]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/mm.h
mm: directly use __mlock_vma_pages_range() in find_extend_vma()
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 72 */
cc2383ec
KK
73#define VM_NONE 0x00000000
74
1da177e4
LT
75#define VM_READ 0x00000001 /* currently active flags */
76#define VM_WRITE 0x00000002
77#define VM_EXEC 0x00000004
78#define VM_SHARED 0x00000008
79
7e2cff42 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82#define VM_MAYWRITE 0x00000020
83#define VM_MAYEXEC 0x00000040
84#define VM_MAYSHARE 0x00000080
85
86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
1da177e4
LT
90#define VM_LOCKED 0x00002000
91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 99#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 100#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 103#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 104#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 105
b379d790 106#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
107#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 109#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 110
cc2383ec
KK
111#if defined(CONFIG_X86)
112# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113#elif defined(CONFIG_PPC)
114# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115#elif defined(CONFIG_PARISC)
116# define VM_GROWSUP VM_ARCH_1
117#elif defined(CONFIG_IA64)
118# define VM_GROWSUP VM_ARCH_1
119#elif !defined(CONFIG_MMU)
120# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
121#endif
122
123#ifndef VM_GROWSUP
124# define VM_GROWSUP VM_NONE
125#endif
126
a8bef8ff
MG
127/* Bits set in the VMA until the stack is in its final location */
128#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
129
1da177e4
LT
130#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132#endif
133
134#ifdef CONFIG_STACK_GROWSUP
135#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136#else
137#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138#endif
139
140#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
145
b291f000 146/*
78f11a25
AA
147 * Special vmas that are non-mergable, non-mlock()able.
148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 149 */
314e51b9 150#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 151
1da177e4
LT
152/*
153 * mapping from the currently active vm_flags protection bits (the
154 * low four bits) to a page protection mask..
155 */
156extern pgprot_t protection_map[16];
157
d0217ac0
NP
158#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 160#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 161#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 162#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 163#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 164#define FAULT_FLAG_TRIED 0x40 /* second try */
d0217ac0 165
54cb8821 166/*
d0217ac0 167 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
168 * ->fault function. The vma's ->fault is responsible for returning a bitmask
169 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 170 *
d0217ac0 171 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 172 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 173 */
d0217ac0
NP
174struct vm_fault {
175 unsigned int flags; /* FAULT_FLAG_xxx flags */
176 pgoff_t pgoff; /* Logical page offset based on vma */
177 void __user *virtual_address; /* Faulting virtual address */
178
179 struct page *page; /* ->fault handlers should return a
83c54070 180 * page here, unless VM_FAULT_NOPAGE
d0217ac0 181 * is set (which is also implied by
83c54070 182 * VM_FAULT_ERROR).
d0217ac0 183 */
54cb8821 184};
1da177e4
LT
185
186/*
187 * These are the virtual MM functions - opening of an area, closing and
188 * unmapping it (needed to keep files on disk up-to-date etc), pointer
189 * to the functions called when a no-page or a wp-page exception occurs.
190 */
191struct vm_operations_struct {
192 void (*open)(struct vm_area_struct * area);
193 void (*close)(struct vm_area_struct * area);
d0217ac0 194 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
195
196 /* notification that a previously read-only page is about to become
197 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 198 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
199
200 /* called by access_process_vm when get_user_pages() fails, typically
201 * for use by special VMAs that can switch between memory and hardware
202 */
203 int (*access)(struct vm_area_struct *vma, unsigned long addr,
204 void *buf, int len, int write);
1da177e4 205#ifdef CONFIG_NUMA
a6020ed7
LS
206 /*
207 * set_policy() op must add a reference to any non-NULL @new mempolicy
208 * to hold the policy upon return. Caller should pass NULL @new to
209 * remove a policy and fall back to surrounding context--i.e. do not
210 * install a MPOL_DEFAULT policy, nor the task or system default
211 * mempolicy.
212 */
1da177e4 213 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
214
215 /*
216 * get_policy() op must add reference [mpol_get()] to any policy at
217 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
218 * in mm/mempolicy.c will do this automatically.
219 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
220 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
221 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
222 * must return NULL--i.e., do not "fallback" to task or system default
223 * policy.
224 */
1da177e4
LT
225 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
226 unsigned long addr);
7b2259b3
CL
227 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
228 const nodemask_t *to, unsigned long flags);
1da177e4 229#endif
0b173bc4
KK
230 /* called by sys_remap_file_pages() to populate non-linear mapping */
231 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
232 unsigned long size, pgoff_t pgoff);
1da177e4
LT
233};
234
235struct mmu_gather;
236struct inode;
237
349aef0b
AM
238#define page_private(page) ((page)->private)
239#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 240
b12c4ad1
MK
241/* It's valid only if the page is free path or free_list */
242static inline void set_freepage_migratetype(struct page *page, int migratetype)
243{
95e34412 244 page->index = migratetype;
b12c4ad1
MK
245}
246
247/* It's valid only if the page is free path or free_list */
248static inline int get_freepage_migratetype(struct page *page)
249{
95e34412 250 return page->index;
b12c4ad1
MK
251}
252
1da177e4
LT
253/*
254 * FIXME: take this include out, include page-flags.h in
255 * files which need it (119 of them)
256 */
257#include <linux/page-flags.h>
71e3aac0 258#include <linux/huge_mm.h>
1da177e4
LT
259
260/*
261 * Methods to modify the page usage count.
262 *
263 * What counts for a page usage:
264 * - cache mapping (page->mapping)
265 * - private data (page->private)
266 * - page mapped in a task's page tables, each mapping
267 * is counted separately
268 *
269 * Also, many kernel routines increase the page count before a critical
270 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
271 */
272
273/*
da6052f7 274 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 275 */
7c8ee9a8
NP
276static inline int put_page_testzero(struct page *page)
277{
725d704e 278 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 279 return atomic_dec_and_test(&page->_count);
7c8ee9a8 280}
1da177e4
LT
281
282/*
7c8ee9a8
NP
283 * Try to grab a ref unless the page has a refcount of zero, return false if
284 * that is the case.
1da177e4 285 */
7c8ee9a8
NP
286static inline int get_page_unless_zero(struct page *page)
287{
8dc04efb 288 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 289}
1da177e4 290
53df8fdc
WF
291extern int page_is_ram(unsigned long pfn);
292
48667e7a 293/* Support for virtually mapped pages */
b3bdda02
CL
294struct page *vmalloc_to_page(const void *addr);
295unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 296
0738c4bb
PM
297/*
298 * Determine if an address is within the vmalloc range
299 *
300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
301 * is no special casing required.
302 */
9e2779fa
CL
303static inline int is_vmalloc_addr(const void *x)
304{
0738c4bb 305#ifdef CONFIG_MMU
9e2779fa
CL
306 unsigned long addr = (unsigned long)x;
307
308 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
309#else
310 return 0;
8ca3ed87 311#endif
0738c4bb 312}
81ac3ad9
KH
313#ifdef CONFIG_MMU
314extern int is_vmalloc_or_module_addr(const void *x);
315#else
934831d0 316static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
317{
318 return 0;
319}
320#endif
9e2779fa 321
e9da73d6
AA
322static inline void compound_lock(struct page *page)
323{
324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 325 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
326 bit_spin_lock(PG_compound_lock, &page->flags);
327#endif
328}
329
330static inline void compound_unlock(struct page *page)
331{
332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 333 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
334 bit_spin_unlock(PG_compound_lock, &page->flags);
335#endif
336}
337
338static inline unsigned long compound_lock_irqsave(struct page *page)
339{
340 unsigned long uninitialized_var(flags);
341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 local_irq_save(flags);
343 compound_lock(page);
344#endif
345 return flags;
346}
347
348static inline void compound_unlock_irqrestore(struct page *page,
349 unsigned long flags)
350{
351#ifdef CONFIG_TRANSPARENT_HUGEPAGE
352 compound_unlock(page);
353 local_irq_restore(flags);
354#endif
355}
356
d85f3385
CL
357static inline struct page *compound_head(struct page *page)
358{
6d777953 359 if (unlikely(PageTail(page)))
d85f3385
CL
360 return page->first_page;
361 return page;
362}
363
70b50f94
AA
364/*
365 * The atomic page->_mapcount, starts from -1: so that transitions
366 * both from it and to it can be tracked, using atomic_inc_and_test
367 * and atomic_add_negative(-1).
368 */
369static inline void reset_page_mapcount(struct page *page)
370{
371 atomic_set(&(page)->_mapcount, -1);
372}
373
374static inline int page_mapcount(struct page *page)
375{
376 return atomic_read(&(page)->_mapcount) + 1;
377}
378
4c21e2f2 379static inline int page_count(struct page *page)
1da177e4 380{
d85f3385 381 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
382}
383
b35a35b5
AA
384static inline void get_huge_page_tail(struct page *page)
385{
386 /*
387 * __split_huge_page_refcount() cannot run
388 * from under us.
389 */
390 VM_BUG_ON(page_mapcount(page) < 0);
391 VM_BUG_ON(atomic_read(&page->_count) != 0);
392 atomic_inc(&page->_mapcount);
393}
394
70b50f94
AA
395extern bool __get_page_tail(struct page *page);
396
1da177e4
LT
397static inline void get_page(struct page *page)
398{
70b50f94
AA
399 if (unlikely(PageTail(page)))
400 if (likely(__get_page_tail(page)))
401 return;
91807063
AA
402 /*
403 * Getting a normal page or the head of a compound page
70b50f94 404 * requires to already have an elevated page->_count.
91807063 405 */
70b50f94 406 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
407 atomic_inc(&page->_count);
408}
409
b49af68f
CL
410static inline struct page *virt_to_head_page(const void *x)
411{
412 struct page *page = virt_to_page(x);
413 return compound_head(page);
414}
415
7835e98b
NP
416/*
417 * Setup the page count before being freed into the page allocator for
418 * the first time (boot or memory hotplug)
419 */
420static inline void init_page_count(struct page *page)
421{
422 atomic_set(&page->_count, 1);
423}
424
5f24ce5f
AA
425/*
426 * PageBuddy() indicate that the page is free and in the buddy system
427 * (see mm/page_alloc.c).
ef2b4b95
AA
428 *
429 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
430 * -2 so that an underflow of the page_mapcount() won't be mistaken
431 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
432 * efficiently by most CPU architectures.
5f24ce5f 433 */
ef2b4b95
AA
434#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
435
5f24ce5f
AA
436static inline int PageBuddy(struct page *page)
437{
ef2b4b95 438 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
439}
440
441static inline void __SetPageBuddy(struct page *page)
442{
443 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 444 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
445}
446
447static inline void __ClearPageBuddy(struct page *page)
448{
449 VM_BUG_ON(!PageBuddy(page));
450 atomic_set(&page->_mapcount, -1);
451}
452
1da177e4 453void put_page(struct page *page);
1d7ea732 454void put_pages_list(struct list_head *pages);
1da177e4 455
8dfcc9ba 456void split_page(struct page *page, unsigned int order);
748446bb 457int split_free_page(struct page *page);
8dfcc9ba 458
33f2ef89
AW
459/*
460 * Compound pages have a destructor function. Provide a
461 * prototype for that function and accessor functions.
462 * These are _only_ valid on the head of a PG_compound page.
463 */
464typedef void compound_page_dtor(struct page *);
465
466static inline void set_compound_page_dtor(struct page *page,
467 compound_page_dtor *dtor)
468{
469 page[1].lru.next = (void *)dtor;
470}
471
472static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
473{
474 return (compound_page_dtor *)page[1].lru.next;
475}
476
d85f3385
CL
477static inline int compound_order(struct page *page)
478{
6d777953 479 if (!PageHead(page))
d85f3385
CL
480 return 0;
481 return (unsigned long)page[1].lru.prev;
482}
483
37c2ac78
AA
484static inline int compound_trans_order(struct page *page)
485{
486 int order;
487 unsigned long flags;
488
489 if (!PageHead(page))
490 return 0;
491
492 flags = compound_lock_irqsave(page);
493 order = compound_order(page);
494 compound_unlock_irqrestore(page, flags);
495 return order;
496}
497
d85f3385
CL
498static inline void set_compound_order(struct page *page, unsigned long order)
499{
500 page[1].lru.prev = (void *)order;
501}
502
3dece370 503#ifdef CONFIG_MMU
14fd403f
AA
504/*
505 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
506 * servicing faults for write access. In the normal case, do always want
507 * pte_mkwrite. But get_user_pages can cause write faults for mappings
508 * that do not have writing enabled, when used by access_process_vm.
509 */
510static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
511{
512 if (likely(vma->vm_flags & VM_WRITE))
513 pte = pte_mkwrite(pte);
514 return pte;
515}
3dece370 516#endif
14fd403f 517
1da177e4
LT
518/*
519 * Multiple processes may "see" the same page. E.g. for untouched
520 * mappings of /dev/null, all processes see the same page full of
521 * zeroes, and text pages of executables and shared libraries have
522 * only one copy in memory, at most, normally.
523 *
524 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
525 * page_count() == 0 means the page is free. page->lru is then used for
526 * freelist management in the buddy allocator.
da6052f7 527 * page_count() > 0 means the page has been allocated.
1da177e4 528 *
da6052f7
NP
529 * Pages are allocated by the slab allocator in order to provide memory
530 * to kmalloc and kmem_cache_alloc. In this case, the management of the
531 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
532 * unless a particular usage is carefully commented. (the responsibility of
533 * freeing the kmalloc memory is the caller's, of course).
1da177e4 534 *
da6052f7
NP
535 * A page may be used by anyone else who does a __get_free_page().
536 * In this case, page_count still tracks the references, and should only
537 * be used through the normal accessor functions. The top bits of page->flags
538 * and page->virtual store page management information, but all other fields
539 * are unused and could be used privately, carefully. The management of this
540 * page is the responsibility of the one who allocated it, and those who have
541 * subsequently been given references to it.
542 *
543 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
544 * managed by the Linux memory manager: I/O, buffers, swapping etc.
545 * The following discussion applies only to them.
546 *
da6052f7
NP
547 * A pagecache page contains an opaque `private' member, which belongs to the
548 * page's address_space. Usually, this is the address of a circular list of
549 * the page's disk buffers. PG_private must be set to tell the VM to call
550 * into the filesystem to release these pages.
1da177e4 551 *
da6052f7
NP
552 * A page may belong to an inode's memory mapping. In this case, page->mapping
553 * is the pointer to the inode, and page->index is the file offset of the page,
554 * in units of PAGE_CACHE_SIZE.
1da177e4 555 *
da6052f7
NP
556 * If pagecache pages are not associated with an inode, they are said to be
557 * anonymous pages. These may become associated with the swapcache, and in that
558 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 559 *
da6052f7
NP
560 * In either case (swapcache or inode backed), the pagecache itself holds one
561 * reference to the page. Setting PG_private should also increment the
562 * refcount. The each user mapping also has a reference to the page.
1da177e4 563 *
da6052f7
NP
564 * The pagecache pages are stored in a per-mapping radix tree, which is
565 * rooted at mapping->page_tree, and indexed by offset.
566 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
567 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 568 *
da6052f7 569 * All pagecache pages may be subject to I/O:
1da177e4
LT
570 * - inode pages may need to be read from disk,
571 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
572 * to be written back to the inode on disk,
573 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
574 * modified may need to be swapped out to swap space and (later) to be read
575 * back into memory.
1da177e4
LT
576 */
577
578/*
579 * The zone field is never updated after free_area_init_core()
580 * sets it, so none of the operations on it need to be atomic.
1da177e4 581 */
348f8b6c 582
d41dee36
AW
583
584/*
585 * page->flags layout:
586 *
587 * There are three possibilities for how page->flags get
588 * laid out. The first is for the normal case, without
589 * sparsemem. The second is for sparsemem when there is
590 * plenty of space for node and section. The last is when
591 * we have run out of space and have to fall back to an
592 * alternate (slower) way of determining the node.
593 *
308c05e3
CL
594 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
595 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
596 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 597 */
308c05e3 598#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
599#define SECTIONS_WIDTH SECTIONS_SHIFT
600#else
601#define SECTIONS_WIDTH 0
602#endif
603
604#define ZONES_WIDTH ZONES_SHIFT
605
9223b419 606#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
607#define NODES_WIDTH NODES_SHIFT
608#else
308c05e3
CL
609#ifdef CONFIG_SPARSEMEM_VMEMMAP
610#error "Vmemmap: No space for nodes field in page flags"
611#endif
d41dee36
AW
612#define NODES_WIDTH 0
613#endif
614
615/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 616#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
617#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
618#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
619
620/*
621 * We are going to use the flags for the page to node mapping if its in
622 * there. This includes the case where there is no node, so it is implicit.
623 */
89689ae7
CL
624#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
625#define NODE_NOT_IN_PAGE_FLAGS
626#endif
d41dee36 627
348f8b6c 628/*
25985edc 629 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
630 * sections we define the shift as 0; that plus a 0 mask ensures
631 * the compiler will optimise away reference to them.
632 */
d41dee36
AW
633#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
634#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
635#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 636
bce54bbf
WD
637/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
638#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 639#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
640#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
641 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 642#else
89689ae7 643#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
644#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
645 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
646#endif
647
bd8029b6 648#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 649
9223b419
CL
650#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
651#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
652#endif
653
d41dee36
AW
654#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
655#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
656#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 657#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 658
33dd4e0e 659static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 660{
348f8b6c 661 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 662}
1da177e4 663
89689ae7
CL
664/*
665 * The identification function is only used by the buddy allocator for
666 * determining if two pages could be buddies. We are not really
667 * identifying a zone since we could be using a the section number
668 * id if we have not node id available in page flags.
669 * We guarantee only that it will return the same value for two
670 * combinable pages in a zone.
671 */
cb2b95e1
AW
672static inline int page_zone_id(struct page *page)
673{
89689ae7 674 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
675}
676
25ba77c1 677static inline int zone_to_nid(struct zone *zone)
89fa3024 678{
d5f541ed
CL
679#ifdef CONFIG_NUMA
680 return zone->node;
681#else
682 return 0;
683#endif
89fa3024
CL
684}
685
89689ae7 686#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 687extern int page_to_nid(const struct page *page);
89689ae7 688#else
33dd4e0e 689static inline int page_to_nid(const struct page *page)
d41dee36 690{
89689ae7 691 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 692}
89689ae7
CL
693#endif
694
57e0a030
MG
695#ifdef CONFIG_NUMA_BALANCING
696static inline int page_xchg_last_nid(struct page *page, int nid)
697{
698 return xchg(&page->_last_nid, nid);
699}
700
701static inline int page_last_nid(struct page *page)
702{
703 return page->_last_nid;
704}
705static inline void reset_page_last_nid(struct page *page)
706{
707 page->_last_nid = -1;
708}
709#else
710static inline int page_xchg_last_nid(struct page *page, int nid)
711{
712 return page_to_nid(page);
713}
714
715static inline int page_last_nid(struct page *page)
716{
717 return page_to_nid(page);
718}
719
720static inline void reset_page_last_nid(struct page *page)
721{
722}
723#endif
724
33dd4e0e 725static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
726{
727 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
728}
729
308c05e3 730#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
731static inline void set_page_section(struct page *page, unsigned long section)
732{
733 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
734 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
735}
736
aa462abe 737static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
738{
739 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
740}
308c05e3 741#endif
d41dee36 742
2f1b6248 743static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
744{
745 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
746 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
747}
2f1b6248 748
348f8b6c
DH
749static inline void set_page_node(struct page *page, unsigned long node)
750{
751 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
752 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 753}
89689ae7 754
2f1b6248 755static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 756 unsigned long node, unsigned long pfn)
1da177e4 757{
348f8b6c
DH
758 set_page_zone(page, zone);
759 set_page_node(page, node);
bf4e8902 760#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 761 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 762#endif
1da177e4
LT
763}
764
f6ac2354
CL
765/*
766 * Some inline functions in vmstat.h depend on page_zone()
767 */
768#include <linux/vmstat.h>
769
33dd4e0e 770static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 771{
aa462abe 772 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
773}
774
775#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
776#define HASHED_PAGE_VIRTUAL
777#endif
778
779#if defined(WANT_PAGE_VIRTUAL)
780#define page_address(page) ((page)->virtual)
781#define set_page_address(page, address) \
782 do { \
783 (page)->virtual = (address); \
784 } while(0)
785#define page_address_init() do { } while(0)
786#endif
787
788#if defined(HASHED_PAGE_VIRTUAL)
f9918794 789void *page_address(const struct page *page);
1da177e4
LT
790void set_page_address(struct page *page, void *virtual);
791void page_address_init(void);
792#endif
793
794#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
795#define page_address(page) lowmem_page_address(page)
796#define set_page_address(page, address) do { } while(0)
797#define page_address_init() do { } while(0)
798#endif
799
800/*
801 * On an anonymous page mapped into a user virtual memory area,
802 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
803 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
804 *
805 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
806 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
807 * and then page->mapping points, not to an anon_vma, but to a private
808 * structure which KSM associates with that merged page. See ksm.h.
809 *
810 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
811 *
812 * Please note that, confusingly, "page_mapping" refers to the inode
813 * address_space which maps the page from disk; whereas "page_mapped"
814 * refers to user virtual address space into which the page is mapped.
815 */
816#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
817#define PAGE_MAPPING_KSM 2
818#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
819
820extern struct address_space swapper_space;
821static inline struct address_space *page_mapping(struct page *page)
822{
823 struct address_space *mapping = page->mapping;
824
b5fab14e 825 VM_BUG_ON(PageSlab(page));
1da177e4
LT
826 if (unlikely(PageSwapCache(page)))
827 mapping = &swapper_space;
e20e8779 828 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
829 mapping = NULL;
830 return mapping;
831}
832
3ca7b3c5
HD
833/* Neutral page->mapping pointer to address_space or anon_vma or other */
834static inline void *page_rmapping(struct page *page)
835{
836 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
837}
838
f981c595
MG
839extern struct address_space *__page_file_mapping(struct page *);
840
841static inline
842struct address_space *page_file_mapping(struct page *page)
843{
844 if (unlikely(PageSwapCache(page)))
845 return __page_file_mapping(page);
846
847 return page->mapping;
848}
849
1da177e4
LT
850static inline int PageAnon(struct page *page)
851{
852 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
853}
854
855/*
856 * Return the pagecache index of the passed page. Regular pagecache pages
857 * use ->index whereas swapcache pages use ->private
858 */
859static inline pgoff_t page_index(struct page *page)
860{
861 if (unlikely(PageSwapCache(page)))
4c21e2f2 862 return page_private(page);
1da177e4
LT
863 return page->index;
864}
865
f981c595
MG
866extern pgoff_t __page_file_index(struct page *page);
867
868/*
869 * Return the file index of the page. Regular pagecache pages use ->index
870 * whereas swapcache pages use swp_offset(->private)
871 */
872static inline pgoff_t page_file_index(struct page *page)
873{
874 if (unlikely(PageSwapCache(page)))
875 return __page_file_index(page);
876
877 return page->index;
878}
879
1da177e4
LT
880/*
881 * Return true if this page is mapped into pagetables.
882 */
883static inline int page_mapped(struct page *page)
884{
885 return atomic_read(&(page)->_mapcount) >= 0;
886}
887
1da177e4
LT
888/*
889 * Different kinds of faults, as returned by handle_mm_fault().
890 * Used to decide whether a process gets delivered SIGBUS or
891 * just gets major/minor fault counters bumped up.
892 */
d0217ac0 893
83c54070 894#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 895
83c54070
NP
896#define VM_FAULT_OOM 0x0001
897#define VM_FAULT_SIGBUS 0x0002
898#define VM_FAULT_MAJOR 0x0004
899#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
900#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
901#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 902
83c54070
NP
903#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
904#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 905#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 906
aa50d3a7
AK
907#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
908
909#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
910 VM_FAULT_HWPOISON_LARGE)
911
912/* Encode hstate index for a hwpoisoned large page */
913#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
914#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 915
1c0fe6e3
NP
916/*
917 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
918 */
919extern void pagefault_out_of_memory(void);
920
1da177e4
LT
921#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
922
ddd588b5 923/*
7bf02ea2 924 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
925 * various contexts.
926 */
927#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
928
7bf02ea2
DR
929extern void show_free_areas(unsigned int flags);
930extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 931
1da177e4
LT
932int shmem_zero_setup(struct vm_area_struct *);
933
e8edc6e0 934extern int can_do_mlock(void);
1da177e4
LT
935extern int user_shm_lock(size_t, struct user_struct *);
936extern void user_shm_unlock(size_t, struct user_struct *);
937
938/*
939 * Parameter block passed down to zap_pte_range in exceptional cases.
940 */
941struct zap_details {
942 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
943 struct address_space *check_mapping; /* Check page->mapping if set */
944 pgoff_t first_index; /* Lowest page->index to unmap */
945 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
946};
947
7e675137
NP
948struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
949 pte_t pte);
950
c627f9cc
JS
951int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
952 unsigned long size);
14f5ff5d 953void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 954 unsigned long size, struct zap_details *);
4f74d2c8
LT
955void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
956 unsigned long start, unsigned long end);
e6473092
MM
957
958/**
959 * mm_walk - callbacks for walk_page_range
960 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
961 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
962 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
963 * this handler is required to be able to handle
964 * pmd_trans_huge() pmds. They may simply choose to
965 * split_huge_page() instead of handling it explicitly.
e6473092
MM
966 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
967 * @pte_hole: if set, called for each hole at all levels
5dc37642 968 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
969 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
970 * is used.
e6473092
MM
971 *
972 * (see walk_page_range for more details)
973 */
974struct mm_walk {
2165009b
DH
975 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
976 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
977 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
978 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
979 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
980 int (*hugetlb_entry)(pte_t *, unsigned long,
981 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
982 struct mm_struct *mm;
983 void *private;
e6473092
MM
984};
985
2165009b
DH
986int walk_page_range(unsigned long addr, unsigned long end,
987 struct mm_walk *walk);
42b77728 988void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 989 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
990int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
991 struct vm_area_struct *vma);
1da177e4
LT
992void unmap_mapping_range(struct address_space *mapping,
993 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
994int follow_pfn(struct vm_area_struct *vma, unsigned long address,
995 unsigned long *pfn);
d87fe660 996int follow_phys(struct vm_area_struct *vma, unsigned long address,
997 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
998int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
999 void *buf, int len, int write);
1da177e4
LT
1000
1001static inline void unmap_shared_mapping_range(struct address_space *mapping,
1002 loff_t const holebegin, loff_t const holelen)
1003{
1004 unmap_mapping_range(mapping, holebegin, holelen, 0);
1005}
1006
25d9e2d1 1007extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 1008extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1009void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1010int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1011int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1012int invalidate_inode_page(struct page *page);
1013
7ee1dd3f 1014#ifdef CONFIG_MMU
83c54070 1015extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1016 unsigned long address, unsigned int flags);
5c723ba5
PZ
1017extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1018 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1019#else
1020static inline int handle_mm_fault(struct mm_struct *mm,
1021 struct vm_area_struct *vma, unsigned long address,
d06063cc 1022 unsigned int flags)
7ee1dd3f
DH
1023{
1024 /* should never happen if there's no MMU */
1025 BUG();
1026 return VM_FAULT_SIGBUS;
1027}
5c723ba5
PZ
1028static inline int fixup_user_fault(struct task_struct *tsk,
1029 struct mm_struct *mm, unsigned long address,
1030 unsigned int fault_flags)
1031{
1032 /* should never happen if there's no MMU */
1033 BUG();
1034 return -EFAULT;
1035}
7ee1dd3f 1036#endif
f33ea7f4 1037
1da177e4 1038extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1039extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1040 void *buf, int len, int write);
1da177e4 1041
0014bd99
HY
1042int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1043 unsigned long start, int len, unsigned int foll_flags,
1044 struct page **pages, struct vm_area_struct **vmas,
1045 int *nonblocking);
d2bf6be8 1046int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1047 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
1048 struct page **pages, struct vm_area_struct **vmas);
1049int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1050 struct page **pages);
18022c5d
MG
1051struct kvec;
1052int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1053 struct page **pages);
1054int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1055struct page *get_dump_page(unsigned long addr);
1da177e4 1056
cf9a2ae8
DH
1057extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1058extern void do_invalidatepage(struct page *page, unsigned long offset);
1059
1da177e4 1060int __set_page_dirty_nobuffers(struct page *page);
76719325 1061int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1062int redirty_page_for_writepage(struct writeback_control *wbc,
1063 struct page *page);
e3a7cca1 1064void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1065void account_page_writeback(struct page *page);
b3c97528 1066int set_page_dirty(struct page *page);
1da177e4
LT
1067int set_page_dirty_lock(struct page *page);
1068int clear_page_dirty_for_io(struct page *page);
1069
39aa3cb3 1070/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1071static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1072{
1073 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1074}
1075
a09a79f6
MP
1076static inline int stack_guard_page_start(struct vm_area_struct *vma,
1077 unsigned long addr)
1078{
1079 return (vma->vm_flags & VM_GROWSDOWN) &&
1080 (vma->vm_start == addr) &&
1081 !vma_growsdown(vma->vm_prev, addr);
1082}
1083
1084/* Is the vma a continuation of the stack vma below it? */
1085static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1086{
1087 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1088}
1089
1090static inline int stack_guard_page_end(struct vm_area_struct *vma,
1091 unsigned long addr)
1092{
1093 return (vma->vm_flags & VM_GROWSUP) &&
1094 (vma->vm_end == addr) &&
1095 !vma_growsup(vma->vm_next, addr);
1096}
1097
b7643757
SP
1098extern pid_t
1099vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1100
b6a2fea3
OW
1101extern unsigned long move_page_tables(struct vm_area_struct *vma,
1102 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1103 unsigned long new_addr, unsigned long len,
1104 bool need_rmap_locks);
1da177e4
LT
1105extern unsigned long do_mremap(unsigned long addr,
1106 unsigned long old_len, unsigned long new_len,
1107 unsigned long flags, unsigned long new_addr);
7da4d641
PZ
1108extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1109 unsigned long end, pgprot_t newprot,
4b10e7d5 1110 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1111extern int mprotect_fixup(struct vm_area_struct *vma,
1112 struct vm_area_struct **pprev, unsigned long start,
1113 unsigned long end, unsigned long newflags);
1da177e4 1114
465a454f
PZ
1115/*
1116 * doesn't attempt to fault and will return short.
1117 */
1118int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1119 struct page **pages);
d559db08
KH
1120/*
1121 * per-process(per-mm_struct) statistics.
1122 */
d559db08
KH
1123static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1124{
69c97823
KK
1125 long val = atomic_long_read(&mm->rss_stat.count[member]);
1126
1127#ifdef SPLIT_RSS_COUNTING
1128 /*
1129 * counter is updated in asynchronous manner and may go to minus.
1130 * But it's never be expected number for users.
1131 */
1132 if (val < 0)
1133 val = 0;
172703b0 1134#endif
69c97823
KK
1135 return (unsigned long)val;
1136}
d559db08
KH
1137
1138static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1139{
172703b0 1140 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1141}
1142
1143static inline void inc_mm_counter(struct mm_struct *mm, int member)
1144{
172703b0 1145 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1146}
1147
1148static inline void dec_mm_counter(struct mm_struct *mm, int member)
1149{
172703b0 1150 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1151}
1152
d559db08
KH
1153static inline unsigned long get_mm_rss(struct mm_struct *mm)
1154{
1155 return get_mm_counter(mm, MM_FILEPAGES) +
1156 get_mm_counter(mm, MM_ANONPAGES);
1157}
1158
1159static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1160{
1161 return max(mm->hiwater_rss, get_mm_rss(mm));
1162}
1163
1164static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1165{
1166 return max(mm->hiwater_vm, mm->total_vm);
1167}
1168
1169static inline void update_hiwater_rss(struct mm_struct *mm)
1170{
1171 unsigned long _rss = get_mm_rss(mm);
1172
1173 if ((mm)->hiwater_rss < _rss)
1174 (mm)->hiwater_rss = _rss;
1175}
1176
1177static inline void update_hiwater_vm(struct mm_struct *mm)
1178{
1179 if (mm->hiwater_vm < mm->total_vm)
1180 mm->hiwater_vm = mm->total_vm;
1181}
1182
1183static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1184 struct mm_struct *mm)
1185{
1186 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1187
1188 if (*maxrss < hiwater_rss)
1189 *maxrss = hiwater_rss;
1190}
1191
53bddb4e 1192#if defined(SPLIT_RSS_COUNTING)
05af2e10 1193void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1194#else
05af2e10 1195static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1196{
1197}
1198#endif
465a454f 1199
4e950f6f 1200int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1201
25ca1d6c
NK
1202extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1203 spinlock_t **ptl);
1204static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1205 spinlock_t **ptl)
1206{
1207 pte_t *ptep;
1208 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1209 return ptep;
1210}
c9cfcddf 1211
5f22df00
NP
1212#ifdef __PAGETABLE_PUD_FOLDED
1213static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1214 unsigned long address)
1215{
1216 return 0;
1217}
1218#else
1bb3630e 1219int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1220#endif
1221
1222#ifdef __PAGETABLE_PMD_FOLDED
1223static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1224 unsigned long address)
1225{
1226 return 0;
1227}
1228#else
1bb3630e 1229int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1230#endif
1231
8ac1f832
AA
1232int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1233 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1234int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1235
1da177e4
LT
1236/*
1237 * The following ifdef needed to get the 4level-fixup.h header to work.
1238 * Remove it when 4level-fixup.h has been removed.
1239 */
1bb3630e 1240#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1241static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1242{
1bb3630e
HD
1243 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1244 NULL: pud_offset(pgd, address);
1da177e4
LT
1245}
1246
1247static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1248{
1bb3630e
HD
1249 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1250 NULL: pmd_offset(pud, address);
1da177e4 1251}
1bb3630e
HD
1252#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1253
f7d0b926 1254#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1255/*
1256 * We tuck a spinlock to guard each pagetable page into its struct page,
1257 * at page->private, with BUILD_BUG_ON to make sure that this will not
1258 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1259 * When freeing, reset page->mapping so free_pages_check won't complain.
1260 */
349aef0b 1261#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1262#define pte_lock_init(_page) do { \
1263 spin_lock_init(__pte_lockptr(_page)); \
1264} while (0)
1265#define pte_lock_deinit(page) ((page)->mapping = NULL)
1266#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1267#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1268/*
1269 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1270 */
1271#define pte_lock_init(page) do {} while (0)
1272#define pte_lock_deinit(page) do {} while (0)
1273#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1274#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1275
2f569afd
MS
1276static inline void pgtable_page_ctor(struct page *page)
1277{
1278 pte_lock_init(page);
1279 inc_zone_page_state(page, NR_PAGETABLE);
1280}
1281
1282static inline void pgtable_page_dtor(struct page *page)
1283{
1284 pte_lock_deinit(page);
1285 dec_zone_page_state(page, NR_PAGETABLE);
1286}
1287
c74df32c
HD
1288#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1289({ \
4c21e2f2 1290 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1291 pte_t *__pte = pte_offset_map(pmd, address); \
1292 *(ptlp) = __ptl; \
1293 spin_lock(__ptl); \
1294 __pte; \
1295})
1296
1297#define pte_unmap_unlock(pte, ptl) do { \
1298 spin_unlock(ptl); \
1299 pte_unmap(pte); \
1300} while (0)
1301
8ac1f832
AA
1302#define pte_alloc_map(mm, vma, pmd, address) \
1303 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1304 pmd, address))? \
1305 NULL: pte_offset_map(pmd, address))
1bb3630e 1306
c74df32c 1307#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1308 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1309 pmd, address))? \
c74df32c
HD
1310 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1311
1bb3630e 1312#define pte_alloc_kernel(pmd, address) \
8ac1f832 1313 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1314 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1315
1316extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1317extern void free_area_init_node(int nid, unsigned long * zones_size,
1318 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1319extern void free_initmem(void);
1320
0ee332c1 1321#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1322/*
0ee332c1 1323 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1324 * zones, allocate the backing mem_map and account for memory holes in a more
1325 * architecture independent manner. This is a substitute for creating the
1326 * zone_sizes[] and zholes_size[] arrays and passing them to
1327 * free_area_init_node()
1328 *
1329 * An architecture is expected to register range of page frames backed by
0ee332c1 1330 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1331 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1332 * usage, an architecture is expected to do something like
1333 *
1334 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1335 * max_highmem_pfn};
1336 * for_each_valid_physical_page_range()
0ee332c1 1337 * memblock_add_node(base, size, nid)
c713216d
MG
1338 * free_area_init_nodes(max_zone_pfns);
1339 *
0ee332c1
TH
1340 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1341 * registered physical page range. Similarly
1342 * sparse_memory_present_with_active_regions() calls memory_present() for
1343 * each range when SPARSEMEM is enabled.
c713216d
MG
1344 *
1345 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1346 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1347 */
1348extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1349unsigned long node_map_pfn_alignment(void);
32996250
YL
1350unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1351 unsigned long end_pfn);
c713216d
MG
1352extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1353 unsigned long end_pfn);
1354extern void get_pfn_range_for_nid(unsigned int nid,
1355 unsigned long *start_pfn, unsigned long *end_pfn);
1356extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1357extern void free_bootmem_with_active_regions(int nid,
1358 unsigned long max_low_pfn);
1359extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1360
0ee332c1 1361#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1362
0ee332c1 1363#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1364 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1365static inline int __early_pfn_to_nid(unsigned long pfn)
1366{
1367 return 0;
1368}
1369#else
1370/* please see mm/page_alloc.c */
1371extern int __meminit early_pfn_to_nid(unsigned long pfn);
1372#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1373/* there is a per-arch backend function. */
1374extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1375#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1376#endif
1377
0e0b864e 1378extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1379extern void memmap_init_zone(unsigned long, int, unsigned long,
1380 unsigned long, enum memmap_context);
bc75d33f 1381extern void setup_per_zone_wmarks(void);
1b79acc9 1382extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1383extern void mem_init(void);
8feae131 1384extern void __init mmap_init(void);
b2b755b5 1385extern void show_mem(unsigned int flags);
1da177e4
LT
1386extern void si_meminfo(struct sysinfo * val);
1387extern void si_meminfo_node(struct sysinfo *val, int nid);
1388
3ee9a4f0
JP
1389extern __printf(3, 4)
1390void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1391
e7c8d5c9 1392extern void setup_per_cpu_pageset(void);
e7c8d5c9 1393
112067f0 1394extern void zone_pcp_update(struct zone *zone);
340175b7 1395extern void zone_pcp_reset(struct zone *zone);
112067f0 1396
8feae131 1397/* nommu.c */
33e5d769 1398extern atomic_long_t mmap_pages_allocated;
7e660872 1399extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1400
6b2dbba8 1401/* interval_tree.c */
6b2dbba8
ML
1402void vma_interval_tree_insert(struct vm_area_struct *node,
1403 struct rb_root *root);
9826a516
ML
1404void vma_interval_tree_insert_after(struct vm_area_struct *node,
1405 struct vm_area_struct *prev,
1406 struct rb_root *root);
6b2dbba8
ML
1407void vma_interval_tree_remove(struct vm_area_struct *node,
1408 struct rb_root *root);
1409struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1410 unsigned long start, unsigned long last);
1411struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1412 unsigned long start, unsigned long last);
1413
1414#define vma_interval_tree_foreach(vma, root, start, last) \
1415 for (vma = vma_interval_tree_iter_first(root, start, last); \
1416 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1417
1418static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1419 struct list_head *list)
1420{
6b2dbba8 1421 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1422}
1423
bf181b9f
ML
1424void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1425 struct rb_root *root);
1426void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1427 struct rb_root *root);
1428struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1429 struct rb_root *root, unsigned long start, unsigned long last);
1430struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1431 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1432#ifdef CONFIG_DEBUG_VM_RB
1433void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1434#endif
bf181b9f
ML
1435
1436#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1437 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1438 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1439
1da177e4 1440/* mmap.c */
34b4e4aa 1441extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1442extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1443 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1444extern struct vm_area_struct *vma_merge(struct mm_struct *,
1445 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1446 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1447 struct mempolicy *);
1448extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1449extern int split_vma(struct mm_struct *,
1450 struct vm_area_struct *, unsigned long addr, int new_below);
1451extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1452extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1453 struct rb_node **, struct rb_node *);
a8fb5618 1454extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1455extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1456 unsigned long addr, unsigned long len, pgoff_t pgoff,
1457 bool *need_rmap_locks);
1da177e4 1458extern void exit_mmap(struct mm_struct *);
925d1c40 1459
7906d00c
AA
1460extern int mm_take_all_locks(struct mm_struct *mm);
1461extern void mm_drop_all_locks(struct mm_struct *mm);
1462
38646013
JS
1463extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1464extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1465
119f657c 1466extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1467extern int install_special_mapping(struct mm_struct *mm,
1468 unsigned long addr, unsigned long len,
1469 unsigned long flags, struct page **pages);
1da177e4
LT
1470
1471extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1472
0165ab44 1473extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1474 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1475extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1476 unsigned long len, unsigned long prot, unsigned long flags,
1477 unsigned long pgoff, bool *populate);
1da177e4
LT
1478extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1479
bebeb3d6
ML
1480#ifdef CONFIG_MMU
1481extern int __mm_populate(unsigned long addr, unsigned long len,
1482 int ignore_errors);
1483static inline void mm_populate(unsigned long addr, unsigned long len)
1484{
1485 /* Ignore errors */
1486 (void) __mm_populate(addr, len, 1);
1487}
1488#else
1489static inline void mm_populate(unsigned long addr, unsigned long len) {}
1490#endif
1491
e4eb1ff6
LT
1492/* These take the mm semaphore themselves */
1493extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1494extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1495extern unsigned long vm_mmap(struct file *, unsigned long,
1496 unsigned long, unsigned long,
1497 unsigned long, unsigned long);
1da177e4 1498
db4fbfb9
ML
1499struct vm_unmapped_area_info {
1500#define VM_UNMAPPED_AREA_TOPDOWN 1
1501 unsigned long flags;
1502 unsigned long length;
1503 unsigned long low_limit;
1504 unsigned long high_limit;
1505 unsigned long align_mask;
1506 unsigned long align_offset;
1507};
1508
1509extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1510extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1511
1512/*
1513 * Search for an unmapped address range.
1514 *
1515 * We are looking for a range that:
1516 * - does not intersect with any VMA;
1517 * - is contained within the [low_limit, high_limit) interval;
1518 * - is at least the desired size.
1519 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1520 */
1521static inline unsigned long
1522vm_unmapped_area(struct vm_unmapped_area_info *info)
1523{
1524 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1525 return unmapped_area(info);
1526 else
1527 return unmapped_area_topdown(info);
1528}
1529
85821aab 1530/* truncate.c */
1da177e4 1531extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1532extern void truncate_inode_pages_range(struct address_space *,
1533 loff_t lstart, loff_t lend);
1da177e4
LT
1534
1535/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1536extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1537extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1538
1539/* mm/page-writeback.c */
1540int write_one_page(struct page *page, int wait);
1cf6e7d8 1541void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1542
1543/* readahead.c */
1544#define VM_MAX_READAHEAD 128 /* kbytes */
1545#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1546
1da177e4 1547int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1548 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1549
1550void page_cache_sync_readahead(struct address_space *mapping,
1551 struct file_ra_state *ra,
1552 struct file *filp,
1553 pgoff_t offset,
1554 unsigned long size);
1555
1556void page_cache_async_readahead(struct address_space *mapping,
1557 struct file_ra_state *ra,
1558 struct file *filp,
1559 struct page *pg,
1560 pgoff_t offset,
1561 unsigned long size);
1562
1da177e4 1563unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1564unsigned long ra_submit(struct file_ra_state *ra,
1565 struct address_space *mapping,
1566 struct file *filp);
1da177e4 1567
d05f3169 1568/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1569extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1570
1571/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1572extern int expand_downwards(struct vm_area_struct *vma,
1573 unsigned long address);
8ca3eb08 1574#if VM_GROWSUP
46dea3d0 1575extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1576#else
1577 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1578#endif
1da177e4
LT
1579
1580/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1581extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1582extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1583 struct vm_area_struct **pprev);
1584
1585/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1586 NULL if none. Assume start_addr < end_addr. */
1587static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1588{
1589 struct vm_area_struct * vma = find_vma(mm,start_addr);
1590
1591 if (vma && end_addr <= vma->vm_start)
1592 vma = NULL;
1593 return vma;
1594}
1595
1596static inline unsigned long vma_pages(struct vm_area_struct *vma)
1597{
1598 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1599}
1600
640708a2
PE
1601/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1602static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1603 unsigned long vm_start, unsigned long vm_end)
1604{
1605 struct vm_area_struct *vma = find_vma(mm, vm_start);
1606
1607 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1608 vma = NULL;
1609
1610 return vma;
1611}
1612
bad849b3 1613#ifdef CONFIG_MMU
804af2cf 1614pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1615#else
1616static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1617{
1618 return __pgprot(0);
1619}
1620#endif
1621
b24f53a0 1622#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1623unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1624 unsigned long start, unsigned long end);
1625#endif
1626
deceb6cd 1627struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1628int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1629 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1630int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1631int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1632 unsigned long pfn);
423bad60
NP
1633int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634 unsigned long pfn);
deceb6cd 1635
6aab341e 1636struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1637 unsigned int foll_flags);
1638#define FOLL_WRITE 0x01 /* check pte is writable */
1639#define FOLL_TOUCH 0x02 /* mark page accessed */
1640#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1641#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1642#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1643#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1644 * and return without waiting upon it */
110d74a9 1645#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1646#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1647#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1648#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1da177e4 1649
2f569afd 1650typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1651 void *data);
1652extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1653 unsigned long size, pte_fn_t fn, void *data);
1654
1da177e4 1655#ifdef CONFIG_PROC_FS
ab50b8ed 1656void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1657#else
ab50b8ed 1658static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1659 unsigned long flags, struct file *file, long pages)
1660{
44de9d0c 1661 mm->total_vm += pages;
1da177e4
LT
1662}
1663#endif /* CONFIG_PROC_FS */
1664
12d6f21e 1665#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1666extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1667#ifdef CONFIG_HIBERNATION
1668extern bool kernel_page_present(struct page *page);
1669#endif /* CONFIG_HIBERNATION */
12d6f21e 1670#else
1da177e4 1671static inline void
9858db50 1672kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1673#ifdef CONFIG_HIBERNATION
1674static inline bool kernel_page_present(struct page *page) { return true; }
1675#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1676#endif
1677
31db58b3 1678extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1679#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1680int in_gate_area_no_mm(unsigned long addr);
83b964bb 1681int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1682#else
cae5d390
SW
1683int in_gate_area_no_mm(unsigned long addr);
1684#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1685#endif /* __HAVE_ARCH_GATE_AREA */
1686
8d65af78 1687int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1688 void __user *, size_t *, loff_t *);
a09ed5e0 1689unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1690 unsigned long nr_pages_scanned,
1691 unsigned long lru_pages);
9d0243bc 1692
7a9166e3
LY
1693#ifndef CONFIG_MMU
1694#define randomize_va_space 0
1695#else
a62eaf15 1696extern int randomize_va_space;
7a9166e3 1697#endif
a62eaf15 1698
045e72ac 1699const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1700void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1701
9bdac914
YL
1702void sparse_mem_maps_populate_node(struct page **map_map,
1703 unsigned long pnum_begin,
1704 unsigned long pnum_end,
1705 unsigned long map_count,
1706 int nodeid);
1707
98f3cfc1 1708struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1709pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1710pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1711pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1712pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1713void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1714void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1715void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1716int vmemmap_populate_basepages(struct page *start_page,
1717 unsigned long pages, int node);
1718int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1719void vmemmap_populate_print_last(void);
8f6aac41 1720
6a46079c 1721
82ba011b
AK
1722enum mf_flags {
1723 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1724 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1725 MF_MUST_KILL = 1 << 2,
82ba011b 1726};
cd42f4a3 1727extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1728extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1729extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1730extern int sysctl_memory_failure_early_kill;
1731extern int sysctl_memory_failure_recovery;
facb6011 1732extern void shake_page(struct page *p, int access);
6a46079c 1733extern atomic_long_t mce_bad_pages;
facb6011 1734extern int soft_offline_page(struct page *page, int flags);
6a46079c 1735
718a3821
WF
1736extern void dump_page(struct page *page);
1737
47ad8475
AA
1738#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1739extern void clear_huge_page(struct page *page,
1740 unsigned long addr,
1741 unsigned int pages_per_huge_page);
1742extern void copy_user_huge_page(struct page *dst, struct page *src,
1743 unsigned long addr, struct vm_area_struct *vma,
1744 unsigned int pages_per_huge_page);
1745#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1746
c0a32fc5
SG
1747#ifdef CONFIG_DEBUG_PAGEALLOC
1748extern unsigned int _debug_guardpage_minorder;
1749
1750static inline unsigned int debug_guardpage_minorder(void)
1751{
1752 return _debug_guardpage_minorder;
1753}
1754
1755static inline bool page_is_guard(struct page *page)
1756{
1757 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1758}
1759#else
1760static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1761static inline bool page_is_guard(struct page *page) { return false; }
1762#endif /* CONFIG_DEBUG_PAGEALLOC */
1763
1da177e4
LT
1764#endif /* __KERNEL__ */
1765#endif /* _LINUX_MM_H */