page)
815{
b20ce5e0
KS
816 if (unlikely(PageCompound(page)))
817 return __page_mapcount(page);
818 return atomic_read(&page->_mapcount) + 1;
819}
820
821#ifdef CONFIG_TRANSPARENT_HUGEPAGE
822int total_mapcount(struct page *page);
6d0a07ed 823int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
824#else
825static inline int total_mapcount(struct page *page)
826{
827 return page_mapcount(page);
70b50f94 828}
6d0a07ed
AA
829static inline int page_trans_huge_mapcount(struct page *page,
830 int *total_mapcount)
831{
832 int mapcount = page_mapcount(page);
833 if (total_mapcount)
834 *total_mapcount = mapcount;
835 return mapcount;
836}
b20ce5e0 837#endif
70b50f94 838
b49af68f
CL
839static inline struct page *virt_to_head_page(const void *x)
840{
841 struct page *page = virt_to_page(x);
ccaafd7f 842
1d798ca3 843 return compound_head(page);
b49af68f
CL
844}
845
ddc58f27
KS
846void __put_page(struct page *page);
847
1d7ea732 848void put_pages_list(struct list_head *pages);
1da177e4 849
8dfcc9ba 850void split_page(struct page *page, unsigned int order);
8dfcc9ba 851
33f2ef89
AW
852/*
853 * Compound pages have a destructor function. Provide a
854 * prototype for that function and accessor functions.
f1e61557 855 * These are _only_ valid on the head of a compound page.
33f2ef89 856 */
f1e61557
KS
857typedef void compound_page_dtor(struct page *);
858
859/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
860enum compound_dtor_id {
861 NULL_COMPOUND_DTOR,
862 COMPOUND_PAGE_DTOR,
863#ifdef CONFIG_HUGETLB_PAGE
864 HUGETLB_PAGE_DTOR,
9a982250
KS
865#endif
866#ifdef CONFIG_TRANSPARENT_HUGEPAGE
867 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
868#endif
869 NR_COMPOUND_DTORS,
870};
ae70eddd 871extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
872
873static inline void set_compound_page_dtor(struct page *page,
f1e61557 874 enum compound_dtor_id compound_dtor)
33f2ef89 875{
f1e61557
KS
876 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
877 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
878}
879
ff45fc3c 880static inline void destroy_compound_page(struct page *page)
33f2ef89 881{
f1e61557 882 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 883 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
884}
885
d00181b9 886static inline unsigned int compound_order(struct page *page)
d85f3385 887{
6d777953 888 if (!PageHead(page))
d85f3385 889 return 0;
e4b294c2 890 return page[1].compound_order;
d85f3385
CL
891}
892
47e29d32
JH
893static inline bool hpage_pincount_available(struct page *page)
894{
895 /*
896 * Can the page->hpage_pinned_refcount field be used? That field is in
897 * the 3rd page of the compound page, so the smallest (2-page) compound
898 * pages cannot support it.
899 */
900 page = compound_head(page);
901 return PageCompound(page) && compound_order(page) > 1;
902}
903
904static inline int compound_pincount(struct page *page)
905{
906 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
907 page = compound_head(page);
908 return atomic_read(compound_pincount_ptr(page));
909}
910
f1e61557 911static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 912{
e4b294c2 913 page[1].compound_order = order;
d85f3385
CL
914}
915
d8c6546b
MWO
916/* Returns the number of pages in this potentially compound page. */
917static inline unsigned long compound_nr(struct page *page)
918{
919 return 1UL << compound_order(page);
920}
921
a50b854e
MWO
922/* Returns the number of bytes in this potentially compound page. */
923static inline unsigned long page_size(struct page *page)
924{
925 return PAGE_SIZE << compound_order(page);
926}
927
94ad9338
MWO
928/* Returns the number of bits needed for the number of bytes in a page */
929static inline unsigned int page_shift(struct page *page)
930{
931 return PAGE_SHIFT + compound_order(page);
932}
933
9a982250
KS
934void free_compound_page(struct page *page);
935
3dece370 936#ifdef CONFIG_MMU
14fd403f
AA
937/*
938 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
939 * servicing faults for write access. In the normal case, do always want
940 * pte_mkwrite. But get_user_pages can cause write faults for mappings
941 * that do not have writing enabled, when used by access_process_vm.
942 */
943static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
944{
945 if (likely(vma->vm_flags & VM_WRITE))
946 pte = pte_mkwrite(pte);
947 return pte;
948}
8c6e50b0 949
9d82c694 950vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
951vm_fault_t finish_fault(struct vm_fault *vmf);
952vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 953#endif
14fd403f 954
1da177e4
LT
955/*
956 * Multiple processes may "see" the same page. E.g. for untouched
957 * mappings of /dev/null, all processes see the same page full of
958 * zeroes, and text pages of executables and shared libraries have
959 * only one copy in memory, at most, normally.
960 *
961 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
962 * page_count() == 0 means the page is free. page->lru is then used for
963 * freelist management in the buddy allocator.
da6052f7 964 * page_count() > 0 means the page has been allocated.
1da177e4 965 *
da6052f7
NP
966 * Pages are allocated by the slab allocator in order to provide memory
967 * to kmalloc and kmem_cache_alloc. In this case, the management of the
968 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
969 * unless a particular usage is carefully commented. (the responsibility of
970 * freeing the kmalloc memory is the caller's, of course).
1da177e4 971 *
da6052f7
NP
972 * A page may be used by anyone else who does a __get_free_page().
973 * In this case, page_count still tracks the references, and should only
974 * be used through the normal accessor functions. The top bits of page->flags
975 * and page->virtual store page management information, but all other fields
976 * are unused and could be used privately, carefully. The management of this
977 * page is the responsibility of the one who allocated it, and those who have
978 * subsequently been given references to it.
979 *
980 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
981 * managed by the Linux memory manager: I/O, buffers, swapping etc.
982 * The following discussion applies only to them.
983 *
da6052f7
NP
984 * A pagecache page contains an opaque `private' member, which belongs to the
985 * page's address_space. Usually, this is the address of a circular list of
986 * the page's disk buffers. PG_private must be set to tell the VM to call
987 * into the filesystem to release these pages.
1da177e4 988 *
da6052f7
NP
989 * A page may belong to an inode's memory mapping. In this case, page->mapping
990 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 991 * in units of PAGE_SIZE.
1da177e4 992 *
da6052f7
NP
993 * If pagecache pages are not associated with an inode, they are said to be
994 * anonymous pages. These may become associated with the swapcache, and in that
995 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 996 *
da6052f7
NP
997 * In either case (swapcache or inode backed), the pagecache itself holds one
998 * reference to the page. Setting PG_private should also increment the
999 * refcount. The each user mapping also has a reference to the page.
1da177e4 1000 *
da6052f7 1001 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1002 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1003 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1004 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1005 *
da6052f7 1006 * All pagecache pages may be subject to I/O:
1da177e4
LT
1007 * - inode pages may need to be read from disk,
1008 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1009 * to be written back to the inode on disk,
1010 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1011 * modified may need to be swapped out to swap space and (later) to be read
1012 * back into memory.
1da177e4
LT
1013 */
1014
1015/*
1016 * The zone field is never updated after free_area_init_core()
1017 * sets it, so none of the operations on it need to be atomic.
1da177e4 1018 */
348f8b6c 1019
90572890 1020/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1021#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1022#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1023#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1024#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1025#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1026
348f8b6c 1027/*
25985edc 1028 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1029 * sections we define the shift as 0; that plus a 0 mask ensures
1030 * the compiler will optimise away reference to them.
1031 */
d41dee36
AW
1032#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1033#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1034#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1035#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1036#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1037
bce54bbf
WD
1038/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1039#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1040#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1041#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1042 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1043#else
89689ae7 1044#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1045#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1046 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1047#endif
1048
bd8029b6 1049#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1050
d41dee36
AW
1051#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1052#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1053#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1054#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1055#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1056#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1057
33dd4e0e 1058static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1059{
348f8b6c 1060 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1061}
1da177e4 1062
260ae3f7
DW
1063#ifdef CONFIG_ZONE_DEVICE
1064static inline bool is_zone_device_page(const struct page *page)
1065{
1066 return page_zonenum(page) == ZONE_DEVICE;
1067}
966cf44f
AD
1068extern void memmap_init_zone_device(struct zone *, unsigned long,
1069 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1070#else
1071static inline bool is_zone_device_page(const struct page *page)
1072{
1073 return false;
1074}
7b2d55d2 1075#endif
5042db43 1076
e7638488 1077#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1078void free_devmap_managed_page(struct page *page);
e7638488 1079DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1080
1081static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1082{
1083 if (!static_branch_unlikely(&devmap_managed_key))
1084 return false;
1085 if (!is_zone_device_page(page))
1086 return false;
1087 switch (page->pgmap->type) {
1088 case MEMORY_DEVICE_PRIVATE:
e7638488 1089 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1090 return true;
1091 default:
1092 break;
1093 }
1094 return false;
1095}
1096
07d80269
JH
1097void put_devmap_managed_page(struct page *page);
1098
e7638488 1099#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1100static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1101{
1102 return false;
1103}
07d80269
JH
1104
1105static inline void put_devmap_managed_page(struct page *page)
1106{
1107}
7588adf8 1108#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1109
6b368cd4
JG
1110static inline bool is_device_private_page(const struct page *page)
1111{
7588adf8
RM
1112 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1113 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1114 is_zone_device_page(page) &&
1115 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1116}
e7638488 1117
52916982
LG
1118static inline bool is_pci_p2pdma_page(const struct page *page)
1119{
7588adf8
RM
1120 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1121 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1122 is_zone_device_page(page) &&
1123 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1124}
7b2d55d2 1125
f958d7b5
LT
1126/* 127: arbitrary random number, small enough to assemble well */
1127#define page_ref_zero_or_close_to_overflow(page) \
1128 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1129
3565fce3
DW
1130static inline void get_page(struct page *page)
1131{
1132 page = compound_head(page);
1133 /*
1134 * Getting a normal page or the head of a compound page
0139aa7b 1135 * requires to already have an elevated page->_refcount.
3565fce3 1136 */
f958d7b5 1137 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1138 page_ref_inc(page);
3565fce3
DW
1139}
1140
3faa52c0
JH
1141bool __must_check try_grab_page(struct page *page, unsigned int flags);
1142
88b1a17d
LT
1143static inline __must_check bool try_get_page(struct page *page)
1144{
1145 page = compound_head(page);
1146 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1147 return false;
fe896d18 1148 page_ref_inc(page);
88b1a17d 1149 return true;
3565fce3
DW
1150}
1151
1152static inline void put_page(struct page *page)
1153{
1154 page = compound_head(page);
1155
7b2d55d2 1156 /*
e7638488
DW
1157 * For devmap managed pages we need to catch refcount transition from
1158 * 2 to 1, when refcount reach one it means the page is free and we
1159 * need to inform the device driver through callback. See
7b2d55d2
JG
1160 * include/linux/memremap.h and HMM for details.
1161 */
07d80269
JH
1162 if (page_is_devmap_managed(page)) {
1163 put_devmap_managed_page(page);
7b2d55d2 1164 return;
07d80269 1165 }
7b2d55d2 1166
3565fce3
DW
1167 if (put_page_testzero(page))
1168 __put_page(page);
3565fce3
DW
1169}
1170
3faa52c0
JH
1171/*
1172 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1173 * the page's refcount so that two separate items are tracked: the original page
1174 * reference count, and also a new count of how many pin_user_pages() calls were
1175 * made against the page. ("gup-pinned" is another term for the latter).
1176 *
1177 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1178 * distinct from normal pages. As such, the unpin_user_page() call (and its
1179 * variants) must be used in order to release gup-pinned pages.
1180 *
1181 * Choice of value:
1182 *
1183 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1184 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1185 * simpler, due to the fact that adding an even power of two to the page
1186 * refcount has the effect of using only the upper N bits, for the code that
1187 * counts up using the bias value. This means that the lower bits are left for
1188 * the exclusive use of the original code that increments and decrements by one
1189 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1190 *
3faa52c0
JH
1191 * Of course, once the lower bits overflow into the upper bits (and this is
1192 * OK, because subtraction recovers the original values), then visual inspection
1193 * no longer suffices to directly view the separate counts. However, for normal
1194 * applications that don't have huge page reference counts, this won't be an
1195 * issue.
fc1d8e7c 1196 *
3faa52c0
JH
1197 * Locking: the lockless algorithm described in page_cache_get_speculative()
1198 * and page_cache_gup_pin_speculative() provides safe operation for
1199 * get_user_pages and page_mkclean and other calls that race to set up page
1200 * table entries.
fc1d8e7c 1201 */
3faa52c0 1202#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1203
3faa52c0 1204void unpin_user_page(struct page *page);
f1f6a7dd
JH
1205void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1206 bool make_dirty);
f1f6a7dd 1207void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1208
3faa52c0
JH
1209/**
1210 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1211 *
1212 * This function checks if a page has been pinned via a call to
1213 * pin_user_pages*().
1214 *
1215 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1216 * because it means "definitely not pinned for DMA", but true means "probably
1217 * pinned for DMA, but possibly a false positive due to having at least
1218 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1219 *
1220 * False positives are OK, because: a) it's unlikely for a page to get that many
1221 * refcounts, and b) all the callers of this routine are expected to be able to
1222 * deal gracefully with a false positive.
1223 *
47e29d32
JH
1224 * For huge pages, the result will be exactly correct. That's because we have
1225 * more tracking data available: the 3rd struct page in the compound page is
1226 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1227 * scheme).
1228 *
72ef5e52 1229 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1230 *
1231 * @page: pointer to page to be queried.
1232 * @Return: True, if it is likely that the page has been "dma-pinned".
1233 * False, if the page is definitely not dma-pinned.
1234 */
1235static inline bool page_maybe_dma_pinned(struct page *page)
1236{
47e29d32
JH
1237 if (hpage_pincount_available(page))
1238 return compound_pincount(page) > 0;
1239
3faa52c0
JH
1240 /*
1241 * page_ref_count() is signed. If that refcount overflows, then
1242 * page_ref_count() returns a negative value, and callers will avoid
1243 * further incrementing the refcount.
1244 *
1245 * Here, for that overflow case, use the signed bit to count a little
1246 * bit higher via unsigned math, and thus still get an accurate result.
1247 */
1248 return ((unsigned int)page_ref_count(compound_head(page))) >=
1249 GUP_PIN_COUNTING_BIAS;
1250}
1251
9127ab4f
CS
1252#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1253#define SECTION_IN_PAGE_FLAGS
1254#endif
1255
89689ae7 1256/*
7a8010cd
VB
1257 * The identification function is mainly used by the buddy allocator for
1258 * determining if two pages could be buddies. We are not really identifying
1259 * the zone since we could be using the section number id if we do not have
1260 * node id available in page flags.
1261 * We only guarantee that it will return the same value for two combinable
1262 * pages in a zone.
89689ae7 1263 */
cb2b95e1
AW
1264static inline int page_zone_id(struct page *page)
1265{
89689ae7 1266 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1267}
1268
89689ae7 1269#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1270extern int page_to_nid(const struct page *page);
89689ae7 1271#else
33dd4e0e 1272static inline int page_to_nid(const struct page *page)
d41dee36 1273{
f165b378
PT
1274 struct page *p = (struct page *)page;
1275
1276 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1277}
89689ae7
CL
1278#endif
1279
57e0a030 1280#ifdef CONFIG_NUMA_BALANCING
90572890 1281static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1282{
90572890 1283 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1284}
1285
90572890 1286static inline int cpupid_to_pid(int cpupid)
57e0a030 1287{
90572890 1288 return cpupid & LAST__PID_MASK;
57e0a030 1289}
b795854b 1290
90572890 1291static inline int cpupid_to_cpu(int cpupid)
b795854b 1292{
90572890 1293 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1294}
1295
90572890 1296static inline int cpupid_to_nid(int cpupid)
b795854b 1297{
90572890 1298 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1299}
1300
90572890 1301static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1302{
90572890 1303 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1304}
1305
90572890 1306static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1307{
90572890 1308 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1309}
1310
8c8a743c
PZ
1311static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1312{
1313 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1314}
1315
1316#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1317#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1318static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1319{
1ae71d03 1320 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1321}
90572890
PZ
1322
1323static inline int page_cpupid_last(struct page *page)
1324{
1325 return page->_last_cpupid;
1326}
1327static inline void page_cpupid_reset_last(struct page *page)
b795854b 1328{
1ae71d03 1329 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1330}
1331#else
90572890 1332static inline int page_cpupid_last(struct page *page)
75980e97 1333{
90572890 1334 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1335}
1336
90572890 1337extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1338
90572890 1339static inline void page_cpupid_reset_last(struct page *page)
75980e97 1340{
09940a4f 1341 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1342}
90572890
PZ
1343#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1344#else /* !CONFIG_NUMA_BALANCING */
1345static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1346{
90572890 1347 return page_to_nid(page); /* XXX */
57e0a030
MG
1348}
1349
90572890 1350static inline int page_cpupid_last(struct page *page)
57e0a030 1351{
90572890 1352 return page_to_nid(page); /* XXX */
57e0a030
MG
1353}
1354
90572890 1355static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1356{
1357 return -1;
1358}
1359
90572890 1360static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1361{
1362 return -1;
1363}
1364
90572890 1365static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1366{
1367 return -1;
1368}
1369
90572890
PZ
1370static inline int cpu_pid_to_cpupid(int nid, int pid)
1371{
1372 return -1;
1373}
1374
1375static inline bool cpupid_pid_unset(int cpupid)
b795854b 1376{
2b787449 1377 return true;
b795854b
MG
1378}
1379
90572890 1380static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1381{
1382}
8c8a743c
PZ
1383
1384static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1385{
1386 return false;
1387}
90572890 1388#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1389
2813b9c0
AK
1390#ifdef CONFIG_KASAN_SW_TAGS
1391static inline u8 page_kasan_tag(const struct page *page)
1392{
1393 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1394}
1395
1396static inline void page_kasan_tag_set(struct page *page, u8 tag)
1397{
1398 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1399 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1400}
1401
1402static inline void page_kasan_tag_reset(struct page *page)
1403{
1404 page_kasan_tag_set(page, 0xff);
1405}
1406#else
1407static inline u8 page_kasan_tag(const struct page *page)
1408{
1409 return 0xff;
1410}
1411
1412static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1413static inline void page_kasan_tag_reset(struct page *page) { }
1414#endif
1415
33dd4e0e 1416static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1417{
1418 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1419}
1420
75ef7184
MG
1421static inline pg_data_t *page_pgdat(const struct page *page)
1422{
1423 return NODE_DATA(page_to_nid(page));
1424}
1425
9127ab4f 1426#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1427static inline void set_page_section(struct page *page, unsigned long section)
1428{
1429 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1430 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1431}
1432
aa462abe 1433static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1434{
1435 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1436}
308c05e3 1437#endif
d41dee36 1438
2f1b6248 1439static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1440{
1441 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1442 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1443}
2f1b6248 1444
348f8b6c
DH
1445static inline void set_page_node(struct page *page, unsigned long node)
1446{
1447 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1448 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1449}
89689ae7 1450
2f1b6248 1451static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1452 unsigned long node, unsigned long pfn)
1da177e4 1453{
348f8b6c
DH
1454 set_page_zone(page, zone);
1455 set_page_node(page, node);
9127ab4f 1456#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1457 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1458#endif
1da177e4
LT
1459}
1460
0610c25d
GT
1461#ifdef CONFIG_MEMCG
1462static inline struct mem_cgroup *page_memcg(struct page *page)
1463{
1464 return page->mem_cgroup;
1465}
55779ec7
JW
1466static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1467{
1468 WARN_ON_ONCE(!rcu_read_lock_held());
1469 return READ_ONCE(page->mem_cgroup);
1470}
0610c25d
GT
1471#else
1472static inline struct mem_cgroup *page_memcg(struct page *page)
1473{
1474 return NULL;
1475}
55779ec7
JW
1476static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1477{
1478 WARN_ON_ONCE(!rcu_read_lock_held());
1479 return NULL;
1480}
0610c25d
GT
1481#endif
1482
f6ac2354
CL
1483/*
1484 * Some inline functions in vmstat.h depend on page_zone()
1485 */
1486#include <linux/vmstat.h>
1487
33dd4e0e 1488static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1489{
1dff8083 1490 return page_to_virt(page);
1da177e4
LT
1491}
1492
1493#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1494#define HASHED_PAGE_VIRTUAL
1495#endif
1496
1497#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1498static inline void *page_address(const struct page *page)
1499{
1500 return page->virtual;
1501}
1502static inline void set_page_address(struct page *page, void *address)
1503{
1504 page->virtual = address;
1505}
1da177e4
LT
1506#define page_address_init() do { } while(0)
1507#endif
1508
1509#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1510void *page_address(const struct page *page);
1da177e4
LT
1511void set_page_address(struct page *page, void *virtual);
1512void page_address_init(void);
1513#endif
1514
1515#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1516#define page_address(page) lowmem_page_address(page)
1517#define set_page_address(page, address) do { } while(0)
1518#define page_address_init() do { } while(0)
1519#endif
1520
e39155ea
KS
1521extern void *page_rmapping(struct page *page);
1522extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1523extern struct address_space *page_mapping(struct page *page);
1da177e4 1524
f981c595
MG
1525extern struct address_space *__page_file_mapping(struct page *);
1526
1527static inline
1528struct address_space *page_file_mapping(struct page *page)
1529{
1530 if (unlikely(PageSwapCache(page)))
1531 return __page_file_mapping(page);
1532
1533 return page->mapping;
1534}
1535
f6ab1f7f
HY
1536extern pgoff_t __page_file_index(struct page *page);
1537
1da177e4
LT
1538/*
1539 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1540 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1541 */
1542static inline pgoff_t page_index(struct page *page)
1543{
1544 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1545 return __page_file_index(page);
1da177e4
LT
1546 return page->index;
1547}
1548
1aa8aea5 1549bool page_mapped(struct page *page);
bda807d4 1550struct address_space *page_mapping(struct page *page);
cb9f753a 1551struct address_space *page_mapping_file(struct page *page);
1da177e4 1552
2f064f34
MH
1553/*
1554 * Return true only if the page has been allocated with
1555 * ALLOC_NO_WATERMARKS and the low watermark was not
1556 * met implying that the system is under some pressure.
1557 */
1558static inline bool page_is_pfmemalloc(struct page *page)
1559{
1560 /*
1561 * Page index cannot be this large so this must be
1562 * a pfmemalloc page.
1563 */
1564 return page->index == -1UL;
1565}
1566
1567/*
1568 * Only to be called by the page allocator on a freshly allocated
1569 * page.
1570 */
1571static inline void set_page_pfmemalloc(struct page *page)
1572{
1573 page->index = -1UL;
1574}
1575
1576static inline void clear_page_pfmemalloc(struct page *page)
1577{
1578 page->index = 0;
1579}
1580
1c0fe6e3
NP
1581/*
1582 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1583 */
1584extern void pagefault_out_of_memory(void);
1585
1da177e4
LT
1586#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1587
ddd588b5 1588/*
7bf02ea2 1589 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1590 * various contexts.
1591 */
4b59e6c4 1592#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1593
9af744d7 1594extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1595
710ec38b 1596#ifdef CONFIG_MMU
7f43add4 1597extern bool can_do_mlock(void);
710ec38b
AB
1598#else
1599static inline bool can_do_mlock(void) { return false; }
1600#endif
1da177e4
LT
1601extern int user_shm_lock(size_t, struct user_struct *);
1602extern void user_shm_unlock(size_t, struct user_struct *);
1603
1604/*
1605 * Parameter block passed down to zap_pte_range in exceptional cases.
1606 */
1607struct zap_details {
1da177e4
LT
1608 struct address_space *check_mapping; /* Check page->mapping if set */
1609 pgoff_t first_index; /* Lowest page->index to unmap */
1610 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1611};
1612
25b2995a
CH
1613struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1614 pte_t pte);
28093f9f
GS
1615struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1616 pmd_t pmd);
7e675137 1617
27d036e3
LR
1618void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1619 unsigned long size);
14f5ff5d 1620void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1621 unsigned long size);
4f74d2c8
LT
1622void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1623 unsigned long start, unsigned long end);
e6473092 1624
ac46d4f3
JG
1625struct mmu_notifier_range;
1626
42b77728 1627void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1628 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1629int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1630 struct vm_area_struct *vma);
09796395 1631int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1632 struct mmu_notifier_range *range,
1633 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1634int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1635 unsigned long *pfn);
d87fe660 1636int follow_phys(struct vm_area_struct *vma, unsigned long address,
1637 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1638int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1639 void *buf, int len, int write);
1da177e4 1640
7caef267 1641extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1642extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1643void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1644void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1645int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1646int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1647int invalidate_inode_page(struct page *page);
1648
7ee1dd3f 1649#ifdef CONFIG_MMU
2b740303
SJ
1650extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1651 unsigned long address, unsigned int flags);
5c723ba5 1652extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1653 unsigned long address, unsigned int fault_flags,
1654 bool *unlocked);
977fbdcd
MW
1655void unmap_mapping_pages(struct address_space *mapping,
1656 pgoff_t start, pgoff_t nr, bool even_cows);
1657void unmap_mapping_range(struct address_space *mapping,
1658 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1659#else
2b740303 1660static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1661 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1662{
1663 /* should never happen if there's no MMU */
1664 BUG();
1665 return VM_FAULT_SIGBUS;
1666}
5c723ba5
PZ
1667static inline int fixup_user_fault(struct task_struct *tsk,
1668 struct mm_struct *mm, unsigned long address,
4a9e1cda 1669 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1670{
1671 /* should never happen if there's no MMU */
1672 BUG();
1673 return -EFAULT;
1674}
977fbdcd
MW
1675static inline void unmap_mapping_pages(struct address_space *mapping,
1676 pgoff_t start, pgoff_t nr, bool even_cows) { }
1677static inline void unmap_mapping_range(struct address_space *mapping,
1678 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1679#endif
f33ea7f4 1680
977fbdcd
MW
1681static inline void unmap_shared_mapping_range(struct address_space *mapping,
1682 loff_t const holebegin, loff_t const holelen)
1683{
1684 unmap_mapping_range(mapping, holebegin, holelen, 0);
1685}
1686
1687extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1688 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1689extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1690 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1691extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1692 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1693
1e987790
DH
1694long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1695 unsigned long start, unsigned long nr_pages,
9beae1ea 1696 unsigned int gup_flags, struct page **pages,
5b56d49f 1697 struct vm_area_struct **vmas, int *locked);
eddb1c22
JH
1698long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1699 unsigned long start, unsigned long nr_pages,
1700 unsigned int gup_flags, struct page **pages,
1701 struct vm_area_struct **vmas, int *locked);
c12d2da5 1702long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1703 unsigned int gup_flags, struct page **pages,
cde70140 1704 struct vm_area_struct **vmas);
eddb1c22
JH
1705long pin_user_pages(unsigned long start, unsigned long nr_pages,
1706 unsigned int gup_flags, struct page **pages,
1707 struct vm_area_struct **vmas);
c12d2da5 1708long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1709 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1710long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1711 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1712long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1713 struct page **pages, unsigned int gup_flags);
91429023
JH
1714long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1715 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1716
73b0140b
IW
1717int get_user_pages_fast(unsigned long start, int nr_pages,
1718 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1719int pin_user_pages_fast(unsigned long start, int nr_pages,
1720 unsigned int gup_flags, struct page **pages);
8025e5dd 1721
79eb597c
DJ
1722int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1723int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1724 struct task_struct *task, bool bypass_rlim);
1725
8025e5dd
JK
1726/* Container for pinned pfns / pages */
1727struct frame_vector {
1728 unsigned int nr_allocated; /* Number of frames we have space for */
1729 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1730 bool got_ref; /* Did we pin pages by getting page ref? */
1731 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1732 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1733 * pfns_vector_pages() or pfns_vector_pfns()
1734 * for access */
1735};
1736
1737struct frame_vector *frame_vector_create(unsigned int nr_frames);
1738void frame_vector_destroy(struct frame_vector *vec);
1739int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1740 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1741void put_vaddr_frames(struct frame_vector *vec);
1742int frame_vector_to_pages(struct frame_vector *vec);
1743void frame_vector_to_pfns(struct frame_vector *vec);
1744
1745static inline unsigned int frame_vector_count(struct frame_vector *vec)
1746{
1747 return vec->nr_frames;
1748}
1749
1750static inline struct page **frame_vector_pages(struct frame_vector *vec)
1751{
1752 if (vec->is_pfns) {
1753 int err = frame_vector_to_pages(vec);
1754
1755 if (err)
1756 return ERR_PTR(err);
1757 }
1758 return (struct page **)(vec->ptrs);
1759}
1760
1761static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1762{
1763 if (!vec->is_pfns)
1764 frame_vector_to_pfns(vec);
1765 return (unsigned long *)(vec->ptrs);
1766}
1767
18022c5d
MG
1768struct kvec;
1769int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1770 struct page **pages);
1771int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1772struct page *get_dump_page(unsigned long addr);
1da177e4 1773
cf9a2ae8 1774extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1775extern void do_invalidatepage(struct page *page, unsigned int offset,
1776 unsigned int length);
cf9a2ae8 1777
f82b3764 1778void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1779int __set_page_dirty_nobuffers(struct page *page);
76719325 1780int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1781int redirty_page_for_writepage(struct writeback_control *wbc,
1782 struct page *page);
62cccb8c 1783void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1784void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1785 struct bdi_writeback *wb);
b3c97528 1786int set_page_dirty(struct page *page);
1da177e4 1787int set_page_dirty_lock(struct page *page);
736304f3
JK
1788void __cancel_dirty_page(struct page *page);
1789static inline void cancel_dirty_page(struct page *page)
1790{
1791 /* Avoid atomic ops, locking, etc. when not actually needed. */
1792 if (PageDirty(page))
1793 __cancel_dirty_page(page);
1794}
1da177e4 1795int clear_page_dirty_for_io(struct page *page);
b9ea2515 1796
a9090253 1797int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1798
b6a2fea3
OW
1799extern unsigned long move_page_tables(struct vm_area_struct *vma,
1800 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1801 unsigned long new_addr, unsigned long len,
1802 bool need_rmap_locks);
58705444
PX
1803
1804/*
1805 * Flags used by change_protection(). For now we make it a bitmap so
1806 * that we can pass in multiple flags just like parameters. However
1807 * for now all the callers are only use one of the flags at the same
1808 * time.
1809 */
1810/* Whether we should allow dirty bit accounting */
1811#define MM_CP_DIRTY_ACCT (1UL << 0)
1812/* Whether this protection change is for NUMA hints */
1813#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1814/* Whether this change is for write protecting */
1815#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1816#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1817#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1818 MM_CP_UFFD_WP_RESOLVE)
58705444 1819
7da4d641
PZ
1820extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1821 unsigned long end, pgprot_t newprot,
58705444 1822 unsigned long cp_flags);
b6a2fea3
OW
1823extern int mprotect_fixup(struct vm_area_struct *vma,
1824 struct vm_area_struct **pprev, unsigned long start,
1825 unsigned long end, unsigned long newflags);
1da177e4 1826
465a454f
PZ
1827/*
1828 * doesn't attempt to fault and will return short.
1829 */
dadbb612
SJ
1830int get_user_pages_fast_only(unsigned long start, int nr_pages,
1831 unsigned int gup_flags, struct page **pages);
104acc32
JH
1832int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1833 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1834
1835static inline bool get_user_page_fast_only(unsigned long addr,
1836 unsigned int gup_flags, struct page **pagep)
1837{
1838 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1839}
d559db08
KH
1840/*
1841 * per-process(per-mm_struct) statistics.
1842 */
d559db08
KH
1843static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1844{
69c97823
KK
1845 long val = atomic_long_read(&mm->rss_stat.count[member]);
1846
1847#ifdef SPLIT_RSS_COUNTING
1848 /*
1849 * counter is updated in asynchronous manner and may go to minus.
1850 * But it's never be expected number for users.
1851 */
1852 if (val < 0)
1853 val = 0;
172703b0 1854#endif
69c97823
KK
1855 return (unsigned long)val;
1856}
d559db08 1857
e4dcad20 1858void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1859
d559db08
KH
1860static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1861{
b3d1411b
JFG
1862 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1863
e4dcad20 1864 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1865}
1866
1867static inline void inc_mm_counter(struct mm_struct *mm, int member)
1868{
b3d1411b
JFG
1869 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1870
e4dcad20 1871 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1872}
1873
1874static inline void dec_mm_counter(struct mm_struct *mm, int member)
1875{
b3d1411b
JFG
1876 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1877
e4dcad20 1878 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1879}
1880
eca56ff9
JM
1881/* Optimized variant when page is already known not to be PageAnon */
1882static inline int mm_counter_file(struct page *page)
1883{
1884 if (PageSwapBacked(page))
1885 return MM_SHMEMPAGES;
1886 return MM_FILEPAGES;
1887}
1888
1889static inline int mm_counter(struct page *page)
1890{
1891 if (PageAnon(page))
1892 return MM_ANONPAGES;
1893 return mm_counter_file(page);
1894}
1895
d559db08
KH
1896static inline unsigned long get_mm_rss(struct mm_struct *mm)
1897{
1898 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1899 get_mm_counter(mm, MM_ANONPAGES) +
1900 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1901}
1902
1903static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1904{
1905 return max(mm->hiwater_rss, get_mm_rss(mm));
1906}
1907
1908static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1909{
1910 return max(mm->hiwater_vm, mm->total_vm);
1911}
1912
1913static inline void update_hiwater_rss(struct mm_struct *mm)
1914{
1915 unsigned long _rss = get_mm_rss(mm);
1916
1917 if ((mm)->hiwater_rss < _rss)
1918 (mm)->hiwater_rss = _rss;
1919}
1920
1921static inline void update_hiwater_vm(struct mm_struct *mm)
1922{
1923 if (mm->hiwater_vm < mm->total_vm)
1924 mm->hiwater_vm = mm->total_vm;
1925}
1926
695f0559
PC
1927static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1928{
1929 mm->hiwater_rss = get_mm_rss(mm);
1930}
1931
d559db08
KH
1932static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1933 struct mm_struct *mm)
1934{
1935 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1936
1937 if (*maxrss < hiwater_rss)
1938 *maxrss = hiwater_rss;
1939}
1940
53bddb4e 1941#if defined(SPLIT_RSS_COUNTING)
05af2e10 1942void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1943#else
05af2e10 1944static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1945{
1946}
1947#endif
465a454f 1948
78e7c5af
AK
1949#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1950static inline int pte_special(pte_t pte)
1951{
1952 return 0;
1953}
1954
1955static inline pte_t pte_mkspecial(pte_t pte)
1956{
1957 return pte;
1958}
1959#endif
1960
17596731 1961#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1962static inline int pte_devmap(pte_t pte)
1963{
1964 return 0;
1965}
1966#endif
1967
6d2329f8 1968int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1969
25ca1d6c
NK
1970extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1971 spinlock_t **ptl);
1972static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1973 spinlock_t **ptl)
1974{
1975 pte_t *ptep;
1976 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1977 return ptep;
1978}
c9cfcddf 1979
c2febafc
KS
1980#ifdef __PAGETABLE_P4D_FOLDED
1981static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1982 unsigned long address)
1983{
1984 return 0;
1985}
1986#else
1987int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1988#endif
1989
b4e98d9a 1990#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1991static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1992 unsigned long address)
1993{
1994 return 0;
1995}
b4e98d9a
KS
1996static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1997static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1998
5f22df00 1999#else
c2febafc 2000int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2001
b4e98d9a
KS
2002static inline void mm_inc_nr_puds(struct mm_struct *mm)
2003{
6d212db1
MS
2004 if (mm_pud_folded(mm))
2005 return;
af5b0f6a 2006 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2007}
2008
2009static inline void mm_dec_nr_puds(struct mm_struct *mm)
2010{
6d212db1
MS
2011 if (mm_pud_folded(mm))
2012 return;
af5b0f6a 2013 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2014}
5f22df00
NP
2015#endif
2016
2d2f5119 2017#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2018static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2019 unsigned long address)
2020{
2021 return 0;
2022}
dc6c9a35 2023
dc6c9a35
KS
2024static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2025static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2026
5f22df00 2027#else
1bb3630e 2028int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2029
dc6c9a35
KS
2030static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2031{
6d212db1
MS
2032 if (mm_pmd_folded(mm))
2033 return;
af5b0f6a 2034 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2035}
2036
2037static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2038{
6d212db1
MS
2039 if (mm_pmd_folded(mm))
2040 return;
af5b0f6a 2041 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2042}
5f22df00
NP
2043#endif
2044
c4812909 2045#ifdef CONFIG_MMU
af5b0f6a 2046static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2047{
af5b0f6a 2048 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2049}
2050
af5b0f6a 2051static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2052{
af5b0f6a 2053 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2054}
2055
2056static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2057{
af5b0f6a 2058 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2059}
2060
2061static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2062{
af5b0f6a 2063 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2064}
2065#else
c4812909 2066
af5b0f6a
KS
2067static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2068static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2069{
2070 return 0;
2071}
2072
2073static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2074static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2075#endif
2076
4cf58924
JFG
2077int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2078int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2079
f949286c
MR
2080#if defined(CONFIG_MMU)
2081
c2febafc
KS
2082static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2083 unsigned long address)
2084{
2085 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2086 NULL : p4d_offset(pgd, address);
2087}
2088
2089static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2090 unsigned long address)
1da177e4 2091{
c2febafc
KS
2092 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2093 NULL : pud_offset(p4d, address);
1da177e4 2094}
d8626138
JR
2095
2096static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd,
2097 unsigned long address,
2098 pgtbl_mod_mask *mod_mask)
2099
2100{
2101 if (unlikely(pgd_none(*pgd))) {
2102 if (__p4d_alloc(mm, pgd, address))
2103 return NULL;
2104 *mod_mask |= PGTBL_PGD_MODIFIED;
2105 }
2106
2107 return p4d_offset(pgd, address);
2108}
2109
d8626138
JR
2110static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d,
2111 unsigned long address,
2112 pgtbl_mod_mask *mod_mask)
2113{
2114 if (unlikely(p4d_none(*p4d))) {
2115 if (__pud_alloc(mm, p4d, address))
2116 return NULL;
2117 *mod_mask |= PGTBL_P4D_MODIFIED;
2118 }
2119
2120 return pud_offset(p4d, address);
2121}
2122
1da177e4
LT
2123static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2124{
1bb3630e
HD
2125 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2126 NULL: pmd_offset(pud, address);
1da177e4 2127}
d8626138
JR
2128
2129static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud,
2130 unsigned long address,
2131 pgtbl_mod_mask *mod_mask)
2132{
2133 if (unlikely(pud_none(*pud))) {
2134 if (__pmd_alloc(mm, pud, address))
2135 return NULL;
2136 *mod_mask |= PGTBL_PUD_MODIFIED;
2137 }
2138
2139 return pmd_offset(pud, address);
2140}
f949286c 2141#endif /* CONFIG_MMU */
1bb3630e 2142
57c1ffce 2143#if USE_SPLIT_PTE_PTLOCKS
597d795a 2144#if ALLOC_SPLIT_PTLOCKS
b35f1819 2145void __init ptlock_cache_init(void);
539edb58
PZ
2146extern bool ptlock_alloc(struct page *page);
2147extern void ptlock_free(struct page *page);
2148
2149static inline spinlock_t *ptlock_ptr(struct page *page)
2150{
2151 return page->ptl;
2152}
597d795a 2153#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2154static inline void ptlock_cache_init(void)
2155{
2156}
2157
49076ec2
KS
2158static inline bool ptlock_alloc(struct page *page)
2159{
49076ec2
KS
2160 return true;
2161}
539edb58 2162
49076ec2
KS
2163static inline void ptlock_free(struct page *page)
2164{
49076ec2
KS
2165}
2166
2167static inline spinlock_t *ptlock_ptr(struct page *page)
2168{
539edb58 2169 return &page->ptl;
49076ec2 2170}
597d795a 2171#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2172
2173static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2174{
2175 return ptlock_ptr(pmd_page(*pmd));
2176}
2177
2178static inline bool ptlock_init(struct page *page)
2179{
2180 /*
2181 * prep_new_page() initialize page->private (and therefore page->ptl)
2182 * with 0. Make sure nobody took it in use in between.
2183 *
2184 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2185 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2186 */
309381fe 2187 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2188 if (!ptlock_alloc(page))
2189 return false;
2190 spin_lock_init(ptlock_ptr(page));
2191 return true;
2192}
2193
57c1ffce 2194#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2195/*
2196 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2197 */
49076ec2
KS
2198static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2199{
2200 return &mm->page_table_lock;
2201}
b35f1819 2202static inline void ptlock_cache_init(void) {}
49076ec2 2203static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2204static inline void ptlock_free(struct page *page) {}
57c1ffce 2205#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2206
b35f1819
KS
2207static inline void pgtable_init(void)
2208{
2209 ptlock_cache_init();
2210 pgtable_cache_init();
2211}
2212
b4ed71f5 2213static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2214{
706874e9
VD
2215 if (!ptlock_init(page))
2216 return false;
1d40a5ea 2217 __SetPageTable(page);
2f569afd 2218 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2219 return true;
2f569afd
MS
2220}
2221
b4ed71f5 2222static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2223{
9e247bab 2224 ptlock_free(page);
1d40a5ea 2225 __ClearPageTable(page);
2f569afd
MS
2226 dec_zone_page_state(page, NR_PAGETABLE);
2227}
2228
c74df32c
HD
2229#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2230({ \
4c21e2f2 2231 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2232 pte_t *__pte = pte_offset_map(pmd, address); \
2233 *(ptlp) = __ptl; \
2234 spin_lock(__ptl); \
2235 __pte; \
2236})
2237
2238#define pte_unmap_unlock(pte, ptl) do { \
2239 spin_unlock(ptl); \
2240 pte_unmap(pte); \
2241} while (0)
2242
4cf58924 2243#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2244
2245#define pte_alloc_map(mm, pmd, address) \
4cf58924 2246 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2247
c74df32c 2248#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2249 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2250 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2251
1bb3630e 2252#define pte_alloc_kernel(pmd, address) \
4cf58924 2253 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2254 NULL: pte_offset_kernel(pmd, address))
1da177e4 2255
d8626138
JR
2256#define pte_alloc_kernel_track(pmd, address, mask) \
2257 ((unlikely(pmd_none(*(pmd))) && \
2258 (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\
2259 NULL: pte_offset_kernel(pmd, address))
2260
e009bb30
KS
2261#if USE_SPLIT_PMD_PTLOCKS
2262
634391ac
MS
2263static struct page *pmd_to_page(pmd_t *pmd)
2264{
2265 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2266 return virt_to_page((void *)((unsigned long) pmd & mask));
2267}
2268
e009bb30
KS
2269static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2270{
634391ac 2271 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2272}
2273
2274static inline bool pgtable_pmd_page_ctor(struct page *page)
2275{
e009bb30
KS
2276#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2277 page->pmd_huge_pte = NULL;
2278#endif
49076ec2 2279 return ptlock_init(page);
e009bb30
KS
2280}
2281
2282static inline void pgtable_pmd_page_dtor(struct page *page)
2283{
2284#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2285 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2286#endif
49076ec2 2287 ptlock_free(page);
e009bb30
KS
2288}
2289
634391ac 2290#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2291
2292#else
2293
9a86cb7b
KS
2294static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2295{
2296 return &mm->page_table_lock;
2297}
2298
e009bb30
KS
2299static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2300static inline void pgtable_pmd_page_dtor(struct page *page) {}
2301
c389a250 2302#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2303
e009bb30
KS
2304#endif
2305
9a86cb7b
KS
2306static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2307{
2308 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2309 spin_lock(ptl);
2310 return ptl;
2311}
2312
a00cc7d9
MW
2313/*
2314 * No scalability reason to split PUD locks yet, but follow the same pattern
2315 * as the PMD locks to make it easier if we decide to. The VM should not be
2316 * considered ready to switch to split PUD locks yet; there may be places
2317 * which need to be converted from page_table_lock.
2318 */
2319static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2320{
2321 return &mm->page_table_lock;
2322}
2323
2324static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2325{
2326 spinlock_t *ptl = pud_lockptr(mm, pud);
2327
2328 spin_lock(ptl);
2329 return ptl;
2330}
62906027 2331
a00cc7d9 2332extern void __init pagecache_init(void);
bc9331a1 2333extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2334extern void free_initmem(void);
2335
69afade7
JL
2336/*
2337 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2338 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2339 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2340 * Return pages freed into the buddy system.
2341 */
11199692 2342extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2343 int poison, const char *s);
c3d5f5f0 2344
cfa11e08
JL
2345#ifdef CONFIG_HIGHMEM
2346/*
2347 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2348 * and totalram_pages.
2349 */
2350extern void free_highmem_page(struct page *page);
2351#endif
69afade7 2352
c3d5f5f0 2353extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2354extern void mem_init_print_info(const char *str);
69afade7 2355
4b50bcc7 2356extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2357
69afade7
JL
2358/* Free the reserved page into the buddy system, so it gets managed. */
2359static inline void __free_reserved_page(struct page *page)
2360{
2361 ClearPageReserved(page);
2362 init_page_count(page);
2363 __free_page(page);
2364}
2365
2366static inline void free_reserved_page(struct page *page)
2367{
2368 __free_reserved_page(page);
2369 adjust_managed_page_count(page, 1);
2370}
2371
2372static inline void mark_page_reserved(struct page *page)
2373{
2374 SetPageReserved(page);
2375 adjust_managed_page_count(page, -1);
2376}
2377
2378/*
2379 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2380 * The freed pages will be poisoned with pattern "poison" if it's within
2381 * range [0, UCHAR_MAX].
2382 * Return pages freed into the buddy system.
69afade7
JL
2383 */
2384static inline unsigned long free_initmem_default(int poison)
2385{
2386 extern char __init_begin[], __init_end[];
2387
11199692 2388 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2389 poison, "unused kernel");
2390}
2391
7ee3d4e8
JL
2392static inline unsigned long get_num_physpages(void)
2393{
2394 int nid;
2395 unsigned long phys_pages = 0;
2396
2397 for_each_online_node(nid)
2398 phys_pages += node_present_pages(nid);
2399
2400 return phys_pages;
2401}
2402
c713216d 2403/*
3f08a302 2404 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2405 * zones, allocate the backing mem_map and account for memory holes in an
2406 * architecture independent manner.
c713216d
MG
2407 *
2408 * An architecture is expected to register range of page frames backed by
0ee332c1 2409 * physical memory with memblock_add[_node]() before calling
9691a071 2410 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2411 * usage, an architecture is expected to do something like
2412 *
2413 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2414 * max_highmem_pfn};
2415 * for_each_valid_physical_page_range()
0ee332c1 2416 * memblock_add_node(base, size, nid)
9691a071 2417 * free_area_init(max_zone_pfns);
c713216d 2418 *
0ee332c1
TH
2419 * sparse_memory_present_with_active_regions() calls memory_present() for
2420 * each range when SPARSEMEM is enabled.
c713216d 2421 */
9691a071 2422void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2423unsigned long node_map_pfn_alignment(void);
32996250
YL
2424unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2425 unsigned long end_pfn);
c713216d
MG
2426extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2427 unsigned long end_pfn);
2428extern void get_pfn_range_for_nid(unsigned int nid,
2429 unsigned long *start_pfn, unsigned long *end_pfn);
2430extern unsigned long find_min_pfn_with_active_regions(void);
c713216d 2431extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2432
3f08a302 2433#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2434static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2435{
2436 return 0;
2437}
2438#else
2439/* please see mm/page_alloc.c */
2440extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2441/* there is a per-arch backend function. */
8a942fde
MG
2442extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2443 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2444#endif
2445
0e0b864e 2446extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2447extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2448 enum memmap_context, struct vmem_altmap *);
bc75d33f 2449extern void setup_per_zone_wmarks(void);
1b79acc9 2450extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2451extern void mem_init(void);
8feae131 2452extern void __init mmap_init(void);
9af744d7 2453extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2454extern long si_mem_available(void);
1da177e4
LT
2455extern void si_meminfo(struct sysinfo * val);
2456extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2457#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2458extern unsigned long arch_reserved_kernel_pages(void);
2459#endif
1da177e4 2460
a8e99259
MH
2461extern __printf(3, 4)
2462void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2463
e7c8d5c9 2464extern void setup_per_cpu_pageset(void);
e7c8d5c9 2465
75f7ad8e
PS
2466/* page_alloc.c */
2467extern int min_free_kbytes;
1c30844d 2468extern int watermark_boost_factor;
795ae7a0 2469extern int watermark_scale_factor;
51930df5 2470extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2471
8feae131 2472/* nommu.c */
33e5d769 2473extern atomic_long_t mmap_pages_allocated;
7e660872 2474extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2475
6b2dbba8 2476/* interval_tree.c */
6b2dbba8 2477void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2478 struct rb_root_cached *root);
9826a516
ML
2479void vma_interval_tree_insert_after(struct vm_area_struct *node,
2480 struct vm_area_struct *prev,
f808c13f 2481 struct rb_root_cached *root);
6b2dbba8 2482void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2483 struct rb_root_cached *root);
2484struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2485 unsigned long start, unsigned long last);
2486struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2487 unsigned long start, unsigned long last);
2488
2489#define vma_interval_tree_foreach(vma, root, start, last) \
2490 for (vma = vma_interval_tree_iter_first(root, start, last); \
2491 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2492
bf181b9f 2493void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2494 struct rb_root_cached *root);
bf181b9f 2495void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2496 struct rb_root_cached *root);
2497struct anon_vma_chain *
2498anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2499 unsigned long start, unsigned long last);
bf181b9f
ML
2500struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2501 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2502#ifdef CONFIG_DEBUG_VM_RB
2503void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2504#endif
bf181b9f
ML
2505
2506#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2507 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2508 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2509
1da177e4 2510/* mmap.c */
34b4e4aa 2511extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2512extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2513 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2514 struct vm_area_struct *expand);
2515static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2516 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2517{
2518 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2519}
1da177e4
LT
2520extern struct vm_area_struct *vma_merge(struct mm_struct *,
2521 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2522 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2523 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2524extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2525extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2526 unsigned long addr, int new_below);
2527extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2528 unsigned long addr, int new_below);
1da177e4
LT
2529extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2530extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2531 struct rb_node **, struct rb_node *);
a8fb5618 2532extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2533extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2534 unsigned long addr, unsigned long len, pgoff_t pgoff,
2535 bool *need_rmap_locks);
1da177e4 2536extern void exit_mmap(struct mm_struct *);
925d1c40 2537
9c599024
CG
2538static inline int check_data_rlimit(unsigned long rlim,
2539 unsigned long new,
2540 unsigned long start,
2541 unsigned long end_data,
2542 unsigned long start_data)
2543{
2544 if (rlim < RLIM_INFINITY) {
2545 if (((new - start) + (end_data - start_data)) > rlim)
2546 return -ENOSPC;
2547 }
2548
2549 return 0;
2550}
2551
7906d00c
AA
2552extern int mm_take_all_locks(struct mm_struct *mm);
2553extern void mm_drop_all_locks(struct mm_struct *mm);
2554
38646013
JS
2555extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2556extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2557extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2558
84638335
KK
2559extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2560extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2561
2eefd878
DS
2562extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2563 const struct vm_special_mapping *sm);
3935ed6a
SS
2564extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2565 unsigned long addr, unsigned long len,
a62c34bd
AL
2566 unsigned long flags,
2567 const struct vm_special_mapping *spec);
2568/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2569extern int install_special_mapping(struct mm_struct *mm,
2570 unsigned long addr, unsigned long len,
2571 unsigned long flags, struct page **pages);
1da177e4 2572
649775be
AG
2573unsigned long randomize_stack_top(unsigned long stack_top);
2574
1da177e4
LT
2575extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2576
0165ab44 2577extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2578 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2579 struct list_head *uf);
1fcfd8db 2580extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2581 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2582 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2583 struct list_head *uf);
85a06835
YS
2584extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2585 struct list_head *uf, bool downgrade);
897ab3e0
MR
2586extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2587 struct list_head *uf);
db08ca25 2588extern int do_madvise(unsigned long start, size_t len_in, int behavior);
1da177e4 2589
1fcfd8db
ON
2590static inline unsigned long
2591do_mmap_pgoff(struct file *file, unsigned long addr,
2592 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2593 unsigned long pgoff, unsigned long *populate,
2594 struct list_head *uf)
1fcfd8db 2595{
897ab3e0 2596 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2597}
2598
bebeb3d6
ML
2599#ifdef CONFIG_MMU
2600extern int __mm_populate(unsigned long addr, unsigned long len,
2601 int ignore_errors);
2602static inline void mm_populate(unsigned long addr, unsigned long len)
2603{
2604 /* Ignore errors */
2605 (void) __mm_populate(addr, len, 1);
2606}
2607#else
2608static inline void mm_populate(unsigned long addr, unsigned long len) {}
2609#endif
2610
e4eb1ff6 2611/* These take the mm semaphore themselves */
5d22fc25 2612extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2613extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2614extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2615extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2616 unsigned long, unsigned long,
2617 unsigned long, unsigned long);
1da177e4 2618
db4fbfb9
ML
2619struct vm_unmapped_area_info {
2620#define VM_UNMAPPED_AREA_TOPDOWN 1
2621 unsigned long flags;
2622 unsigned long length;
2623 unsigned long low_limit;
2624 unsigned long high_limit;
2625 unsigned long align_mask;
2626 unsigned long align_offset;
2627};
2628
baceaf1c 2629extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2630
85821aab 2631/* truncate.c */
1da177e4 2632extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2633extern void truncate_inode_pages_range(struct address_space *,
2634 loff_t lstart, loff_t lend);
91b0abe3 2635extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2636
2637/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2638extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2639extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2640 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2641extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2642
2643/* mm/page-writeback.c */
2b69c828 2644int __must_check write_one_page(struct page *page);
1cf6e7d8 2645void task_dirty_inc(struct task_struct *tsk);
1da177e4 2646
1be7107f 2647extern unsigned long stack_guard_gap;
d05f3169 2648/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2649extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2650
2651/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2652extern int expand_downwards(struct vm_area_struct *vma,
2653 unsigned long address);
8ca3eb08 2654#if VM_GROWSUP
46dea3d0 2655extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2656#else
fee7e49d 2657 #define expand_upwards(vma, address) (0)
9ab88515 2658#endif
1da177e4
LT
2659
2660/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2661extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2662extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2663 struct vm_area_struct **pprev);
2664
2665/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2666 NULL if none. Assume start_addr < end_addr. */
2667static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2668{
2669 struct vm_area_struct * vma = find_vma(mm,start_addr);
2670
2671 if (vma && end_addr <= vma->vm_start)
2672 vma = NULL;
2673 return vma;
2674}
2675
1be7107f
HD
2676static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2677{
2678 unsigned long vm_start = vma->vm_start;
2679
2680 if (vma->vm_flags & VM_GROWSDOWN) {
2681 vm_start -= stack_guard_gap;
2682 if (vm_start > vma->vm_start)
2683 vm_start = 0;
2684 }
2685 return vm_start;
2686}
2687
2688static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2689{
2690 unsigned long vm_end = vma->vm_end;
2691
2692 if (vma->vm_flags & VM_GROWSUP) {
2693 vm_end += stack_guard_gap;
2694 if (vm_end < vma->vm_end)
2695 vm_end = -PAGE_SIZE;
2696 }
2697 return vm_end;
2698}
2699
1da177e4
LT
2700static inline unsigned long vma_pages(struct vm_area_struct *vma)
2701{
2702 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2703}
2704
640708a2
PE
2705/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2706static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2707 unsigned long vm_start, unsigned long vm_end)
2708{
2709 struct vm_area_struct *vma = find_vma(mm, vm_start);
2710
2711 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2712 vma = NULL;
2713
2714 return vma;
2715}
2716
017b1660
MK
2717static inline bool range_in_vma(struct vm_area_struct *vma,
2718 unsigned long start, unsigned long end)
2719{
2720 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2721}
2722
bad849b3 2723#ifdef CONFIG_MMU
804af2cf 2724pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2725void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2726#else
2727static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2728{
2729 return __pgprot(0);
2730}
64e45507
PF
2731static inline void vma_set_page_prot(struct vm_area_struct *vma)
2732{
2733 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2734}
bad849b3
DH
2735#endif
2736
5877231f 2737#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2738unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2739 unsigned long start, unsigned long end);
2740#endif
2741
deceb6cd 2742struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2743int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2744 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2745int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2746int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2747 struct page **pages, unsigned long *num);
a667d745
SJ
2748int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2749 unsigned long num);
2750int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2751 unsigned long num);
ae2b01f3 2752vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2753 unsigned long pfn);
f5e6d1d5
MW
2754vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2755 unsigned long pfn, pgprot_t pgprot);
5d747637 2756vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2757 pfn_t pfn);
574c5b3d
TH
2758vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2759 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2760vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2761 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2762int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2763
1c8f4220
SJ
2764static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2765 unsigned long addr, struct page *page)
2766{
2767 int err = vm_insert_page(vma, addr, page);
2768
2769 if (err == -ENOMEM)
2770 return VM_FAULT_OOM;
2771 if (err < 0 && err != -EBUSY)
2772 return VM_FAULT_SIGBUS;
2773
2774 return VM_FAULT_NOPAGE;
2775}
2776
d97baf94
SJ
2777static inline vm_fault_t vmf_error(int err)
2778{
2779 if (err == -ENOMEM)
2780 return VM_FAULT_OOM;
2781 return VM_FAULT_SIGBUS;
2782}
2783
df06b37f
KB
2784struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2785 unsigned int foll_flags);
240aadee 2786
deceb6cd
HD
2787#define FOLL_WRITE 0x01 /* check pte is writable */
2788#define FOLL_TOUCH 0x02 /* mark page accessed */
2789#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2790#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2791#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2792#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2793 * and return without waiting upon it */
84d33df2 2794#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2795#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2796#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2797#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2798#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2799#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2800#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2801#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2802#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2803#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2804#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2805#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2806#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2807#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2808
2809/*
eddb1c22
JH
2810 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2811 * other. Here is what they mean, and how to use them:
932f4a63
IW
2812 *
2813 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2814 * period _often_ under userspace control. This is in contrast to
2815 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2816 *
2817 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2818 * lifetime enforced by the filesystem and we need guarantees that longterm
2819 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2820 * the filesystem. Ideas for this coordination include revoking the longterm
2821 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2822 * added after the problem with filesystems was found FS DAX VMAs are
2823 * specifically failed. Filesystem pages are still subject to bugs and use of
2824 * FOLL_LONGTERM should be avoided on those pages.
2825 *
2826 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2827 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2828 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2829 * is due to an incompatibility with the FS DAX check and
eddb1c22 2830 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2831 *
eddb1c22
JH
2832 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2833 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2834 * FOLL_LONGTERM is specified.
eddb1c22
JH
2835 *
2836 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2837 * but an additional pin counting system) will be invoked. This is intended for
2838 * anything that gets a page reference and then touches page data (for example,
2839 * Direct IO). This lets the filesystem know that some non-file-system entity is
2840 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2841 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2842 * a call to unpin_user_page().
eddb1c22
JH
2843 *
2844 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2845 * and separate refcounting mechanisms, however, and that means that each has
2846 * its own acquire and release mechanisms:
2847 *
2848 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2849 *
f1f6a7dd 2850 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2851 *
2852 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2853 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2854 * calls applied to them, and that's perfectly OK. This is a constraint on the
2855 * callers, not on the pages.)
2856 *
2857 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2858 * directly by the caller. That's in order to help avoid mismatches when
2859 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2860 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2861 *
72ef5e52 2862 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2863 */
1da177e4 2864
2b740303 2865static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2866{
2867 if (vm_fault & VM_FAULT_OOM)
2868 return -ENOMEM;
2869 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2870 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2871 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2872 return -EFAULT;
2873 return 0;
2874}
2875
8b1e0f81 2876typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2877extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2878 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2879extern int apply_to_existing_page_range(struct mm_struct *mm,
2880 unsigned long address, unsigned long size,
2881 pte_fn_t fn, void *data);
aee16b3c 2882
8823b1db
LA
2883#ifdef CONFIG_PAGE_POISONING
2884extern bool page_poisoning_enabled(void);
2885extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2886#else
2887static inline bool page_poisoning_enabled(void) { return false; }
2888static inline void kernel_poison_pages(struct page *page, int numpages,
2889 int enable) { }
2890#endif
2891
6471384a
AP
2892#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2893DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2894#else
2895DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2896#endif
2897static inline bool want_init_on_alloc(gfp_t flags)
2898{
2899 if (static_branch_unlikely(&init_on_alloc) &&
2900 !page_poisoning_enabled())
2901 return true;
2902 return flags & __GFP_ZERO;
2903}
2904
2905#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2906DECLARE_STATIC_KEY_TRUE(init_on_free);
2907#else
2908DECLARE_STATIC_KEY_FALSE(init_on_free);
2909#endif
2910static inline bool want_init_on_free(void)
2911{
2912 return static_branch_unlikely(&init_on_free) &&
2913 !page_poisoning_enabled();
2914}
2915
8e57f8ac
VB
2916#ifdef CONFIG_DEBUG_PAGEALLOC
2917extern void init_debug_pagealloc(void);
96a2b03f 2918#else
8e57f8ac 2919static inline void init_debug_pagealloc(void) {}
96a2b03f 2920#endif
8e57f8ac
VB
2921extern bool _debug_pagealloc_enabled_early;
2922DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2923
2924static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2925{
2926 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2927 _debug_pagealloc_enabled_early;
2928}
2929
2930/*
2931 * For use in fast paths after init_debug_pagealloc() has run, or when a
2932 * false negative result is not harmful when called too early.
2933 */
2934static inline bool debug_pagealloc_enabled_static(void)
031bc574 2935{
96a2b03f
VB
2936 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2937 return false;
2938
2939 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2940}
2941
d6332692
RE
2942#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2943extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2944
c87cbc1f
VB
2945/*
2946 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2947 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2948 */
031bc574
JK
2949static inline void
2950kernel_map_pages(struct page *page, int numpages, int enable)
2951{
031bc574
JK
2952 __kernel_map_pages(page, numpages, enable);
2953}
8a235efa
RW
2954#ifdef CONFIG_HIBERNATION
2955extern bool kernel_page_present(struct page *page);
40b44137 2956#endif /* CONFIG_HIBERNATION */
d6332692 2957#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2958static inline void
9858db50 2959kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2960#ifdef CONFIG_HIBERNATION
2961static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2962#endif /* CONFIG_HIBERNATION */
d6332692 2963#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2964
a6c19dfe 2965#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2966extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2967extern int in_gate_area_no_mm(unsigned long addr);
2968extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2969#else
a6c19dfe
AL
2970static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2971{
2972 return NULL;
2973}
2974static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2975static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2976{
2977 return 0;
2978}
1da177e4
LT
2979#endif /* __HAVE_ARCH_GATE_AREA */
2980
44a70ade
MH
2981extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2982
146732ce
JT
2983#ifdef CONFIG_SYSCTL
2984extern int sysctl_drop_caches;
32927393
CH
2985int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2986 loff_t *);
146732ce
JT
2987#endif
2988
cb731d6c
VD
2989void drop_slab(void);
2990void drop_slab_node(int nid);
9d0243bc 2991
7a9166e3
LY
2992#ifndef CONFIG_MMU
2993#define randomize_va_space 0
2994#else
a62eaf15 2995extern int randomize_va_space;
7a9166e3 2996#endif
a62eaf15 2997
045e72ac 2998const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2999#ifdef CONFIG_MMU
03252919 3000void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3001#else
3002static inline void print_vma_addr(char *prefix, unsigned long rip)
3003{
3004}
3005#endif
e6e5494c 3006
35fd1eb1 3007void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3008struct page * __populate_section_memmap(unsigned long pfn,
3009 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3010pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3011p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3012pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
3013pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3014pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 3015void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3016struct vmem_altmap;
a8fc357b
CH
3017void *vmemmap_alloc_block_buf(unsigned long size, int node);
3018void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 3019void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
3020int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3021 int node);
7b73d978
CH
3022int vmemmap_populate(unsigned long start, unsigned long end, int node,
3023 struct vmem_altmap *altmap);
c2b91e2e 3024void vmemmap_populate_print_last(void);
0197518c 3025#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3026void vmemmap_free(unsigned long start, unsigned long end,
3027 struct vmem_altmap *altmap);
0197518c 3028#endif
46723bfa 3029void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3030 unsigned long nr_pages);
6a46079c 3031
82ba011b
AK
3032enum mf_flags {
3033 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3034 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3035 MF_MUST_KILL = 1 << 2,
cf870c70 3036 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3037};
83b57531
EB
3038extern int memory_failure(unsigned long pfn, int flags);
3039extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3040extern void memory_failure_queue_kick(int cpu);
847ce401 3041extern int unpoison_memory(unsigned long pfn);
ead07f6a 3042extern int get_hwpoison_page(struct page *page);
4e41a30c 3043#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
3044extern int sysctl_memory_failure_early_kill;
3045extern int sysctl_memory_failure_recovery;
facb6011 3046extern void shake_page(struct page *p, int access);
5844a486 3047extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3048extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3049
cc637b17
XX
3050
3051/*
3052 * Error handlers for various types of pages.
3053 */
cc3e2af4 3054enum mf_result {
cc637b17
XX
3055 MF_IGNORED, /* Error: cannot be handled */
3056 MF_FAILED, /* Error: handling failed */
3057 MF_DELAYED, /* Will be handled later */
3058 MF_RECOVERED, /* Successfully recovered */
3059};
3060
3061enum mf_action_page_type {
3062 MF_MSG_KERNEL,
3063 MF_MSG_KERNEL_HIGH_ORDER,
3064 MF_MSG_SLAB,
3065 MF_MSG_DIFFERENT_COMPOUND,
3066 MF_MSG_POISONED_HUGE,
3067 MF_MSG_HUGE,
3068 MF_MSG_FREE_HUGE,
31286a84 3069 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3070 MF_MSG_UNMAP_FAILED,
3071 MF_MSG_DIRTY_SWAPCACHE,
3072 MF_MSG_CLEAN_SWAPCACHE,
3073 MF_MSG_DIRTY_MLOCKED_LRU,
3074 MF_MSG_CLEAN_MLOCKED_LRU,
3075 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3076 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3077 MF_MSG_DIRTY_LRU,
3078 MF_MSG_CLEAN_LRU,
3079 MF_MSG_TRUNCATED_LRU,
3080 MF_MSG_BUDDY,
3081 MF_MSG_BUDDY_2ND,
6100e34b 3082 MF_MSG_DAX,
cc637b17
XX
3083 MF_MSG_UNKNOWN,
3084};
3085
47ad8475
AA
3086#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3087extern void clear_huge_page(struct page *page,
c79b57e4 3088 unsigned long addr_hint,
47ad8475
AA
3089 unsigned int pages_per_huge_page);
3090extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3091 unsigned long addr_hint,
3092 struct vm_area_struct *vma,
47ad8475 3093 unsigned int pages_per_huge_page);
fa4d75c1
MK
3094extern long copy_huge_page_from_user(struct page *dst_page,
3095 const void __user *usr_src,
810a56b9
MK
3096 unsigned int pages_per_huge_page,
3097 bool allow_pagefault);
2484ca9b
THV
3098
3099/**
3100 * vma_is_special_huge - Are transhuge page-table entries considered special?
3101 * @vma: Pointer to the struct vm_area_struct to consider
3102 *
3103 * Whether transhuge page-table entries are considered "special" following
3104 * the definition in vm_normal_page().
3105 *
3106 * Return: true if transhuge page-table entries should be considered special,
3107 * false otherwise.
3108 */
3109static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3110{
3111 return vma_is_dax(vma) || (vma->vm_file &&
3112 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3113}
3114
47ad8475
AA
3115#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3116
c0a32fc5
SG
3117#ifdef CONFIG_DEBUG_PAGEALLOC
3118extern unsigned int _debug_guardpage_minorder;
96a2b03f 3119DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3120
3121static inline unsigned int debug_guardpage_minorder(void)
3122{
3123 return _debug_guardpage_minorder;
3124}
3125
e30825f1
JK
3126static inline bool debug_guardpage_enabled(void)
3127{
96a2b03f 3128 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3129}
3130
c0a32fc5
SG
3131static inline bool page_is_guard(struct page *page)
3132{
e30825f1
JK
3133 if (!debug_guardpage_enabled())
3134 return false;
3135
3972f6bb 3136 return PageGuard(page);
c0a32fc5
SG
3137}
3138#else
3139static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3140static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3141static inline bool page_is_guard(struct page *page) { return false; }
3142#endif /* CONFIG_DEBUG_PAGEALLOC */
3143
f9872caf
CS
3144#if MAX_NUMNODES > 1
3145void __init setup_nr_node_ids(void);
3146#else
3147static inline void setup_nr_node_ids(void) {}
3148#endif
3149
010c164a
SL
3150extern int memcmp_pages(struct page *page1, struct page *page2);
3151
3152static inline int pages_identical(struct page *page1, struct page *page2)
3153{
3154 return !memcmp_pages(page1, page2);
3155}
3156
c5acad84
TH
3157#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3158unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3159 pgoff_t first_index, pgoff_t nr,
3160 pgoff_t bitmap_pgoff,
3161 unsigned long *bitmap,
3162 pgoff_t *start,
3163 pgoff_t *end);
3164
3165unsigned long wp_shared_mapping_range(struct address_space *mapping,
3166 pgoff_t first_index, pgoff_t nr);
3167#endif
3168
2374c09b
CH
3169extern int sysctl_nr_trim_pages;
3170
1da177e4
LT
3171#endif /* __KERNEL__ */
3172#endif /* _LINUX_MM_H */