]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/mm.h
Revert "mm: enlarge stack guard gap"
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
1da177e4
LT
24
25struct mempolicy;
26struct anon_vma;
bf181b9f 27struct anon_vma_chain;
4e950f6f 28struct file_ra_state;
e8edc6e0 29struct user_struct;
4e950f6f 30struct writeback_control;
682aa8e1 31struct bdi_writeback;
1da177e4 32
fccc9987 33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 34extern unsigned long max_mapnr;
fccc9987
JL
35
36static inline void set_max_mapnr(unsigned long limit)
37{
38 max_mapnr = limit;
39}
40#else
41static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
42#endif
43
4481374c 44extern unsigned long totalram_pages;
1da177e4 45extern void * high_memory;
1da177e4
LT
46extern int page_cluster;
47
48#ifdef CONFIG_SYSCTL
49extern int sysctl_legacy_va_layout;
50#else
51#define sysctl_legacy_va_layout 0
52#endif
53
54#include <asm/page.h>
55#include <asm/pgtable.h>
56#include <asm/processor.h>
1da177e4 57
79442ed1
TC
58#ifndef __pa_symbol
59#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
60#endif
61
593befa6
DD
62/*
63 * To prevent common memory management code establishing
64 * a zero page mapping on a read fault.
65 * This macro should be defined within <asm/pgtable.h>.
66 * s390 does this to prevent multiplexing of hardware bits
67 * related to the physical page in case of virtualization.
68 */
69#ifndef mm_forbids_zeropage
70#define mm_forbids_zeropage(X) (0)
71#endif
72
c9b1d098 73extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 74extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 75
49f0ce5f
JM
76extern int sysctl_overcommit_memory;
77extern int sysctl_overcommit_ratio;
78extern unsigned long sysctl_overcommit_kbytes;
79
80extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
83 size_t *, loff_t *);
84
1da177e4
LT
85#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
86
27ac792c
AR
87/* to align the pointer to the (next) page boundary */
88#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
89
0fa73b86
AM
90/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
91#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
92
1da177e4
LT
93/*
94 * Linux kernel virtual memory manager primitives.
95 * The idea being to have a "virtual" mm in the same way
96 * we have a virtual fs - giving a cleaner interface to the
97 * mm details, and allowing different kinds of memory mappings
98 * (from shared memory to executable loading to arbitrary
99 * mmap() functions).
100 */
101
c43692e8
CL
102extern struct kmem_cache *vm_area_cachep;
103
1da177e4 104#ifndef CONFIG_MMU
8feae131
DH
105extern struct rb_root nommu_region_tree;
106extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
107
108extern unsigned int kobjsize(const void *objp);
109#endif
110
111/*
605d9288 112 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 113 */
cc2383ec
KK
114#define VM_NONE 0x00000000
115
1da177e4
LT
116#define VM_READ 0x00000001 /* currently active flags */
117#define VM_WRITE 0x00000002
118#define VM_EXEC 0x00000004
119#define VM_SHARED 0x00000008
120
7e2cff42 121/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
122#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
123#define VM_MAYWRITE 0x00000020
124#define VM_MAYEXEC 0x00000040
125#define VM_MAYSHARE 0x00000080
126
127#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 128#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 129#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 130#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 131#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 132
1da177e4
LT
133#define VM_LOCKED 0x00002000
134#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
135
136 /* Used by sys_madvise() */
137#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
138#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
139
140#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
141#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 142#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 143#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 144#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 145#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 146#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 147#define VM_ARCH_2 0x02000000
0103bd16 148#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 149
d9104d1c
CG
150#ifdef CONFIG_MEM_SOFT_DIRTY
151# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
152#else
153# define VM_SOFTDIRTY 0
154#endif
155
b379d790 156#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
157#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
158#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 159#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 160
cc2383ec
KK
161#if defined(CONFIG_X86)
162# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
163#elif defined(CONFIG_PPC)
164# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
165#elif defined(CONFIG_PARISC)
166# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
167#elif defined(CONFIG_METAG)
168# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
169#elif defined(CONFIG_IA64)
170# define VM_GROWSUP VM_ARCH_1
171#elif !defined(CONFIG_MMU)
172# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
173#endif
174
4aae7e43
QR
175#if defined(CONFIG_X86)
176/* MPX specific bounds table or bounds directory */
177# define VM_MPX VM_ARCH_2
178#endif
179
cc2383ec
KK
180#ifndef VM_GROWSUP
181# define VM_GROWSUP VM_NONE
182#endif
183
a8bef8ff
MG
184/* Bits set in the VMA until the stack is in its final location */
185#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
186
1da177e4
LT
187#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
188#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
189#endif
190
191#ifdef CONFIG_STACK_GROWSUP
192#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193#else
194#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
195#endif
196
b291f000 197/*
78f11a25
AA
198 * Special vmas that are non-mergable, non-mlock()able.
199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 200 */
9050d7eb 201#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 202
a0715cc2
AT
203/* This mask defines which mm->def_flags a process can inherit its parent */
204#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
205
de60f5f1
EM
206/* This mask is used to clear all the VMA flags used by mlock */
207#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
208
1da177e4
LT
209/*
210 * mapping from the currently active vm_flags protection bits (the
211 * low four bits) to a page protection mask..
212 */
213extern pgprot_t protection_map[16];
214
d0217ac0 215#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
216#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
217#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
218#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
219#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
220#define FAULT_FLAG_TRIED 0x20 /* Second try */
221#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 222
54cb8821 223/*
d0217ac0 224 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
225 * ->fault function. The vma's ->fault is responsible for returning a bitmask
226 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 227 *
9b4bdd2f 228 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 229 */
d0217ac0
NP
230struct vm_fault {
231 unsigned int flags; /* FAULT_FLAG_xxx flags */
232 pgoff_t pgoff; /* Logical page offset based on vma */
233 void __user *virtual_address; /* Faulting virtual address */
234
2e4cdab0 235 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 236 struct page *page; /* ->fault handlers should return a
83c54070 237 * page here, unless VM_FAULT_NOPAGE
d0217ac0 238 * is set (which is also implied by
83c54070 239 * VM_FAULT_ERROR).
d0217ac0 240 */
8c6e50b0
KS
241 /* for ->map_pages() only */
242 pgoff_t max_pgoff; /* map pages for offset from pgoff till
243 * max_pgoff inclusive */
244 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 245};
1da177e4
LT
246
247/*
248 * These are the virtual MM functions - opening of an area, closing and
249 * unmapping it (needed to keep files on disk up-to-date etc), pointer
250 * to the functions called when a no-page or a wp-page exception occurs.
251 */
252struct vm_operations_struct {
253 void (*open)(struct vm_area_struct * area);
254 void (*close)(struct vm_area_struct * area);
5477e70a 255 int (*mremap)(struct vm_area_struct * area);
d0217ac0 256 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
257 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
258 pmd_t *, unsigned int flags);
8c6e50b0 259 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
260
261 /* notification that a previously read-only page is about to become
262 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 263 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 264
dd906184
BH
265 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
266 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
267
28b2ee20
RR
268 /* called by access_process_vm when get_user_pages() fails, typically
269 * for use by special VMAs that can switch between memory and hardware
270 */
271 int (*access)(struct vm_area_struct *vma, unsigned long addr,
272 void *buf, int len, int write);
78d683e8
AL
273
274 /* Called by the /proc/PID/maps code to ask the vma whether it
275 * has a special name. Returning non-NULL will also cause this
276 * vma to be dumped unconditionally. */
277 const char *(*name)(struct vm_area_struct *vma);
278
1da177e4 279#ifdef CONFIG_NUMA
a6020ed7
LS
280 /*
281 * set_policy() op must add a reference to any non-NULL @new mempolicy
282 * to hold the policy upon return. Caller should pass NULL @new to
283 * remove a policy and fall back to surrounding context--i.e. do not
284 * install a MPOL_DEFAULT policy, nor the task or system default
285 * mempolicy.
286 */
1da177e4 287 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
288
289 /*
290 * get_policy() op must add reference [mpol_get()] to any policy at
291 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
292 * in mm/mempolicy.c will do this automatically.
293 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
294 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
295 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
296 * must return NULL--i.e., do not "fallback" to task or system default
297 * policy.
298 */
1da177e4
LT
299 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
300 unsigned long addr);
301#endif
667a0a06
DV
302 /*
303 * Called by vm_normal_page() for special PTEs to find the
304 * page for @addr. This is useful if the default behavior
305 * (using pte_page()) would not find the correct page.
306 */
307 struct page *(*find_special_page)(struct vm_area_struct *vma,
308 unsigned long addr);
1da177e4
LT
309};
310
311struct mmu_gather;
312struct inode;
313
349aef0b
AM
314#define page_private(page) ((page)->private)
315#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 316
1da177e4
LT
317/*
318 * FIXME: take this include out, include page-flags.h in
319 * files which need it (119 of them)
320 */
321#include <linux/page-flags.h>
71e3aac0 322#include <linux/huge_mm.h>
1da177e4
LT
323
324/*
325 * Methods to modify the page usage count.
326 *
327 * What counts for a page usage:
328 * - cache mapping (page->mapping)
329 * - private data (page->private)
330 * - page mapped in a task's page tables, each mapping
331 * is counted separately
332 *
333 * Also, many kernel routines increase the page count before a critical
334 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
335 */
336
337/*
da6052f7 338 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 339 */
7c8ee9a8
NP
340static inline int put_page_testzero(struct page *page)
341{
309381fe 342 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 343 return atomic_dec_and_test(&page->_count);
7c8ee9a8 344}
1da177e4
LT
345
346/*
7c8ee9a8
NP
347 * Try to grab a ref unless the page has a refcount of zero, return false if
348 * that is the case.
8e0861fa
AK
349 * This can be called when MMU is off so it must not access
350 * any of the virtual mappings.
1da177e4 351 */
7c8ee9a8
NP
352static inline int get_page_unless_zero(struct page *page)
353{
8dc04efb 354 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 355}
1da177e4 356
53df8fdc 357extern int page_is_ram(unsigned long pfn);
124fe20d
DW
358
359enum {
360 REGION_INTERSECTS,
361 REGION_DISJOINT,
362 REGION_MIXED,
363};
364
365int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 366
48667e7a 367/* Support for virtually mapped pages */
b3bdda02
CL
368struct page *vmalloc_to_page(const void *addr);
369unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 370
0738c4bb
PM
371/*
372 * Determine if an address is within the vmalloc range
373 *
374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
375 * is no special casing required.
376 */
9e2779fa
CL
377static inline int is_vmalloc_addr(const void *x)
378{
0738c4bb 379#ifdef CONFIG_MMU
9e2779fa
CL
380 unsigned long addr = (unsigned long)x;
381
382 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
383#else
384 return 0;
8ca3ed87 385#endif
0738c4bb 386}
81ac3ad9
KH
387#ifdef CONFIG_MMU
388extern int is_vmalloc_or_module_addr(const void *x);
389#else
934831d0 390static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
391{
392 return 0;
393}
394#endif
9e2779fa 395
39f1f78d
AV
396extern void kvfree(const void *addr);
397
e9da73d6
AA
398static inline void compound_lock(struct page *page)
399{
400#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 401 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
402 bit_spin_lock(PG_compound_lock, &page->flags);
403#endif
404}
405
406static inline void compound_unlock(struct page *page)
407{
408#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 409 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
410 bit_spin_unlock(PG_compound_lock, &page->flags);
411#endif
412}
413
414static inline unsigned long compound_lock_irqsave(struct page *page)
415{
416 unsigned long uninitialized_var(flags);
417#ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 local_irq_save(flags);
419 compound_lock(page);
420#endif
421 return flags;
422}
423
424static inline void compound_unlock_irqrestore(struct page *page,
425 unsigned long flags)
426{
427#ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 compound_unlock(page);
429 local_irq_restore(flags);
430#endif
431}
432
70b50f94
AA
433/*
434 * The atomic page->_mapcount, starts from -1: so that transitions
435 * both from it and to it can be tracked, using atomic_inc_and_test
436 * and atomic_add_negative(-1).
437 */
22b751c3 438static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
439{
440 atomic_set(&(page)->_mapcount, -1);
441}
442
443static inline int page_mapcount(struct page *page)
444{
1d148e21
WY
445 VM_BUG_ON_PAGE(PageSlab(page), page);
446 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
447}
448
4c21e2f2 449static inline int page_count(struct page *page)
1da177e4 450{
d85f3385 451 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
452}
453
44518d2b
AA
454static inline bool __compound_tail_refcounted(struct page *page)
455{
c761471b 456 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
457}
458
459/*
460 * This takes a head page as parameter and tells if the
461 * tail page reference counting can be skipped.
462 *
463 * For this to be safe, PageSlab and PageHeadHuge must remain true on
464 * any given page where they return true here, until all tail pins
465 * have been released.
466 */
467static inline bool compound_tail_refcounted(struct page *page)
468{
309381fe 469 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
470 return __compound_tail_refcounted(page);
471}
472
b35a35b5
AA
473static inline void get_huge_page_tail(struct page *page)
474{
475 /*
5eaf1a9e 476 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 477 */
309381fe
SL
478 VM_BUG_ON_PAGE(!PageTail(page), page);
479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
1d798ca3 481 if (compound_tail_refcounted(compound_head(page)))
44518d2b 482 atomic_inc(&page->_mapcount);
b35a35b5
AA
483}
484
70b50f94
AA
485extern bool __get_page_tail(struct page *page);
486
1da177e4
LT
487static inline void get_page(struct page *page)
488{
70b50f94
AA
489 if (unlikely(PageTail(page)))
490 if (likely(__get_page_tail(page)))
491 return;
91807063
AA
492 /*
493 * Getting a normal page or the head of a compound page
70b50f94 494 * requires to already have an elevated page->_count.
91807063 495 */
309381fe 496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
497 atomic_inc(&page->_count);
498}
499
b49af68f
CL
500static inline struct page *virt_to_head_page(const void *x)
501{
502 struct page *page = virt_to_page(x);
ccaafd7f 503
1d798ca3 504 return compound_head(page);
b49af68f
CL
505}
506
7835e98b
NP
507/*
508 * Setup the page count before being freed into the page allocator for
509 * the first time (boot or memory hotplug)
510 */
511static inline void init_page_count(struct page *page)
512{
513 atomic_set(&page->_count, 1);
514}
515
1da177e4 516void put_page(struct page *page);
1d7ea732 517void put_pages_list(struct list_head *pages);
1da177e4 518
8dfcc9ba 519void split_page(struct page *page, unsigned int order);
748446bb 520int split_free_page(struct page *page);
8dfcc9ba 521
33f2ef89
AW
522/*
523 * Compound pages have a destructor function. Provide a
524 * prototype for that function and accessor functions.
f1e61557 525 * These are _only_ valid on the head of a compound page.
33f2ef89 526 */
f1e61557
KS
527typedef void compound_page_dtor(struct page *);
528
529/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
530enum compound_dtor_id {
531 NULL_COMPOUND_DTOR,
532 COMPOUND_PAGE_DTOR,
533#ifdef CONFIG_HUGETLB_PAGE
534 HUGETLB_PAGE_DTOR,
535#endif
536 NR_COMPOUND_DTORS,
537};
538extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
539
540static inline void set_compound_page_dtor(struct page *page,
f1e61557 541 enum compound_dtor_id compound_dtor)
33f2ef89 542{
f1e61557
KS
543 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
544 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
545}
546
547static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
548{
f1e61557
KS
549 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
550 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
551}
552
d00181b9 553static inline unsigned int compound_order(struct page *page)
d85f3385 554{
6d777953 555 if (!PageHead(page))
d85f3385 556 return 0;
e4b294c2 557 return page[1].compound_order;
d85f3385
CL
558}
559
f1e61557 560static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 561{
e4b294c2 562 page[1].compound_order = order;
d85f3385
CL
563}
564
3dece370 565#ifdef CONFIG_MMU
14fd403f
AA
566/*
567 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
568 * servicing faults for write access. In the normal case, do always want
569 * pte_mkwrite. But get_user_pages can cause write faults for mappings
570 * that do not have writing enabled, when used by access_process_vm.
571 */
572static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
573{
574 if (likely(vma->vm_flags & VM_WRITE))
575 pte = pte_mkwrite(pte);
576 return pte;
577}
8c6e50b0
KS
578
579void do_set_pte(struct vm_area_struct *vma, unsigned long address,
580 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 581#endif
14fd403f 582
1da177e4
LT
583/*
584 * Multiple processes may "see" the same page. E.g. for untouched
585 * mappings of /dev/null, all processes see the same page full of
586 * zeroes, and text pages of executables and shared libraries have
587 * only one copy in memory, at most, normally.
588 *
589 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
590 * page_count() == 0 means the page is free. page->lru is then used for
591 * freelist management in the buddy allocator.
da6052f7 592 * page_count() > 0 means the page has been allocated.
1da177e4 593 *
da6052f7
NP
594 * Pages are allocated by the slab allocator in order to provide memory
595 * to kmalloc and kmem_cache_alloc. In this case, the management of the
596 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
597 * unless a particular usage is carefully commented. (the responsibility of
598 * freeing the kmalloc memory is the caller's, of course).
1da177e4 599 *
da6052f7
NP
600 * A page may be used by anyone else who does a __get_free_page().
601 * In this case, page_count still tracks the references, and should only
602 * be used through the normal accessor functions. The top bits of page->flags
603 * and page->virtual store page management information, but all other fields
604 * are unused and could be used privately, carefully. The management of this
605 * page is the responsibility of the one who allocated it, and those who have
606 * subsequently been given references to it.
607 *
608 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
609 * managed by the Linux memory manager: I/O, buffers, swapping etc.
610 * The following discussion applies only to them.
611 *
da6052f7
NP
612 * A pagecache page contains an opaque `private' member, which belongs to the
613 * page's address_space. Usually, this is the address of a circular list of
614 * the page's disk buffers. PG_private must be set to tell the VM to call
615 * into the filesystem to release these pages.
1da177e4 616 *
da6052f7
NP
617 * A page may belong to an inode's memory mapping. In this case, page->mapping
618 * is the pointer to the inode, and page->index is the file offset of the page,
619 * in units of PAGE_CACHE_SIZE.
1da177e4 620 *
da6052f7
NP
621 * If pagecache pages are not associated with an inode, they are said to be
622 * anonymous pages. These may become associated with the swapcache, and in that
623 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 624 *
da6052f7
NP
625 * In either case (swapcache or inode backed), the pagecache itself holds one
626 * reference to the page. Setting PG_private should also increment the
627 * refcount. The each user mapping also has a reference to the page.
1da177e4 628 *
da6052f7
NP
629 * The pagecache pages are stored in a per-mapping radix tree, which is
630 * rooted at mapping->page_tree, and indexed by offset.
631 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
632 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 633 *
da6052f7 634 * All pagecache pages may be subject to I/O:
1da177e4
LT
635 * - inode pages may need to be read from disk,
636 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
637 * to be written back to the inode on disk,
638 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
639 * modified may need to be swapped out to swap space and (later) to be read
640 * back into memory.
1da177e4
LT
641 */
642
643/*
644 * The zone field is never updated after free_area_init_core()
645 * sets it, so none of the operations on it need to be atomic.
1da177e4 646 */
348f8b6c 647
90572890 648/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 649#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
650#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
651#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 652#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 653
348f8b6c 654/*
25985edc 655 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
656 * sections we define the shift as 0; that plus a 0 mask ensures
657 * the compiler will optimise away reference to them.
658 */
d41dee36
AW
659#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
660#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
661#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 662#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 663
bce54bbf
WD
664/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
665#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 666#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
667#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
668 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 669#else
89689ae7 670#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
671#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
672 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
673#endif
674
bd8029b6 675#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 676
9223b419
CL
677#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
678#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
679#endif
680
d41dee36
AW
681#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
682#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
683#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 684#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 685#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 686
33dd4e0e 687static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 688{
348f8b6c 689 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 690}
1da177e4 691
9127ab4f
CS
692#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
693#define SECTION_IN_PAGE_FLAGS
694#endif
695
89689ae7 696/*
7a8010cd
VB
697 * The identification function is mainly used by the buddy allocator for
698 * determining if two pages could be buddies. We are not really identifying
699 * the zone since we could be using the section number id if we do not have
700 * node id available in page flags.
701 * We only guarantee that it will return the same value for two combinable
702 * pages in a zone.
89689ae7 703 */
cb2b95e1
AW
704static inline int page_zone_id(struct page *page)
705{
89689ae7 706 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
707}
708
25ba77c1 709static inline int zone_to_nid(struct zone *zone)
89fa3024 710{
d5f541ed
CL
711#ifdef CONFIG_NUMA
712 return zone->node;
713#else
714 return 0;
715#endif
89fa3024
CL
716}
717
89689ae7 718#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 719extern int page_to_nid(const struct page *page);
89689ae7 720#else
33dd4e0e 721static inline int page_to_nid(const struct page *page)
d41dee36 722{
89689ae7 723 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 724}
89689ae7
CL
725#endif
726
57e0a030 727#ifdef CONFIG_NUMA_BALANCING
90572890 728static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 729{
90572890 730 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
731}
732
90572890 733static inline int cpupid_to_pid(int cpupid)
57e0a030 734{
90572890 735 return cpupid & LAST__PID_MASK;
57e0a030 736}
b795854b 737
90572890 738static inline int cpupid_to_cpu(int cpupid)
b795854b 739{
90572890 740 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
741}
742
90572890 743static inline int cpupid_to_nid(int cpupid)
b795854b 744{
90572890 745 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
746}
747
90572890 748static inline bool cpupid_pid_unset(int cpupid)
57e0a030 749{
90572890 750 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
751}
752
90572890 753static inline bool cpupid_cpu_unset(int cpupid)
b795854b 754{
90572890 755 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
756}
757
8c8a743c
PZ
758static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
759{
760 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
761}
762
763#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
764#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
765static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 766{
1ae71d03 767 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 768}
90572890
PZ
769
770static inline int page_cpupid_last(struct page *page)
771{
772 return page->_last_cpupid;
773}
774static inline void page_cpupid_reset_last(struct page *page)
b795854b 775{
1ae71d03 776 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
777}
778#else
90572890 779static inline int page_cpupid_last(struct page *page)
75980e97 780{
90572890 781 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
782}
783
90572890 784extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 785
90572890 786static inline void page_cpupid_reset_last(struct page *page)
75980e97 787{
90572890 788 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 789
90572890
PZ
790 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
791 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 792}
90572890
PZ
793#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
794#else /* !CONFIG_NUMA_BALANCING */
795static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 796{
90572890 797 return page_to_nid(page); /* XXX */
57e0a030
MG
798}
799
90572890 800static inline int page_cpupid_last(struct page *page)
57e0a030 801{
90572890 802 return page_to_nid(page); /* XXX */
57e0a030
MG
803}
804
90572890 805static inline int cpupid_to_nid(int cpupid)
b795854b
MG
806{
807 return -1;
808}
809
90572890 810static inline int cpupid_to_pid(int cpupid)
b795854b
MG
811{
812 return -1;
813}
814
90572890 815static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
816{
817 return -1;
818}
819
90572890
PZ
820static inline int cpu_pid_to_cpupid(int nid, int pid)
821{
822 return -1;
823}
824
825static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
826{
827 return 1;
828}
829
90572890 830static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
831{
832}
8c8a743c
PZ
833
834static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
835{
836 return false;
837}
90572890 838#endif /* CONFIG_NUMA_BALANCING */
57e0a030 839
33dd4e0e 840static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
841{
842 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
843}
844
9127ab4f 845#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
846static inline void set_page_section(struct page *page, unsigned long section)
847{
848 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
849 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
850}
851
aa462abe 852static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
853{
854 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
855}
308c05e3 856#endif
d41dee36 857
2f1b6248 858static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
859{
860 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
861 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
862}
2f1b6248 863
348f8b6c
DH
864static inline void set_page_node(struct page *page, unsigned long node)
865{
866 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
867 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 868}
89689ae7 869
2f1b6248 870static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 871 unsigned long node, unsigned long pfn)
1da177e4 872{
348f8b6c
DH
873 set_page_zone(page, zone);
874 set_page_node(page, node);
9127ab4f 875#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 876 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 877#endif
1da177e4
LT
878}
879
0610c25d
GT
880#ifdef CONFIG_MEMCG
881static inline struct mem_cgroup *page_memcg(struct page *page)
882{
883 return page->mem_cgroup;
884}
885
886static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
887{
888 page->mem_cgroup = memcg;
889}
890#else
891static inline struct mem_cgroup *page_memcg(struct page *page)
892{
893 return NULL;
894}
895
896static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
897{
898}
899#endif
900
f6ac2354
CL
901/*
902 * Some inline functions in vmstat.h depend on page_zone()
903 */
904#include <linux/vmstat.h>
905
33dd4e0e 906static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 907{
aa462abe 908 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
909}
910
911#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
912#define HASHED_PAGE_VIRTUAL
913#endif
914
915#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
916static inline void *page_address(const struct page *page)
917{
918 return page->virtual;
919}
920static inline void set_page_address(struct page *page, void *address)
921{
922 page->virtual = address;
923}
1da177e4
LT
924#define page_address_init() do { } while(0)
925#endif
926
927#if defined(HASHED_PAGE_VIRTUAL)
f9918794 928void *page_address(const struct page *page);
1da177e4
LT
929void set_page_address(struct page *page, void *virtual);
930void page_address_init(void);
931#endif
932
933#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
934#define page_address(page) lowmem_page_address(page)
935#define set_page_address(page, address) do { } while(0)
936#define page_address_init() do { } while(0)
937#endif
938
e39155ea
KS
939extern void *page_rmapping(struct page *page);
940extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 941extern struct address_space *page_mapping(struct page *page);
1da177e4 942
f981c595
MG
943extern struct address_space *__page_file_mapping(struct page *);
944
945static inline
946struct address_space *page_file_mapping(struct page *page)
947{
948 if (unlikely(PageSwapCache(page)))
949 return __page_file_mapping(page);
950
951 return page->mapping;
952}
953
1da177e4
LT
954/*
955 * Return the pagecache index of the passed page. Regular pagecache pages
956 * use ->index whereas swapcache pages use ->private
957 */
958static inline pgoff_t page_index(struct page *page)
959{
960 if (unlikely(PageSwapCache(page)))
4c21e2f2 961 return page_private(page);
1da177e4
LT
962 return page->index;
963}
964
f981c595
MG
965extern pgoff_t __page_file_index(struct page *page);
966
967/*
968 * Return the file index of the page. Regular pagecache pages use ->index
969 * whereas swapcache pages use swp_offset(->private)
970 */
971static inline pgoff_t page_file_index(struct page *page)
972{
973 if (unlikely(PageSwapCache(page)))
974 return __page_file_index(page);
975
976 return page->index;
977}
978
1da177e4
LT
979/*
980 * Return true if this page is mapped into pagetables.
981 */
982static inline int page_mapped(struct page *page)
983{
984 return atomic_read(&(page)->_mapcount) >= 0;
985}
986
2f064f34
MH
987/*
988 * Return true only if the page has been allocated with
989 * ALLOC_NO_WATERMARKS and the low watermark was not
990 * met implying that the system is under some pressure.
991 */
992static inline bool page_is_pfmemalloc(struct page *page)
993{
994 /*
995 * Page index cannot be this large so this must be
996 * a pfmemalloc page.
997 */
998 return page->index == -1UL;
999}
1000
1001/*
1002 * Only to be called by the page allocator on a freshly allocated
1003 * page.
1004 */
1005static inline void set_page_pfmemalloc(struct page *page)
1006{
1007 page->index = -1UL;
1008}
1009
1010static inline void clear_page_pfmemalloc(struct page *page)
1011{
1012 page->index = 0;
1013}
1014
1da177e4
LT
1015/*
1016 * Different kinds of faults, as returned by handle_mm_fault().
1017 * Used to decide whether a process gets delivered SIGBUS or
1018 * just gets major/minor fault counters bumped up.
1019 */
d0217ac0 1020
83c54070 1021#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1022
83c54070
NP
1023#define VM_FAULT_OOM 0x0001
1024#define VM_FAULT_SIGBUS 0x0002
1025#define VM_FAULT_MAJOR 0x0004
1026#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1027#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1028#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1029#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1030
83c54070
NP
1031#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1032#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1033#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1034#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1035
aa50d3a7
AK
1036#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1037
33692f27
LT
1038#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1039 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1040 VM_FAULT_FALLBACK)
aa50d3a7
AK
1041
1042/* Encode hstate index for a hwpoisoned large page */
1043#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1044#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1045
1c0fe6e3
NP
1046/*
1047 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1048 */
1049extern void pagefault_out_of_memory(void);
1050
1da177e4
LT
1051#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1052
ddd588b5 1053/*
7bf02ea2 1054 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1055 * various contexts.
1056 */
4b59e6c4 1057#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1058
7bf02ea2
DR
1059extern void show_free_areas(unsigned int flags);
1060extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1061
1da177e4 1062int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1063#ifdef CONFIG_SHMEM
1064bool shmem_mapping(struct address_space *mapping);
1065#else
1066static inline bool shmem_mapping(struct address_space *mapping)
1067{
1068 return false;
1069}
1070#endif
1da177e4 1071
e8edc6e0 1072extern int can_do_mlock(void);
1da177e4
LT
1073extern int user_shm_lock(size_t, struct user_struct *);
1074extern void user_shm_unlock(size_t, struct user_struct *);
1075
1076/*
1077 * Parameter block passed down to zap_pte_range in exceptional cases.
1078 */
1079struct zap_details {
1da177e4
LT
1080 struct address_space *check_mapping; /* Check page->mapping if set */
1081 pgoff_t first_index; /* Lowest page->index to unmap */
1082 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1083};
1084
7e675137
NP
1085struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1086 pte_t pte);
50d7fc9c
GS
1087struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1088 pmd_t pmd);
7e675137 1089
c627f9cc
JS
1090int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1091 unsigned long size);
14f5ff5d 1092void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1093 unsigned long size, struct zap_details *);
4f74d2c8
LT
1094void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1095 unsigned long start, unsigned long end);
e6473092
MM
1096
1097/**
1098 * mm_walk - callbacks for walk_page_range
e6473092 1099 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1100 * this handler is required to be able to handle
1101 * pmd_trans_huge() pmds. They may simply choose to
1102 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1103 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1104 * @pte_hole: if set, called for each hole at all levels
5dc37642 1105 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1106 * @test_walk: caller specific callback function to determine whether
1107 * we walk over the current vma or not. A positive returned
1108 * value means "do page table walk over the current vma,"
1109 * and a negative one means "abort current page table walk
1110 * right now." 0 means "skip the current vma."
1111 * @mm: mm_struct representing the target process of page table walk
1112 * @vma: vma currently walked (NULL if walking outside vmas)
1113 * @private: private data for callbacks' usage
e6473092 1114 *
fafaa426 1115 * (see the comment on walk_page_range() for more details)
e6473092
MM
1116 */
1117struct mm_walk {
0f157a5b
AM
1118 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1119 unsigned long next, struct mm_walk *walk);
1120 int (*pte_entry)(pte_t *pte, unsigned long addr,
1121 unsigned long next, struct mm_walk *walk);
1122 int (*pte_hole)(unsigned long addr, unsigned long next,
1123 struct mm_walk *walk);
1124 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1125 unsigned long addr, unsigned long next,
1126 struct mm_walk *walk);
fafaa426
NH
1127 int (*test_walk)(unsigned long addr, unsigned long next,
1128 struct mm_walk *walk);
2165009b 1129 struct mm_struct *mm;
fafaa426 1130 struct vm_area_struct *vma;
2165009b 1131 void *private;
e6473092
MM
1132};
1133
2165009b
DH
1134int walk_page_range(unsigned long addr, unsigned long end,
1135 struct mm_walk *walk);
900fc5f1 1136int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1137void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1138 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1139int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1140 struct vm_area_struct *vma);
1da177e4
LT
1141void unmap_mapping_range(struct address_space *mapping,
1142 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1143int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1144 unsigned long *pfn);
d87fe660 1145int follow_phys(struct vm_area_struct *vma, unsigned long address,
1146 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1147int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1148 void *buf, int len, int write);
1da177e4
LT
1149
1150static inline void unmap_shared_mapping_range(struct address_space *mapping,
1151 loff_t const holebegin, loff_t const holelen)
1152{
1153 unmap_mapping_range(mapping, holebegin, holelen, 0);
1154}
1155
7caef267 1156extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1157extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1158void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1159void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1160int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1161int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1162int invalidate_inode_page(struct page *page);
1163
7ee1dd3f 1164#ifdef CONFIG_MMU
83c54070 1165extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1166 unsigned long address, unsigned int flags);
5c723ba5
PZ
1167extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1168 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1169#else
1170static inline int handle_mm_fault(struct mm_struct *mm,
1171 struct vm_area_struct *vma, unsigned long address,
d06063cc 1172 unsigned int flags)
7ee1dd3f
DH
1173{
1174 /* should never happen if there's no MMU */
1175 BUG();
1176 return VM_FAULT_SIGBUS;
1177}
5c723ba5
PZ
1178static inline int fixup_user_fault(struct task_struct *tsk,
1179 struct mm_struct *mm, unsigned long address,
1180 unsigned int fault_flags)
1181{
1182 /* should never happen if there's no MMU */
1183 BUG();
1184 return -EFAULT;
1185}
7ee1dd3f 1186#endif
f33ea7f4 1187
dee5220c
TG
1188extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1189extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1190 int);
1191extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1192extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1193
1194#define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1195 __LINE__)
1196#define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1197 __LINE__)
1198#define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1199#define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1200
1201#ifndef CONFIG_MMU
1202extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1203extern void vmr_do_fput(struct vm_region *, const char[], int);
1204
1205#define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1206 __LINE__)
1207#define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1208#endif /* !CONFIG_MMU */
1209
1da177e4 1210extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1211extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1212 void *buf, int len, int write);
1da177e4 1213
28a35716
ML
1214long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1215 unsigned long start, unsigned long nr_pages,
1216 unsigned int foll_flags, struct page **pages,
1217 struct vm_area_struct **vmas, int *nonblocking);
1218long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1219 unsigned long start, unsigned long nr_pages,
1220 int write, int force, struct page **pages,
1221 struct vm_area_struct **vmas);
f0818f47
AA
1222long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1223 unsigned long start, unsigned long nr_pages,
1224 int write, int force, struct page **pages,
1225 int *locked);
0fd71a56
AA
1226long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1227 unsigned long start, unsigned long nr_pages,
1228 int write, int force, struct page **pages,
1229 unsigned int gup_flags);
f0818f47
AA
1230long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1231 unsigned long start, unsigned long nr_pages,
1232 int write, int force, struct page **pages);
d2bf6be8
NP
1233int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1234 struct page **pages);
8025e5dd
JK
1235
1236/* Container for pinned pfns / pages */
1237struct frame_vector {
1238 unsigned int nr_allocated; /* Number of frames we have space for */
1239 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1240 bool got_ref; /* Did we pin pages by getting page ref? */
1241 bool is_pfns; /* Does array contain pages or pfns? */
1242 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1243 * pfns_vector_pages() or pfns_vector_pfns()
1244 * for access */
1245};
1246
1247struct frame_vector *frame_vector_create(unsigned int nr_frames);
1248void frame_vector_destroy(struct frame_vector *vec);
1249int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1250 bool write, bool force, struct frame_vector *vec);
1251void put_vaddr_frames(struct frame_vector *vec);
1252int frame_vector_to_pages(struct frame_vector *vec);
1253void frame_vector_to_pfns(struct frame_vector *vec);
1254
1255static inline unsigned int frame_vector_count(struct frame_vector *vec)
1256{
1257 return vec->nr_frames;
1258}
1259
1260static inline struct page **frame_vector_pages(struct frame_vector *vec)
1261{
1262 if (vec->is_pfns) {
1263 int err = frame_vector_to_pages(vec);
1264
1265 if (err)
1266 return ERR_PTR(err);
1267 }
1268 return (struct page **)(vec->ptrs);
1269}
1270
1271static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1272{
1273 if (!vec->is_pfns)
1274 frame_vector_to_pfns(vec);
1275 return (unsigned long *)(vec->ptrs);
1276}
1277
18022c5d
MG
1278struct kvec;
1279int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1280 struct page **pages);
1281int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1282struct page *get_dump_page(unsigned long addr);
1da177e4 1283
cf9a2ae8 1284extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1285extern void do_invalidatepage(struct page *page, unsigned int offset,
1286 unsigned int length);
cf9a2ae8 1287
1da177e4 1288int __set_page_dirty_nobuffers(struct page *page);
76719325 1289int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1290int redirty_page_for_writepage(struct writeback_control *wbc,
1291 struct page *page);
c4843a75
GT
1292void account_page_dirtied(struct page *page, struct address_space *mapping,
1293 struct mem_cgroup *memcg);
1294void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1295 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1296int set_page_dirty(struct page *page);
1da177e4 1297int set_page_dirty_lock(struct page *page);
11f81bec 1298void cancel_dirty_page(struct page *page);
1da177e4 1299int clear_page_dirty_for_io(struct page *page);
b9ea2515 1300
a9090253 1301int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1302
d11da519
SB
1303/* Is the vma a continuation of the stack vma above it? */
1304static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1305{
1306 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1307}
1308
b5330628
ON
1309static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1310{
1311 return !vma->vm_ops;
1312}
1313
d11da519
SB
1314static inline int stack_guard_page_start(struct vm_area_struct *vma,
1315 unsigned long addr)
1316{
1317 return (vma->vm_flags & VM_GROWSDOWN) &&
1318 (vma->vm_start == addr) &&
1319 !vma_growsdown(vma->vm_prev, addr);
1320}
1321
1322/* Is the vma a continuation of the stack vma below it? */
1323static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1324{
1325 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1326}
1327
1328static inline int stack_guard_page_end(struct vm_area_struct *vma,
1329 unsigned long addr)
1330{
1331 return (vma->vm_flags & VM_GROWSUP) &&
1332 (vma->vm_end == addr) &&
1333 !vma_growsup(vma->vm_next, addr);
1334}
1335
7e1b45b8 1336int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1337
b6a2fea3
OW
1338extern unsigned long move_page_tables(struct vm_area_struct *vma,
1339 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1340 unsigned long new_addr, unsigned long len,
1341 bool need_rmap_locks);
7da4d641
PZ
1342extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1343 unsigned long end, pgprot_t newprot,
4b10e7d5 1344 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1345extern int mprotect_fixup(struct vm_area_struct *vma,
1346 struct vm_area_struct **pprev, unsigned long start,
1347 unsigned long end, unsigned long newflags);
1da177e4 1348
465a454f
PZ
1349/*
1350 * doesn't attempt to fault and will return short.
1351 */
1352int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1353 struct page **pages);
d559db08
KH
1354/*
1355 * per-process(per-mm_struct) statistics.
1356 */
d559db08
KH
1357static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1358{
69c97823
KK
1359 long val = atomic_long_read(&mm->rss_stat.count[member]);
1360
1361#ifdef SPLIT_RSS_COUNTING
1362 /*
1363 * counter is updated in asynchronous manner and may go to minus.
1364 * But it's never be expected number for users.
1365 */
1366 if (val < 0)
1367 val = 0;
172703b0 1368#endif
69c97823
KK
1369 return (unsigned long)val;
1370}
d559db08
KH
1371
1372static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1373{
172703b0 1374 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1375}
1376
1377static inline void inc_mm_counter(struct mm_struct *mm, int member)
1378{
172703b0 1379 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1380}
1381
1382static inline void dec_mm_counter(struct mm_struct *mm, int member)
1383{
172703b0 1384 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1385}
1386
d559db08
KH
1387static inline unsigned long get_mm_rss(struct mm_struct *mm)
1388{
1389 return get_mm_counter(mm, MM_FILEPAGES) +
1390 get_mm_counter(mm, MM_ANONPAGES);
1391}
1392
1393static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1394{
1395 return max(mm->hiwater_rss, get_mm_rss(mm));
1396}
1397
1398static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1399{
1400 return max(mm->hiwater_vm, mm->total_vm);
1401}
1402
1403static inline void update_hiwater_rss(struct mm_struct *mm)
1404{
1405 unsigned long _rss = get_mm_rss(mm);
1406
1407 if ((mm)->hiwater_rss < _rss)
1408 (mm)->hiwater_rss = _rss;
1409}
1410
1411static inline void update_hiwater_vm(struct mm_struct *mm)
1412{
1413 if (mm->hiwater_vm < mm->total_vm)
1414 mm->hiwater_vm = mm->total_vm;
1415}
1416
695f0559
PC
1417static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1418{
1419 mm->hiwater_rss = get_mm_rss(mm);
1420}
1421
d559db08
KH
1422static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1423 struct mm_struct *mm)
1424{
1425 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1426
1427 if (*maxrss < hiwater_rss)
1428 *maxrss = hiwater_rss;
1429}
1430
53bddb4e 1431#if defined(SPLIT_RSS_COUNTING)
05af2e10 1432void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1433#else
05af2e10 1434static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1435{
1436}
1437#endif
465a454f 1438
4e950f6f 1439int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1440
25ca1d6c
NK
1441extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442 spinlock_t **ptl);
1443static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 spinlock_t **ptl)
1445{
1446 pte_t *ptep;
1447 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1448 return ptep;
1449}
c9cfcddf 1450
5f22df00
NP
1451#ifdef __PAGETABLE_PUD_FOLDED
1452static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1453 unsigned long address)
1454{
1455 return 0;
1456}
1457#else
1bb3630e 1458int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1459#endif
1460
2d2f5119 1461#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1462static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1463 unsigned long address)
1464{
1465 return 0;
1466}
dc6c9a35 1467
2d2f5119
KS
1468static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1469
dc6c9a35
KS
1470static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1471{
1472 return 0;
1473}
1474
1475static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1476static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1477
5f22df00 1478#else
1bb3630e 1479int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1480
2d2f5119
KS
1481static inline void mm_nr_pmds_init(struct mm_struct *mm)
1482{
1483 atomic_long_set(&mm->nr_pmds, 0);
1484}
1485
dc6c9a35
KS
1486static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1487{
1488 return atomic_long_read(&mm->nr_pmds);
1489}
1490
1491static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1492{
1493 atomic_long_inc(&mm->nr_pmds);
1494}
1495
1496static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1497{
1498 atomic_long_dec(&mm->nr_pmds);
1499}
5f22df00
NP
1500#endif
1501
8ac1f832
AA
1502int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1503 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1504int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1505
1da177e4
LT
1506/*
1507 * The following ifdef needed to get the 4level-fixup.h header to work.
1508 * Remove it when 4level-fixup.h has been removed.
1509 */
1bb3630e 1510#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1511static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1512{
1bb3630e
HD
1513 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1514 NULL: pud_offset(pgd, address);
1da177e4
LT
1515}
1516
1517static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1518{
1bb3630e
HD
1519 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1520 NULL: pmd_offset(pud, address);
1da177e4 1521}
1bb3630e
HD
1522#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1523
57c1ffce 1524#if USE_SPLIT_PTE_PTLOCKS
597d795a 1525#if ALLOC_SPLIT_PTLOCKS
b35f1819 1526void __init ptlock_cache_init(void);
539edb58
PZ
1527extern bool ptlock_alloc(struct page *page);
1528extern void ptlock_free(struct page *page);
1529
1530static inline spinlock_t *ptlock_ptr(struct page *page)
1531{
1532 return page->ptl;
1533}
597d795a 1534#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1535static inline void ptlock_cache_init(void)
1536{
1537}
1538
49076ec2
KS
1539static inline bool ptlock_alloc(struct page *page)
1540{
49076ec2
KS
1541 return true;
1542}
539edb58 1543
49076ec2
KS
1544static inline void ptlock_free(struct page *page)
1545{
49076ec2
KS
1546}
1547
1548static inline spinlock_t *ptlock_ptr(struct page *page)
1549{
539edb58 1550 return &page->ptl;
49076ec2 1551}
597d795a 1552#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1553
1554static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1555{
1556 return ptlock_ptr(pmd_page(*pmd));
1557}
1558
1559static inline bool ptlock_init(struct page *page)
1560{
1561 /*
1562 * prep_new_page() initialize page->private (and therefore page->ptl)
1563 * with 0. Make sure nobody took it in use in between.
1564 *
1565 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1566 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1567 */
309381fe 1568 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1569 if (!ptlock_alloc(page))
1570 return false;
1571 spin_lock_init(ptlock_ptr(page));
1572 return true;
1573}
1574
1575/* Reset page->mapping so free_pages_check won't complain. */
1576static inline void pte_lock_deinit(struct page *page)
1577{
1578 page->mapping = NULL;
1579 ptlock_free(page);
1580}
1581
57c1ffce 1582#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1583/*
1584 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1585 */
49076ec2
KS
1586static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1587{
1588 return &mm->page_table_lock;
1589}
b35f1819 1590static inline void ptlock_cache_init(void) {}
49076ec2
KS
1591static inline bool ptlock_init(struct page *page) { return true; }
1592static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1593#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1594
b35f1819
KS
1595static inline void pgtable_init(void)
1596{
1597 ptlock_cache_init();
1598 pgtable_cache_init();
1599}
1600
390f44e2 1601static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1602{
706874e9
VD
1603 if (!ptlock_init(page))
1604 return false;
2f569afd 1605 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1606 return true;
2f569afd
MS
1607}
1608
1609static inline void pgtable_page_dtor(struct page *page)
1610{
1611 pte_lock_deinit(page);
1612 dec_zone_page_state(page, NR_PAGETABLE);
1613}
1614
c74df32c
HD
1615#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1616({ \
4c21e2f2 1617 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1618 pte_t *__pte = pte_offset_map(pmd, address); \
1619 *(ptlp) = __ptl; \
1620 spin_lock(__ptl); \
1621 __pte; \
1622})
1623
1624#define pte_unmap_unlock(pte, ptl) do { \
1625 spin_unlock(ptl); \
1626 pte_unmap(pte); \
1627} while (0)
1628
8ac1f832
AA
1629#define pte_alloc_map(mm, vma, pmd, address) \
1630 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1631 pmd, address))? \
1632 NULL: pte_offset_map(pmd, address))
1bb3630e 1633
c74df32c 1634#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1635 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1636 pmd, address))? \
c74df32c
HD
1637 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1638
1bb3630e 1639#define pte_alloc_kernel(pmd, address) \
8ac1f832 1640 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1641 NULL: pte_offset_kernel(pmd, address))
1da177e4 1642
e009bb30
KS
1643#if USE_SPLIT_PMD_PTLOCKS
1644
634391ac
MS
1645static struct page *pmd_to_page(pmd_t *pmd)
1646{
1647 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1648 return virt_to_page((void *)((unsigned long) pmd & mask));
1649}
1650
e009bb30
KS
1651static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1652{
634391ac 1653 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1654}
1655
1656static inline bool pgtable_pmd_page_ctor(struct page *page)
1657{
e009bb30
KS
1658#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1659 page->pmd_huge_pte = NULL;
1660#endif
49076ec2 1661 return ptlock_init(page);
e009bb30
KS
1662}
1663
1664static inline void pgtable_pmd_page_dtor(struct page *page)
1665{
1666#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1667 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1668#endif
49076ec2 1669 ptlock_free(page);
e009bb30
KS
1670}
1671
634391ac 1672#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1673
1674#else
1675
9a86cb7b
KS
1676static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1677{
1678 return &mm->page_table_lock;
1679}
1680
e009bb30
KS
1681static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1682static inline void pgtable_pmd_page_dtor(struct page *page) {}
1683
c389a250 1684#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1685
e009bb30
KS
1686#endif
1687
9a86cb7b
KS
1688static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1689{
1690 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1691 spin_lock(ptl);
1692 return ptl;
1693}
1694
1da177e4 1695extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1696extern void free_area_init_node(int nid, unsigned long * zones_size,
1697 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1698extern void free_initmem(void);
1699
69afade7
JL
1700/*
1701 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1702 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1703 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1704 * Return pages freed into the buddy system.
1705 */
11199692 1706extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1707 int poison, char *s);
c3d5f5f0 1708
cfa11e08
JL
1709#ifdef CONFIG_HIGHMEM
1710/*
1711 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1712 * and totalram_pages.
1713 */
1714extern void free_highmem_page(struct page *page);
1715#endif
69afade7 1716
c3d5f5f0 1717extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1718extern void mem_init_print_info(const char *str);
69afade7 1719
41642f06 1720extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1721
69afade7
JL
1722/* Free the reserved page into the buddy system, so it gets managed. */
1723static inline void __free_reserved_page(struct page *page)
1724{
1725 ClearPageReserved(page);
1726 init_page_count(page);
1727 __free_page(page);
1728}
1729
1730static inline void free_reserved_page(struct page *page)
1731{
1732 __free_reserved_page(page);
1733 adjust_managed_page_count(page, 1);
1734}
1735
1736static inline void mark_page_reserved(struct page *page)
1737{
1738 SetPageReserved(page);
1739 adjust_managed_page_count(page, -1);
1740}
1741
1742/*
1743 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1744 * The freed pages will be poisoned with pattern "poison" if it's within
1745 * range [0, UCHAR_MAX].
1746 * Return pages freed into the buddy system.
69afade7
JL
1747 */
1748static inline unsigned long free_initmem_default(int poison)
1749{
1750 extern char __init_begin[], __init_end[];
1751
11199692 1752 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1753 poison, "unused kernel");
1754}
1755
7ee3d4e8
JL
1756static inline unsigned long get_num_physpages(void)
1757{
1758 int nid;
1759 unsigned long phys_pages = 0;
1760
1761 for_each_online_node(nid)
1762 phys_pages += node_present_pages(nid);
1763
1764 return phys_pages;
1765}
1766
0ee332c1 1767#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1768/*
0ee332c1 1769 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1770 * zones, allocate the backing mem_map and account for memory holes in a more
1771 * architecture independent manner. This is a substitute for creating the
1772 * zone_sizes[] and zholes_size[] arrays and passing them to
1773 * free_area_init_node()
1774 *
1775 * An architecture is expected to register range of page frames backed by
0ee332c1 1776 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1777 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1778 * usage, an architecture is expected to do something like
1779 *
1780 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1781 * max_highmem_pfn};
1782 * for_each_valid_physical_page_range()
0ee332c1 1783 * memblock_add_node(base, size, nid)
c713216d
MG
1784 * free_area_init_nodes(max_zone_pfns);
1785 *
0ee332c1
TH
1786 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1787 * registered physical page range. Similarly
1788 * sparse_memory_present_with_active_regions() calls memory_present() for
1789 * each range when SPARSEMEM is enabled.
c713216d
MG
1790 *
1791 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1792 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1793 */
1794extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1795unsigned long node_map_pfn_alignment(void);
32996250
YL
1796unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1797 unsigned long end_pfn);
c713216d
MG
1798extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1799 unsigned long end_pfn);
1800extern void get_pfn_range_for_nid(unsigned int nid,
1801 unsigned long *start_pfn, unsigned long *end_pfn);
1802extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1803extern void free_bootmem_with_active_regions(int nid,
1804 unsigned long max_low_pfn);
1805extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1806
0ee332c1 1807#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1808
0ee332c1 1809#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1810 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1811static inline int __early_pfn_to_nid(unsigned long pfn,
1812 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1813{
1814 return 0;
1815}
1816#else
1817/* please see mm/page_alloc.c */
1818extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1819/* there is a per-arch backend function. */
8a942fde
MG
1820extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1821 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1822#endif
1823
0e0b864e 1824extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1825extern void memmap_init_zone(unsigned long, int, unsigned long,
1826 unsigned long, enum memmap_context);
bc75d33f 1827extern void setup_per_zone_wmarks(void);
1b79acc9 1828extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1829extern void mem_init(void);
8feae131 1830extern void __init mmap_init(void);
b2b755b5 1831extern void show_mem(unsigned int flags);
95462b66 1832extern long si_mem_available(void);
1da177e4
LT
1833extern void si_meminfo(struct sysinfo * val);
1834extern void si_meminfo_node(struct sysinfo *val, int nid);
1835
3ee9a4f0 1836extern __printf(3, 4)
d00181b9
KS
1837void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1838 const char *fmt, ...);
a238ab5b 1839
e7c8d5c9 1840extern void setup_per_cpu_pageset(void);
e7c8d5c9 1841
112067f0 1842extern void zone_pcp_update(struct zone *zone);
340175b7 1843extern void zone_pcp_reset(struct zone *zone);
112067f0 1844
75f7ad8e
PS
1845/* page_alloc.c */
1846extern int min_free_kbytes;
1847
8feae131 1848/* nommu.c */
33e5d769 1849extern atomic_long_t mmap_pages_allocated;
7e660872 1850extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1851
6b2dbba8 1852/* interval_tree.c */
6b2dbba8
ML
1853void vma_interval_tree_insert(struct vm_area_struct *node,
1854 struct rb_root *root);
9826a516
ML
1855void vma_interval_tree_insert_after(struct vm_area_struct *node,
1856 struct vm_area_struct *prev,
1857 struct rb_root *root);
6b2dbba8
ML
1858void vma_interval_tree_remove(struct vm_area_struct *node,
1859 struct rb_root *root);
1860struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1861 unsigned long start, unsigned long last);
1862struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1863 unsigned long start, unsigned long last);
1864
1865#define vma_interval_tree_foreach(vma, root, start, last) \
1866 for (vma = vma_interval_tree_iter_first(root, start, last); \
1867 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1868
bf181b9f
ML
1869void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1870 struct rb_root *root);
1871void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1872 struct rb_root *root);
1873struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1874 struct rb_root *root, unsigned long start, unsigned long last);
1875struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1876 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1877#ifdef CONFIG_DEBUG_VM_RB
1878void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1879#endif
bf181b9f
ML
1880
1881#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1882 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1883 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1884
1da177e4 1885/* mmap.c */
34b4e4aa 1886extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1887extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1888 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1889extern struct vm_area_struct *vma_merge(struct mm_struct *,
1890 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1891 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1892 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1893extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1894extern int split_vma(struct mm_struct *,
1895 struct vm_area_struct *, unsigned long addr, int new_below);
1896extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1897extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1898 struct rb_node **, struct rb_node *);
a8fb5618 1899extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1900extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1901 unsigned long addr, unsigned long len, pgoff_t pgoff,
1902 bool *need_rmap_locks);
1da177e4 1903extern void exit_mmap(struct mm_struct *);
925d1c40 1904
9c599024
CG
1905static inline int check_data_rlimit(unsigned long rlim,
1906 unsigned long new,
1907 unsigned long start,
1908 unsigned long end_data,
1909 unsigned long start_data)
1910{
1911 if (rlim < RLIM_INFINITY) {
1912 if (((new - start) + (end_data - start_data)) > rlim)
1913 return -ENOSPC;
1914 }
1915
1916 return 0;
1917}
1918
7906d00c
AA
1919extern int mm_take_all_locks(struct mm_struct *mm);
1920extern void mm_drop_all_locks(struct mm_struct *mm);
1921
38646013
JS
1922extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1923extern struct file *get_mm_exe_file(struct mm_struct *mm);
3854c338 1924extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 1925
119f657c 1926extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1927extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1928 unsigned long addr, unsigned long len,
a62c34bd
AL
1929 unsigned long flags,
1930 const struct vm_special_mapping *spec);
1931/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1932extern int install_special_mapping(struct mm_struct *mm,
1933 unsigned long addr, unsigned long len,
1934 unsigned long flags, struct page **pages);
1da177e4
LT
1935
1936extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1937
0165ab44 1938extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1939 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1940extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1941 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1942 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1943extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1944
1fcfd8db
ON
1945static inline unsigned long
1946do_mmap_pgoff(struct file *file, unsigned long addr,
1947 unsigned long len, unsigned long prot, unsigned long flags,
1948 unsigned long pgoff, unsigned long *populate)
1949{
1950 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1951}
1952
bebeb3d6
ML
1953#ifdef CONFIG_MMU
1954extern int __mm_populate(unsigned long addr, unsigned long len,
1955 int ignore_errors);
1956static inline void mm_populate(unsigned long addr, unsigned long len)
1957{
1958 /* Ignore errors */
1959 (void) __mm_populate(addr, len, 1);
1960}
1961#else
1962static inline void mm_populate(unsigned long addr, unsigned long len) {}
1963#endif
1964
e4eb1ff6
LT
1965/* These take the mm semaphore themselves */
1966extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1967extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1968extern unsigned long vm_mmap(struct file *, unsigned long,
1969 unsigned long, unsigned long,
1970 unsigned long, unsigned long);
1da177e4 1971
db4fbfb9
ML
1972struct vm_unmapped_area_info {
1973#define VM_UNMAPPED_AREA_TOPDOWN 1
1974 unsigned long flags;
1975 unsigned long length;
1976 unsigned long low_limit;
1977 unsigned long high_limit;
1978 unsigned long align_mask;
1979 unsigned long align_offset;
1980};
1981
1982extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1983extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1984
1985/*
1986 * Search for an unmapped address range.
1987 *
1988 * We are looking for a range that:
1989 * - does not intersect with any VMA;
1990 * - is contained within the [low_limit, high_limit) interval;
1991 * - is at least the desired size.
1992 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1993 */
1994static inline unsigned long
1995vm_unmapped_area(struct vm_unmapped_area_info *info)
1996{
cdd7875e 1997 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1998 return unmapped_area_topdown(info);
cdd7875e
BP
1999 else
2000 return unmapped_area(info);
db4fbfb9
ML
2001}
2002
85821aab 2003/* truncate.c */
1da177e4 2004extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2005extern void truncate_inode_pages_range(struct address_space *,
2006 loff_t lstart, loff_t lend);
91b0abe3 2007extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2008
2009/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2010extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2011extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2012extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2013
2014/* mm/page-writeback.c */
2015int write_one_page(struct page *page, int wait);
1cf6e7d8 2016void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2017
2018/* readahead.c */
2019#define VM_MAX_READAHEAD 128 /* kbytes */
2020#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2021
1da177e4 2022int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2023 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2024
2025void page_cache_sync_readahead(struct address_space *mapping,
2026 struct file_ra_state *ra,
2027 struct file *filp,
2028 pgoff_t offset,
2029 unsigned long size);
2030
2031void page_cache_async_readahead(struct address_space *mapping,
2032 struct file_ra_state *ra,
2033 struct file *filp,
2034 struct page *pg,
2035 pgoff_t offset,
2036 unsigned long size);
2037
d05f3169 2038/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2039extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2040
2041/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2042extern int expand_downwards(struct vm_area_struct *vma,
d11da519 2043 unsigned long address);
8ca3eb08 2044#if VM_GROWSUP
d11da519 2045extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2046#else
d11da519 2047 #define expand_upwards(vma, address) (0)
9ab88515 2048#endif
1da177e4
LT
2049
2050/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2051extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2052extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2053 struct vm_area_struct **pprev);
2054
2055/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2056 NULL if none. Assume start_addr < end_addr. */
2057static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2058{
2059 struct vm_area_struct * vma = find_vma(mm,start_addr);
2060
2061 if (vma && end_addr <= vma->vm_start)
2062 vma = NULL;
2063 return vma;
2064}
2065
2066static inline unsigned long vma_pages(struct vm_area_struct *vma)
2067{
2068 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2069}
2070
640708a2
PE
2071/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2072static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2073 unsigned long vm_start, unsigned long vm_end)
2074{
2075 struct vm_area_struct *vma = find_vma(mm, vm_start);
2076
2077 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2078 vma = NULL;
2079
2080 return vma;
2081}
2082
bad849b3 2083#ifdef CONFIG_MMU
804af2cf 2084pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2085void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2086#else
2087static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2088{
2089 return __pgprot(0);
2090}
64e45507
PF
2091static inline void vma_set_page_prot(struct vm_area_struct *vma)
2092{
2093 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2094}
bad849b3
DH
2095#endif
2096
5877231f 2097#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2098unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2099 unsigned long start, unsigned long end);
2100#endif
2101
deceb6cd 2102struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2103int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2104 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2105int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2106int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2107 unsigned long pfn);
423bad60
NP
2108int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2109 unsigned long pfn);
b4cbb197
LT
2110int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2111
deceb6cd 2112
240aadee
ML
2113struct page *follow_page_mask(struct vm_area_struct *vma,
2114 unsigned long address, unsigned int foll_flags,
2115 unsigned int *page_mask);
2116
2117static inline struct page *follow_page(struct vm_area_struct *vma,
2118 unsigned long address, unsigned int foll_flags)
2119{
2120 unsigned int unused_page_mask;
2121 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2122}
2123
deceb6cd
HD
2124#define FOLL_WRITE 0x01 /* check pte is writable */
2125#define FOLL_TOUCH 0x02 /* mark page accessed */
2126#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2127#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2128#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2129#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2130 * and return without waiting upon it */
84d33df2 2131#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2132#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2133#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2134#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2135#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2136#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2137#define FOLL_MLOCK 0x1000 /* lock present pages */
b56d2a75 2138#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2139
2f569afd 2140typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2141 void *data);
2142extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2143 unsigned long size, pte_fn_t fn, void *data);
2144
1da177e4 2145#ifdef CONFIG_PROC_FS
ab50b8ed 2146void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2147#else
ab50b8ed 2148static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2149 unsigned long flags, struct file *file, long pages)
2150{
44de9d0c 2151 mm->total_vm += pages;
1da177e4
LT
2152}
2153#endif /* CONFIG_PROC_FS */
2154
12d6f21e 2155#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2156extern bool _debug_pagealloc_enabled;
2157extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2158
2159static inline bool debug_pagealloc_enabled(void)
2160{
2161 return _debug_pagealloc_enabled;
2162}
2163
2164static inline void
2165kernel_map_pages(struct page *page, int numpages, int enable)
2166{
2167 if (!debug_pagealloc_enabled())
2168 return;
2169
2170 __kernel_map_pages(page, numpages, enable);
2171}
8a235efa
RW
2172#ifdef CONFIG_HIBERNATION
2173extern bool kernel_page_present(struct page *page);
2174#endif /* CONFIG_HIBERNATION */
12d6f21e 2175#else
1da177e4 2176static inline void
9858db50 2177kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2178#ifdef CONFIG_HIBERNATION
2179static inline bool kernel_page_present(struct page *page) { return true; }
2180#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2181#endif
2182
a6c19dfe 2183#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2184extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2185extern int in_gate_area_no_mm(unsigned long addr);
2186extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2187#else
a6c19dfe
AL
2188static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2189{
2190 return NULL;
2191}
2192static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2193static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2194{
2195 return 0;
2196}
1da177e4
LT
2197#endif /* __HAVE_ARCH_GATE_AREA */
2198
146732ce
JT
2199#ifdef CONFIG_SYSCTL
2200extern int sysctl_drop_caches;
8d65af78 2201int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2202 void __user *, size_t *, loff_t *);
146732ce
JT
2203#endif
2204
cb731d6c
VD
2205void drop_slab(void);
2206void drop_slab_node(int nid);
9d0243bc 2207
7a9166e3
LY
2208#ifndef CONFIG_MMU
2209#define randomize_va_space 0
2210#else
a62eaf15 2211extern int randomize_va_space;
7a9166e3 2212#endif
a62eaf15 2213
045e72ac 2214const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2215void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2216
9bdac914
YL
2217void sparse_mem_maps_populate_node(struct page **map_map,
2218 unsigned long pnum_begin,
2219 unsigned long pnum_end,
2220 unsigned long map_count,
2221 int nodeid);
2222
98f3cfc1 2223struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2224pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2225pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2226pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2227pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2228void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2229void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2230void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2231int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2232 int node);
2233int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2234void vmemmap_populate_print_last(void);
0197518c 2235#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2236void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2237#endif
46723bfa
YI
2238void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2239 unsigned long size);
6a46079c 2240
82ba011b
AK
2241enum mf_flags {
2242 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2243 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2244 MF_MUST_KILL = 1 << 2,
cf870c70 2245 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2246};
cd42f4a3 2247extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2248extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2249extern int unpoison_memory(unsigned long pfn);
ead07f6a 2250extern int get_hwpoison_page(struct page *page);
94bf4ec8 2251extern void put_hwpoison_page(struct page *page);
6a46079c
AK
2252extern int sysctl_memory_failure_early_kill;
2253extern int sysctl_memory_failure_recovery;
facb6011 2254extern void shake_page(struct page *p, int access);
293c07e3 2255extern atomic_long_t num_poisoned_pages;
facb6011 2256extern int soft_offline_page(struct page *page, int flags);
6a46079c 2257
cc637b17
XX
2258
2259/*
2260 * Error handlers for various types of pages.
2261 */
cc3e2af4 2262enum mf_result {
cc637b17
XX
2263 MF_IGNORED, /* Error: cannot be handled */
2264 MF_FAILED, /* Error: handling failed */
2265 MF_DELAYED, /* Will be handled later */
2266 MF_RECOVERED, /* Successfully recovered */
2267};
2268
2269enum mf_action_page_type {
2270 MF_MSG_KERNEL,
2271 MF_MSG_KERNEL_HIGH_ORDER,
2272 MF_MSG_SLAB,
2273 MF_MSG_DIFFERENT_COMPOUND,
2274 MF_MSG_POISONED_HUGE,
2275 MF_MSG_HUGE,
2276 MF_MSG_FREE_HUGE,
2277 MF_MSG_UNMAP_FAILED,
2278 MF_MSG_DIRTY_SWAPCACHE,
2279 MF_MSG_CLEAN_SWAPCACHE,
2280 MF_MSG_DIRTY_MLOCKED_LRU,
2281 MF_MSG_CLEAN_MLOCKED_LRU,
2282 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2283 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2284 MF_MSG_DIRTY_LRU,
2285 MF_MSG_CLEAN_LRU,
2286 MF_MSG_TRUNCATED_LRU,
2287 MF_MSG_BUDDY,
2288 MF_MSG_BUDDY_2ND,
2289 MF_MSG_UNKNOWN,
2290};
2291
47ad8475
AA
2292#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2293extern void clear_huge_page(struct page *page,
2294 unsigned long addr,
2295 unsigned int pages_per_huge_page);
2296extern void copy_user_huge_page(struct page *dst, struct page *src,
2297 unsigned long addr, struct vm_area_struct *vma,
2298 unsigned int pages_per_huge_page);
2299#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2300
e30825f1
JK
2301extern struct page_ext_operations debug_guardpage_ops;
2302extern struct page_ext_operations page_poisoning_ops;
2303
c0a32fc5
SG
2304#ifdef CONFIG_DEBUG_PAGEALLOC
2305extern unsigned int _debug_guardpage_minorder;
e30825f1 2306extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2307
2308static inline unsigned int debug_guardpage_minorder(void)
2309{
2310 return _debug_guardpage_minorder;
2311}
2312
e30825f1
JK
2313static inline bool debug_guardpage_enabled(void)
2314{
2315 return _debug_guardpage_enabled;
2316}
2317
c0a32fc5
SG
2318static inline bool page_is_guard(struct page *page)
2319{
e30825f1
JK
2320 struct page_ext *page_ext;
2321
2322 if (!debug_guardpage_enabled())
2323 return false;
2324
2325 page_ext = lookup_page_ext(page);
2326 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2327}
2328#else
2329static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2330static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2331static inline bool page_is_guard(struct page *page) { return false; }
2332#endif /* CONFIG_DEBUG_PAGEALLOC */
2333
f9872caf
CS
2334#if MAX_NUMNODES > 1
2335void __init setup_nr_node_ids(void);
2336#else
2337static inline void setup_nr_node_ids(void) {}
2338#endif
2339
1da177e4
LT
2340#endif /* __KERNEL__ */
2341#endif /* _LINUX_MM_H */