]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/mm.h
mm/gup: Mark all pages PageReferenced in generic get_user_pages_fast()
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
568c5fe5
LA
79#ifndef lm_alias
80#define lm_alias(x) __va(__pa_symbol(x))
81#endif
82
593befa6
DD
83/*
84 * To prevent common memory management code establishing
85 * a zero page mapping on a read fault.
86 * This macro should be defined within <asm/pgtable.h>.
87 * s390 does this to prevent multiplexing of hardware bits
88 * related to the physical page in case of virtualization.
89 */
90#ifndef mm_forbids_zeropage
91#define mm_forbids_zeropage(X) (0)
92#endif
93
ea606cf5
AR
94/*
95 * Default maximum number of active map areas, this limits the number of vmas
96 * per mm struct. Users can overwrite this number by sysctl but there is a
97 * problem.
98 *
99 * When a program's coredump is generated as ELF format, a section is created
100 * per a vma. In ELF, the number of sections is represented in unsigned short.
101 * This means the number of sections should be smaller than 65535 at coredump.
102 * Because the kernel adds some informative sections to a image of program at
103 * generating coredump, we need some margin. The number of extra sections is
104 * 1-3 now and depends on arch. We use "5" as safe margin, here.
105 *
106 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
107 * not a hard limit any more. Although some userspace tools can be surprised by
108 * that.
109 */
110#define MAPCOUNT_ELF_CORE_MARGIN (5)
111#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
112
113extern int sysctl_max_map_count;
114
c9b1d098 115extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 116extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 117
49f0ce5f
JM
118extern int sysctl_overcommit_memory;
119extern int sysctl_overcommit_ratio;
120extern unsigned long sysctl_overcommit_kbytes;
121
122extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
123 size_t *, loff_t *);
124extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126
1da177e4
LT
127#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
128
27ac792c
AR
129/* to align the pointer to the (next) page boundary */
130#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
131
0fa73b86 132/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 133#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 134
1da177e4
LT
135/*
136 * Linux kernel virtual memory manager primitives.
137 * The idea being to have a "virtual" mm in the same way
138 * we have a virtual fs - giving a cleaner interface to the
139 * mm details, and allowing different kinds of memory mappings
140 * (from shared memory to executable loading to arbitrary
141 * mmap() functions).
142 */
143
c43692e8
CL
144extern struct kmem_cache *vm_area_cachep;
145
1da177e4 146#ifndef CONFIG_MMU
8feae131
DH
147extern struct rb_root nommu_region_tree;
148extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
149
150extern unsigned int kobjsize(const void *objp);
151#endif
152
153/*
605d9288 154 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 155 * When changing, update also include/trace/events/mmflags.h
1da177e4 156 */
cc2383ec
KK
157#define VM_NONE 0x00000000
158
1da177e4
LT
159#define VM_READ 0x00000001 /* currently active flags */
160#define VM_WRITE 0x00000002
161#define VM_EXEC 0x00000004
162#define VM_SHARED 0x00000008
163
7e2cff42 164/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
165#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
166#define VM_MAYWRITE 0x00000020
167#define VM_MAYEXEC 0x00000040
168#define VM_MAYSHARE 0x00000080
169
170#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 171#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 172#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 173#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 174#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 175
1da177e4
LT
176#define VM_LOCKED 0x00002000
177#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
178
179 /* Used by sys_madvise() */
180#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
181#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
182
183#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
184#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 185#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 186#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 187#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 188#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 189#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 190#define VM_ARCH_2 0x02000000
0103bd16 191#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 192
d9104d1c
CG
193#ifdef CONFIG_MEM_SOFT_DIRTY
194# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
195#else
196# define VM_SOFTDIRTY 0
197#endif
198
b379d790 199#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
200#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
201#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 202#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 203
63c17fb8
DH
204#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
205#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
206#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
207#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
208#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
209#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
210#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
211#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
212#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
213#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
214
cc2383ec
KK
215#if defined(CONFIG_X86)
216# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
217#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
218# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
219# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
220# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
221# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
222# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
223#endif
cc2383ec
KK
224#elif defined(CONFIG_PPC)
225# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
226#elif defined(CONFIG_PARISC)
227# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
228#elif defined(CONFIG_METAG)
229# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
230#elif defined(CONFIG_IA64)
231# define VM_GROWSUP VM_ARCH_1
232#elif !defined(CONFIG_MMU)
233# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
234#endif
235
4aae7e43
QR
236#if defined(CONFIG_X86)
237/* MPX specific bounds table or bounds directory */
238# define VM_MPX VM_ARCH_2
239#endif
240
cc2383ec
KK
241#ifndef VM_GROWSUP
242# define VM_GROWSUP VM_NONE
243#endif
244
a8bef8ff
MG
245/* Bits set in the VMA until the stack is in its final location */
246#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
247
1da177e4
LT
248#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
249#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
250#endif
251
252#ifdef CONFIG_STACK_GROWSUP
30bdbb78 253#define VM_STACK VM_GROWSUP
1da177e4 254#else
30bdbb78 255#define VM_STACK VM_GROWSDOWN
1da177e4
LT
256#endif
257
30bdbb78
KK
258#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
259
b291f000 260/*
78f11a25
AA
261 * Special vmas that are non-mergable, non-mlock()able.
262 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 263 */
9050d7eb 264#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 265
a0715cc2
AT
266/* This mask defines which mm->def_flags a process can inherit its parent */
267#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
268
de60f5f1
EM
269/* This mask is used to clear all the VMA flags used by mlock */
270#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
271
1da177e4
LT
272/*
273 * mapping from the currently active vm_flags protection bits (the
274 * low four bits) to a page protection mask..
275 */
276extern pgprot_t protection_map[16];
277
d0217ac0 278#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
279#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
280#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
281#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
282#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
283#define FAULT_FLAG_TRIED 0x20 /* Second try */
284#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 285#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 286#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 287
282a8e03
RZ
288#define FAULT_FLAG_TRACE \
289 { FAULT_FLAG_WRITE, "WRITE" }, \
290 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
291 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
292 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
293 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
294 { FAULT_FLAG_TRIED, "TRIED" }, \
295 { FAULT_FLAG_USER, "USER" }, \
296 { FAULT_FLAG_REMOTE, "REMOTE" }, \
297 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
298
54cb8821 299/*
d0217ac0 300 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
301 * ->fault function. The vma's ->fault is responsible for returning a bitmask
302 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 303 *
c20cd45e
MH
304 * MM layer fills up gfp_mask for page allocations but fault handler might
305 * alter it if its implementation requires a different allocation context.
306 *
9b4bdd2f 307 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 308 */
d0217ac0 309struct vm_fault {
82b0f8c3 310 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 311 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 312 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 313 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 314 unsigned long address; /* Faulting virtual address */
82b0f8c3 315 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 316 * the 'address' */
a2d58167
DJ
317 pud_t *pud; /* Pointer to pud entry matching
318 * the 'address'
319 */
2994302b 320 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 321
3917048d
JK
322 struct page *cow_page; /* Page handler may use for COW fault */
323 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 324 struct page *page; /* ->fault handlers should return a
83c54070 325 * page here, unless VM_FAULT_NOPAGE
d0217ac0 326 * is set (which is also implied by
83c54070 327 * VM_FAULT_ERROR).
d0217ac0 328 */
82b0f8c3 329 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
330 pte_t *pte; /* Pointer to pte entry matching
331 * the 'address'. NULL if the page
332 * table hasn't been allocated.
333 */
334 spinlock_t *ptl; /* Page table lock.
335 * Protects pte page table if 'pte'
336 * is not NULL, otherwise pmd.
337 */
7267ec00
KS
338 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
339 * vm_ops->map_pages() calls
340 * alloc_set_pte() from atomic context.
341 * do_fault_around() pre-allocates
342 * page table to avoid allocation from
343 * atomic context.
344 */
54cb8821 345};
1da177e4 346
c791ace1
DJ
347/* page entry size for vm->huge_fault() */
348enum page_entry_size {
349 PE_SIZE_PTE = 0,
350 PE_SIZE_PMD,
351 PE_SIZE_PUD,
352};
353
1da177e4
LT
354/*
355 * These are the virtual MM functions - opening of an area, closing and
356 * unmapping it (needed to keep files on disk up-to-date etc), pointer
357 * to the functions called when a no-page or a wp-page exception occurs.
358 */
359struct vm_operations_struct {
360 void (*open)(struct vm_area_struct * area);
361 void (*close)(struct vm_area_struct * area);
5477e70a 362 int (*mremap)(struct vm_area_struct * area);
11bac800 363 int (*fault)(struct vm_fault *vmf);
c791ace1 364 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 365 void (*map_pages)(struct vm_fault *vmf,
bae473a4 366 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
367
368 /* notification that a previously read-only page is about to become
369 * writable, if an error is returned it will cause a SIGBUS */
11bac800 370 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 371
dd906184 372 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 373 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 374
28b2ee20
RR
375 /* called by access_process_vm when get_user_pages() fails, typically
376 * for use by special VMAs that can switch between memory and hardware
377 */
378 int (*access)(struct vm_area_struct *vma, unsigned long addr,
379 void *buf, int len, int write);
78d683e8
AL
380
381 /* Called by the /proc/PID/maps code to ask the vma whether it
382 * has a special name. Returning non-NULL will also cause this
383 * vma to be dumped unconditionally. */
384 const char *(*name)(struct vm_area_struct *vma);
385
1da177e4 386#ifdef CONFIG_NUMA
a6020ed7
LS
387 /*
388 * set_policy() op must add a reference to any non-NULL @new mempolicy
389 * to hold the policy upon return. Caller should pass NULL @new to
390 * remove a policy and fall back to surrounding context--i.e. do not
391 * install a MPOL_DEFAULT policy, nor the task or system default
392 * mempolicy.
393 */
1da177e4 394 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
395
396 /*
397 * get_policy() op must add reference [mpol_get()] to any policy at
398 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
399 * in mm/mempolicy.c will do this automatically.
400 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
401 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
402 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
403 * must return NULL--i.e., do not "fallback" to task or system default
404 * policy.
405 */
1da177e4
LT
406 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
407 unsigned long addr);
408#endif
667a0a06
DV
409 /*
410 * Called by vm_normal_page() for special PTEs to find the
411 * page for @addr. This is useful if the default behavior
412 * (using pte_page()) would not find the correct page.
413 */
414 struct page *(*find_special_page)(struct vm_area_struct *vma,
415 unsigned long addr);
1da177e4
LT
416};
417
418struct mmu_gather;
419struct inode;
420
349aef0b
AM
421#define page_private(page) ((page)->private)
422#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 423
5c7fb56e
DW
424#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
425static inline int pmd_devmap(pmd_t pmd)
426{
427 return 0;
428}
a00cc7d9
MW
429static inline int pud_devmap(pud_t pud)
430{
431 return 0;
432}
5c7fb56e
DW
433#endif
434
1da177e4
LT
435/*
436 * FIXME: take this include out, include page-flags.h in
437 * files which need it (119 of them)
438 */
439#include <linux/page-flags.h>
71e3aac0 440#include <linux/huge_mm.h>
1da177e4
LT
441
442/*
443 * Methods to modify the page usage count.
444 *
445 * What counts for a page usage:
446 * - cache mapping (page->mapping)
447 * - private data (page->private)
448 * - page mapped in a task's page tables, each mapping
449 * is counted separately
450 *
451 * Also, many kernel routines increase the page count before a critical
452 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
453 */
454
455/*
da6052f7 456 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 457 */
7c8ee9a8
NP
458static inline int put_page_testzero(struct page *page)
459{
fe896d18
JK
460 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
461 return page_ref_dec_and_test(page);
7c8ee9a8 462}
1da177e4
LT
463
464/*
7c8ee9a8
NP
465 * Try to grab a ref unless the page has a refcount of zero, return false if
466 * that is the case.
8e0861fa
AK
467 * This can be called when MMU is off so it must not access
468 * any of the virtual mappings.
1da177e4 469 */
7c8ee9a8
NP
470static inline int get_page_unless_zero(struct page *page)
471{
fe896d18 472 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 473}
1da177e4 474
53df8fdc 475extern int page_is_ram(unsigned long pfn);
124fe20d
DW
476
477enum {
478 REGION_INTERSECTS,
479 REGION_DISJOINT,
480 REGION_MIXED,
481};
482
1c29f25b
TK
483int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
484 unsigned long desc);
53df8fdc 485
48667e7a 486/* Support for virtually mapped pages */
b3bdda02
CL
487struct page *vmalloc_to_page(const void *addr);
488unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 489
0738c4bb
PM
490/*
491 * Determine if an address is within the vmalloc range
492 *
493 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
494 * is no special casing required.
495 */
bb00a789 496static inline bool is_vmalloc_addr(const void *x)
9e2779fa 497{
0738c4bb 498#ifdef CONFIG_MMU
9e2779fa
CL
499 unsigned long addr = (unsigned long)x;
500
501 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 502#else
bb00a789 503 return false;
8ca3ed87 504#endif
0738c4bb 505}
81ac3ad9
KH
506#ifdef CONFIG_MMU
507extern int is_vmalloc_or_module_addr(const void *x);
508#else
934831d0 509static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
510{
511 return 0;
512}
513#endif
9e2779fa 514
39f1f78d
AV
515extern void kvfree(const void *addr);
516
53f9263b
KS
517static inline atomic_t *compound_mapcount_ptr(struct page *page)
518{
519 return &page[1].compound_mapcount;
520}
521
522static inline int compound_mapcount(struct page *page)
523{
5f527c2b 524 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
525 page = compound_head(page);
526 return atomic_read(compound_mapcount_ptr(page)) + 1;
527}
528
70b50f94
AA
529/*
530 * The atomic page->_mapcount, starts from -1: so that transitions
531 * both from it and to it can be tracked, using atomic_inc_and_test
532 * and atomic_add_negative(-1).
533 */
22b751c3 534static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
535{
536 atomic_set(&(page)->_mapcount, -1);
537}
538
b20ce5e0
KS
539int __page_mapcount(struct page *page);
540
70b50f94
AA
541static inline int page_mapcount(struct page *page)
542{
1d148e21 543 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 544
b20ce5e0
KS
545 if (unlikely(PageCompound(page)))
546 return __page_mapcount(page);
547 return atomic_read(&page->_mapcount) + 1;
548}
549
550#ifdef CONFIG_TRANSPARENT_HUGEPAGE
551int total_mapcount(struct page *page);
6d0a07ed 552int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
553#else
554static inline int total_mapcount(struct page *page)
555{
556 return page_mapcount(page);
70b50f94 557}
6d0a07ed
AA
558static inline int page_trans_huge_mapcount(struct page *page,
559 int *total_mapcount)
560{
561 int mapcount = page_mapcount(page);
562 if (total_mapcount)
563 *total_mapcount = mapcount;
564 return mapcount;
565}
b20ce5e0 566#endif
70b50f94 567
b49af68f
CL
568static inline struct page *virt_to_head_page(const void *x)
569{
570 struct page *page = virt_to_page(x);
ccaafd7f 571
1d798ca3 572 return compound_head(page);
b49af68f
CL
573}
574
ddc58f27
KS
575void __put_page(struct page *page);
576
1d7ea732 577void put_pages_list(struct list_head *pages);
1da177e4 578
8dfcc9ba 579void split_page(struct page *page, unsigned int order);
8dfcc9ba 580
33f2ef89
AW
581/*
582 * Compound pages have a destructor function. Provide a
583 * prototype for that function and accessor functions.
f1e61557 584 * These are _only_ valid on the head of a compound page.
33f2ef89 585 */
f1e61557
KS
586typedef void compound_page_dtor(struct page *);
587
588/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
589enum compound_dtor_id {
590 NULL_COMPOUND_DTOR,
591 COMPOUND_PAGE_DTOR,
592#ifdef CONFIG_HUGETLB_PAGE
593 HUGETLB_PAGE_DTOR,
9a982250
KS
594#endif
595#ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
597#endif
598 NR_COMPOUND_DTORS,
599};
600extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
601
602static inline void set_compound_page_dtor(struct page *page,
f1e61557 603 enum compound_dtor_id compound_dtor)
33f2ef89 604{
f1e61557
KS
605 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
606 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
607}
608
609static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
610{
f1e61557
KS
611 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
612 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
613}
614
d00181b9 615static inline unsigned int compound_order(struct page *page)
d85f3385 616{
6d777953 617 if (!PageHead(page))
d85f3385 618 return 0;
e4b294c2 619 return page[1].compound_order;
d85f3385
CL
620}
621
f1e61557 622static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 623{
e4b294c2 624 page[1].compound_order = order;
d85f3385
CL
625}
626
9a982250
KS
627void free_compound_page(struct page *page);
628
3dece370 629#ifdef CONFIG_MMU
14fd403f
AA
630/*
631 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
632 * servicing faults for write access. In the normal case, do always want
633 * pte_mkwrite. But get_user_pages can cause write faults for mappings
634 * that do not have writing enabled, when used by access_process_vm.
635 */
636static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
637{
638 if (likely(vma->vm_flags & VM_WRITE))
639 pte = pte_mkwrite(pte);
640 return pte;
641}
8c6e50b0 642
82b0f8c3 643int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 644 struct page *page);
9118c0cb 645int finish_fault(struct vm_fault *vmf);
66a6197c 646int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 647#endif
14fd403f 648
1da177e4
LT
649/*
650 * Multiple processes may "see" the same page. E.g. for untouched
651 * mappings of /dev/null, all processes see the same page full of
652 * zeroes, and text pages of executables and shared libraries have
653 * only one copy in memory, at most, normally.
654 *
655 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
656 * page_count() == 0 means the page is free. page->lru is then used for
657 * freelist management in the buddy allocator.
da6052f7 658 * page_count() > 0 means the page has been allocated.
1da177e4 659 *
da6052f7
NP
660 * Pages are allocated by the slab allocator in order to provide memory
661 * to kmalloc and kmem_cache_alloc. In this case, the management of the
662 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
663 * unless a particular usage is carefully commented. (the responsibility of
664 * freeing the kmalloc memory is the caller's, of course).
1da177e4 665 *
da6052f7
NP
666 * A page may be used by anyone else who does a __get_free_page().
667 * In this case, page_count still tracks the references, and should only
668 * be used through the normal accessor functions. The top bits of page->flags
669 * and page->virtual store page management information, but all other fields
670 * are unused and could be used privately, carefully. The management of this
671 * page is the responsibility of the one who allocated it, and those who have
672 * subsequently been given references to it.
673 *
674 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
675 * managed by the Linux memory manager: I/O, buffers, swapping etc.
676 * The following discussion applies only to them.
677 *
da6052f7
NP
678 * A pagecache page contains an opaque `private' member, which belongs to the
679 * page's address_space. Usually, this is the address of a circular list of
680 * the page's disk buffers. PG_private must be set to tell the VM to call
681 * into the filesystem to release these pages.
1da177e4 682 *
da6052f7
NP
683 * A page may belong to an inode's memory mapping. In this case, page->mapping
684 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 685 * in units of PAGE_SIZE.
1da177e4 686 *
da6052f7
NP
687 * If pagecache pages are not associated with an inode, they are said to be
688 * anonymous pages. These may become associated with the swapcache, and in that
689 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 690 *
da6052f7
NP
691 * In either case (swapcache or inode backed), the pagecache itself holds one
692 * reference to the page. Setting PG_private should also increment the
693 * refcount. The each user mapping also has a reference to the page.
1da177e4 694 *
da6052f7
NP
695 * The pagecache pages are stored in a per-mapping radix tree, which is
696 * rooted at mapping->page_tree, and indexed by offset.
697 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
698 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 699 *
da6052f7 700 * All pagecache pages may be subject to I/O:
1da177e4
LT
701 * - inode pages may need to be read from disk,
702 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
703 * to be written back to the inode on disk,
704 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
705 * modified may need to be swapped out to swap space and (later) to be read
706 * back into memory.
1da177e4
LT
707 */
708
709/*
710 * The zone field is never updated after free_area_init_core()
711 * sets it, so none of the operations on it need to be atomic.
1da177e4 712 */
348f8b6c 713
90572890 714/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 715#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
716#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
717#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 718#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 719
348f8b6c 720/*
25985edc 721 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
722 * sections we define the shift as 0; that plus a 0 mask ensures
723 * the compiler will optimise away reference to them.
724 */
d41dee36
AW
725#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
726#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
727#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 728#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 729
bce54bbf
WD
730/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
731#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 732#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
733#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
734 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 735#else
89689ae7 736#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
737#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
738 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
739#endif
740
bd8029b6 741#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 742
9223b419
CL
743#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
744#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
745#endif
746
d41dee36
AW
747#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
748#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
749#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 750#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 751#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 752
33dd4e0e 753static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 754{
348f8b6c 755 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 756}
1da177e4 757
260ae3f7 758#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
759void get_zone_device_page(struct page *page);
760void put_zone_device_page(struct page *page);
260ae3f7
DW
761static inline bool is_zone_device_page(const struct page *page)
762{
763 return page_zonenum(page) == ZONE_DEVICE;
764}
765#else
3565fce3
DW
766static inline void get_zone_device_page(struct page *page)
767{
768}
769static inline void put_zone_device_page(struct page *page)
770{
771}
260ae3f7
DW
772static inline bool is_zone_device_page(const struct page *page)
773{
774 return false;
775}
776#endif
777
3565fce3
DW
778static inline void get_page(struct page *page)
779{
780 page = compound_head(page);
781 /*
782 * Getting a normal page or the head of a compound page
0139aa7b 783 * requires to already have an elevated page->_refcount.
3565fce3 784 */
fe896d18
JK
785 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
786 page_ref_inc(page);
3565fce3
DW
787
788 if (unlikely(is_zone_device_page(page)))
789 get_zone_device_page(page);
790}
791
792static inline void put_page(struct page *page)
793{
794 page = compound_head(page);
795
796 if (put_page_testzero(page))
797 __put_page(page);
798
799 if (unlikely(is_zone_device_page(page)))
800 put_zone_device_page(page);
801}
802
9127ab4f
CS
803#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
804#define SECTION_IN_PAGE_FLAGS
805#endif
806
89689ae7 807/*
7a8010cd
VB
808 * The identification function is mainly used by the buddy allocator for
809 * determining if two pages could be buddies. We are not really identifying
810 * the zone since we could be using the section number id if we do not have
811 * node id available in page flags.
812 * We only guarantee that it will return the same value for two combinable
813 * pages in a zone.
89689ae7 814 */
cb2b95e1
AW
815static inline int page_zone_id(struct page *page)
816{
89689ae7 817 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
818}
819
25ba77c1 820static inline int zone_to_nid(struct zone *zone)
89fa3024 821{
d5f541ed
CL
822#ifdef CONFIG_NUMA
823 return zone->node;
824#else
825 return 0;
826#endif
89fa3024
CL
827}
828
89689ae7 829#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 830extern int page_to_nid(const struct page *page);
89689ae7 831#else
33dd4e0e 832static inline int page_to_nid(const struct page *page)
d41dee36 833{
89689ae7 834 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 835}
89689ae7
CL
836#endif
837
57e0a030 838#ifdef CONFIG_NUMA_BALANCING
90572890 839static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 840{
90572890 841 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
842}
843
90572890 844static inline int cpupid_to_pid(int cpupid)
57e0a030 845{
90572890 846 return cpupid & LAST__PID_MASK;
57e0a030 847}
b795854b 848
90572890 849static inline int cpupid_to_cpu(int cpupid)
b795854b 850{
90572890 851 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
852}
853
90572890 854static inline int cpupid_to_nid(int cpupid)
b795854b 855{
90572890 856 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
857}
858
90572890 859static inline bool cpupid_pid_unset(int cpupid)
57e0a030 860{
90572890 861 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
862}
863
90572890 864static inline bool cpupid_cpu_unset(int cpupid)
b795854b 865{
90572890 866 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
867}
868
8c8a743c
PZ
869static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
870{
871 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
872}
873
874#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
875#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
876static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 877{
1ae71d03 878 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 879}
90572890
PZ
880
881static inline int page_cpupid_last(struct page *page)
882{
883 return page->_last_cpupid;
884}
885static inline void page_cpupid_reset_last(struct page *page)
b795854b 886{
1ae71d03 887 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
888}
889#else
90572890 890static inline int page_cpupid_last(struct page *page)
75980e97 891{
90572890 892 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
893}
894
90572890 895extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 896
90572890 897static inline void page_cpupid_reset_last(struct page *page)
75980e97 898{
09940a4f 899 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 900}
90572890
PZ
901#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
902#else /* !CONFIG_NUMA_BALANCING */
903static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 904{
90572890 905 return page_to_nid(page); /* XXX */
57e0a030
MG
906}
907
90572890 908static inline int page_cpupid_last(struct page *page)
57e0a030 909{
90572890 910 return page_to_nid(page); /* XXX */
57e0a030
MG
911}
912
90572890 913static inline int cpupid_to_nid(int cpupid)
b795854b
MG
914{
915 return -1;
916}
917
90572890 918static inline int cpupid_to_pid(int cpupid)
b795854b
MG
919{
920 return -1;
921}
922
90572890 923static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
924{
925 return -1;
926}
927
90572890
PZ
928static inline int cpu_pid_to_cpupid(int nid, int pid)
929{
930 return -1;
931}
932
933static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
934{
935 return 1;
936}
937
90572890 938static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
939{
940}
8c8a743c
PZ
941
942static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
943{
944 return false;
945}
90572890 946#endif /* CONFIG_NUMA_BALANCING */
57e0a030 947
33dd4e0e 948static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
949{
950 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
951}
952
75ef7184
MG
953static inline pg_data_t *page_pgdat(const struct page *page)
954{
955 return NODE_DATA(page_to_nid(page));
956}
957
9127ab4f 958#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
959static inline void set_page_section(struct page *page, unsigned long section)
960{
961 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
962 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
963}
964
aa462abe 965static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
966{
967 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
968}
308c05e3 969#endif
d41dee36 970
2f1b6248 971static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
972{
973 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
974 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
975}
2f1b6248 976
348f8b6c
DH
977static inline void set_page_node(struct page *page, unsigned long node)
978{
979 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
980 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 981}
89689ae7 982
2f1b6248 983static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 984 unsigned long node, unsigned long pfn)
1da177e4 985{
348f8b6c
DH
986 set_page_zone(page, zone);
987 set_page_node(page, node);
9127ab4f 988#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 989 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 990#endif
1da177e4
LT
991}
992
0610c25d
GT
993#ifdef CONFIG_MEMCG
994static inline struct mem_cgroup *page_memcg(struct page *page)
995{
996 return page->mem_cgroup;
997}
55779ec7
JW
998static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
999{
1000 WARN_ON_ONCE(!rcu_read_lock_held());
1001 return READ_ONCE(page->mem_cgroup);
1002}
0610c25d
GT
1003#else
1004static inline struct mem_cgroup *page_memcg(struct page *page)
1005{
1006 return NULL;
1007}
55779ec7
JW
1008static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1009{
1010 WARN_ON_ONCE(!rcu_read_lock_held());
1011 return NULL;
1012}
0610c25d
GT
1013#endif
1014
f6ac2354
CL
1015/*
1016 * Some inline functions in vmstat.h depend on page_zone()
1017 */
1018#include <linux/vmstat.h>
1019
33dd4e0e 1020static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1021{
1dff8083 1022 return page_to_virt(page);
1da177e4
LT
1023}
1024
1025#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1026#define HASHED_PAGE_VIRTUAL
1027#endif
1028
1029#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1030static inline void *page_address(const struct page *page)
1031{
1032 return page->virtual;
1033}
1034static inline void set_page_address(struct page *page, void *address)
1035{
1036 page->virtual = address;
1037}
1da177e4
LT
1038#define page_address_init() do { } while(0)
1039#endif
1040
1041#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1042void *page_address(const struct page *page);
1da177e4
LT
1043void set_page_address(struct page *page, void *virtual);
1044void page_address_init(void);
1045#endif
1046
1047#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1048#define page_address(page) lowmem_page_address(page)
1049#define set_page_address(page, address) do { } while(0)
1050#define page_address_init() do { } while(0)
1051#endif
1052
e39155ea
KS
1053extern void *page_rmapping(struct page *page);
1054extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1055extern struct address_space *page_mapping(struct page *page);
1da177e4 1056
f981c595
MG
1057extern struct address_space *__page_file_mapping(struct page *);
1058
1059static inline
1060struct address_space *page_file_mapping(struct page *page)
1061{
1062 if (unlikely(PageSwapCache(page)))
1063 return __page_file_mapping(page);
1064
1065 return page->mapping;
1066}
1067
f6ab1f7f
HY
1068extern pgoff_t __page_file_index(struct page *page);
1069
1da177e4
LT
1070/*
1071 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1072 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1073 */
1074static inline pgoff_t page_index(struct page *page)
1075{
1076 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1077 return __page_file_index(page);
1da177e4
LT
1078 return page->index;
1079}
1080
1aa8aea5 1081bool page_mapped(struct page *page);
bda807d4 1082struct address_space *page_mapping(struct page *page);
1da177e4 1083
2f064f34
MH
1084/*
1085 * Return true only if the page has been allocated with
1086 * ALLOC_NO_WATERMARKS and the low watermark was not
1087 * met implying that the system is under some pressure.
1088 */
1089static inline bool page_is_pfmemalloc(struct page *page)
1090{
1091 /*
1092 * Page index cannot be this large so this must be
1093 * a pfmemalloc page.
1094 */
1095 return page->index == -1UL;
1096}
1097
1098/*
1099 * Only to be called by the page allocator on a freshly allocated
1100 * page.
1101 */
1102static inline void set_page_pfmemalloc(struct page *page)
1103{
1104 page->index = -1UL;
1105}
1106
1107static inline void clear_page_pfmemalloc(struct page *page)
1108{
1109 page->index = 0;
1110}
1111
1da177e4
LT
1112/*
1113 * Different kinds of faults, as returned by handle_mm_fault().
1114 * Used to decide whether a process gets delivered SIGBUS or
1115 * just gets major/minor fault counters bumped up.
1116 */
d0217ac0 1117
83c54070
NP
1118#define VM_FAULT_OOM 0x0001
1119#define VM_FAULT_SIGBUS 0x0002
1120#define VM_FAULT_MAJOR 0x0004
1121#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1122#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1123#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1124#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1125
83c54070
NP
1126#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1127#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1128#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1129#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1130#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1da177e4 1131
aa50d3a7
AK
1132#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1133
33692f27
LT
1134#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1135 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1136 VM_FAULT_FALLBACK)
aa50d3a7 1137
282a8e03
RZ
1138#define VM_FAULT_RESULT_TRACE \
1139 { VM_FAULT_OOM, "OOM" }, \
1140 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1141 { VM_FAULT_MAJOR, "MAJOR" }, \
1142 { VM_FAULT_WRITE, "WRITE" }, \
1143 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1144 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1145 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1146 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1147 { VM_FAULT_LOCKED, "LOCKED" }, \
1148 { VM_FAULT_RETRY, "RETRY" }, \
1149 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1150 { VM_FAULT_DONE_COW, "DONE_COW" }
1151
aa50d3a7
AK
1152/* Encode hstate index for a hwpoisoned large page */
1153#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1154#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1155
1c0fe6e3
NP
1156/*
1157 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1158 */
1159extern void pagefault_out_of_memory(void);
1160
1da177e4
LT
1161#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1162
ddd588b5 1163/*
7bf02ea2 1164 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1165 * various contexts.
1166 */
4b59e6c4 1167#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1168
9af744d7 1169extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1170
7f43add4 1171extern bool can_do_mlock(void);
1da177e4
LT
1172extern int user_shm_lock(size_t, struct user_struct *);
1173extern void user_shm_unlock(size_t, struct user_struct *);
1174
1175/*
1176 * Parameter block passed down to zap_pte_range in exceptional cases.
1177 */
1178struct zap_details {
1da177e4
LT
1179 struct address_space *check_mapping; /* Check page->mapping if set */
1180 pgoff_t first_index; /* Lowest page->index to unmap */
1181 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1182};
1183
7e675137
NP
1184struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1185 pte_t pte);
28093f9f
GS
1186struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1187 pmd_t pmd);
7e675137 1188
c627f9cc
JS
1189int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1190 unsigned long size);
14f5ff5d 1191void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1192 unsigned long size);
4f74d2c8
LT
1193void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1194 unsigned long start, unsigned long end);
e6473092
MM
1195
1196/**
1197 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1198 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1199 * this handler should only handle pud_trans_huge() puds.
1200 * the pmd_entry or pte_entry callbacks will be used for
1201 * regular PUDs.
e6473092 1202 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1203 * this handler is required to be able to handle
1204 * pmd_trans_huge() pmds. They may simply choose to
1205 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1206 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1207 * @pte_hole: if set, called for each hole at all levels
5dc37642 1208 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1209 * @test_walk: caller specific callback function to determine whether
f7e2355f 1210 * we walk over the current vma or not. Returning 0
fafaa426
NH
1211 * value means "do page table walk over the current vma,"
1212 * and a negative one means "abort current page table walk
f7e2355f 1213 * right now." 1 means "skip the current vma."
fafaa426
NH
1214 * @mm: mm_struct representing the target process of page table walk
1215 * @vma: vma currently walked (NULL if walking outside vmas)
1216 * @private: private data for callbacks' usage
e6473092 1217 *
fafaa426 1218 * (see the comment on walk_page_range() for more details)
e6473092
MM
1219 */
1220struct mm_walk {
a00cc7d9
MW
1221 int (*pud_entry)(pud_t *pud, unsigned long addr,
1222 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1223 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1224 unsigned long next, struct mm_walk *walk);
1225 int (*pte_entry)(pte_t *pte, unsigned long addr,
1226 unsigned long next, struct mm_walk *walk);
1227 int (*pte_hole)(unsigned long addr, unsigned long next,
1228 struct mm_walk *walk);
1229 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1230 unsigned long addr, unsigned long next,
1231 struct mm_walk *walk);
fafaa426
NH
1232 int (*test_walk)(unsigned long addr, unsigned long next,
1233 struct mm_walk *walk);
2165009b 1234 struct mm_struct *mm;
fafaa426 1235 struct vm_area_struct *vma;
2165009b 1236 void *private;
e6473092
MM
1237};
1238
2165009b
DH
1239int walk_page_range(unsigned long addr, unsigned long end,
1240 struct mm_walk *walk);
900fc5f1 1241int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1242void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1243 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1244int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1245 struct vm_area_struct *vma);
1da177e4
LT
1246void unmap_mapping_range(struct address_space *mapping,
1247 loff_t const holebegin, loff_t const holelen, int even_cows);
09796395
RZ
1248int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1249 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1250int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1251 unsigned long *pfn);
d87fe660 1252int follow_phys(struct vm_area_struct *vma, unsigned long address,
1253 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1254int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1255 void *buf, int len, int write);
1da177e4
LT
1256
1257static inline void unmap_shared_mapping_range(struct address_space *mapping,
1258 loff_t const holebegin, loff_t const holelen)
1259{
1260 unmap_mapping_range(mapping, holebegin, holelen, 0);
1261}
1262
7caef267 1263extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1264extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1265void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1266void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1267int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1268int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1269int invalidate_inode_page(struct page *page);
1270
7ee1dd3f 1271#ifdef CONFIG_MMU
dcddffd4
KS
1272extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1273 unsigned int flags);
5c723ba5 1274extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1275 unsigned long address, unsigned int fault_flags,
1276 bool *unlocked);
7ee1dd3f 1277#else
dcddffd4
KS
1278static inline int handle_mm_fault(struct vm_area_struct *vma,
1279 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1280{
1281 /* should never happen if there's no MMU */
1282 BUG();
1283 return VM_FAULT_SIGBUS;
1284}
5c723ba5
PZ
1285static inline int fixup_user_fault(struct task_struct *tsk,
1286 struct mm_struct *mm, unsigned long address,
4a9e1cda 1287 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1288{
1289 /* should never happen if there's no MMU */
1290 BUG();
1291 return -EFAULT;
1292}
7ee1dd3f 1293#endif
f33ea7f4 1294
f307ab6d
LS
1295extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1296 unsigned int gup_flags);
5ddd36b9 1297extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1298 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1299extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1300 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1301
1e987790
DH
1302long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1303 unsigned long start, unsigned long nr_pages,
9beae1ea 1304 unsigned int gup_flags, struct page **pages,
5b56d49f 1305 struct vm_area_struct **vmas, int *locked);
c12d2da5 1306long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1307 unsigned int gup_flags, struct page **pages,
cde70140 1308 struct vm_area_struct **vmas);
c12d2da5 1309long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1310 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1311long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1312 struct page **pages, unsigned int gup_flags);
d2bf6be8
NP
1313int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1314 struct page **pages);
8025e5dd
JK
1315
1316/* Container for pinned pfns / pages */
1317struct frame_vector {
1318 unsigned int nr_allocated; /* Number of frames we have space for */
1319 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1320 bool got_ref; /* Did we pin pages by getting page ref? */
1321 bool is_pfns; /* Does array contain pages or pfns? */
1322 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1323 * pfns_vector_pages() or pfns_vector_pfns()
1324 * for access */
1325};
1326
1327struct frame_vector *frame_vector_create(unsigned int nr_frames);
1328void frame_vector_destroy(struct frame_vector *vec);
1329int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1330 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1331void put_vaddr_frames(struct frame_vector *vec);
1332int frame_vector_to_pages(struct frame_vector *vec);
1333void frame_vector_to_pfns(struct frame_vector *vec);
1334
1335static inline unsigned int frame_vector_count(struct frame_vector *vec)
1336{
1337 return vec->nr_frames;
1338}
1339
1340static inline struct page **frame_vector_pages(struct frame_vector *vec)
1341{
1342 if (vec->is_pfns) {
1343 int err = frame_vector_to_pages(vec);
1344
1345 if (err)
1346 return ERR_PTR(err);
1347 }
1348 return (struct page **)(vec->ptrs);
1349}
1350
1351static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1352{
1353 if (!vec->is_pfns)
1354 frame_vector_to_pfns(vec);
1355 return (unsigned long *)(vec->ptrs);
1356}
1357
18022c5d
MG
1358struct kvec;
1359int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1360 struct page **pages);
1361int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1362struct page *get_dump_page(unsigned long addr);
1da177e4 1363
cf9a2ae8 1364extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1365extern void do_invalidatepage(struct page *page, unsigned int offset,
1366 unsigned int length);
cf9a2ae8 1367
1da177e4 1368int __set_page_dirty_nobuffers(struct page *page);
76719325 1369int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1370int redirty_page_for_writepage(struct writeback_control *wbc,
1371 struct page *page);
62cccb8c 1372void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1373void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1374 struct bdi_writeback *wb);
b3c97528 1375int set_page_dirty(struct page *page);
1da177e4 1376int set_page_dirty_lock(struct page *page);
11f81bec 1377void cancel_dirty_page(struct page *page);
1da177e4 1378int clear_page_dirty_for_io(struct page *page);
b9ea2515 1379
a9090253 1380int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1381
39aa3cb3 1382/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1383static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1384{
1385 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1386}
1387
b5330628
ON
1388static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1389{
1390 return !vma->vm_ops;
1391}
1392
b0506e48
MR
1393#ifdef CONFIG_SHMEM
1394/*
1395 * The vma_is_shmem is not inline because it is used only by slow
1396 * paths in userfault.
1397 */
1398bool vma_is_shmem(struct vm_area_struct *vma);
1399#else
1400static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1401#endif
1402
a09a79f6
MP
1403static inline int stack_guard_page_start(struct vm_area_struct *vma,
1404 unsigned long addr)
1405{
1406 return (vma->vm_flags & VM_GROWSDOWN) &&
1407 (vma->vm_start == addr) &&
1408 !vma_growsdown(vma->vm_prev, addr);
1409}
1410
1411/* Is the vma a continuation of the stack vma below it? */
1412static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1413{
1414 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1415}
1416
1417static inline int stack_guard_page_end(struct vm_area_struct *vma,
1418 unsigned long addr)
1419{
1420 return (vma->vm_flags & VM_GROWSUP) &&
1421 (vma->vm_end == addr) &&
1422 !vma_growsup(vma->vm_next, addr);
1423}
1424
d17af505 1425int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1426
b6a2fea3
OW
1427extern unsigned long move_page_tables(struct vm_area_struct *vma,
1428 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1429 unsigned long new_addr, unsigned long len,
1430 bool need_rmap_locks);
7da4d641
PZ
1431extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1432 unsigned long end, pgprot_t newprot,
4b10e7d5 1433 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1434extern int mprotect_fixup(struct vm_area_struct *vma,
1435 struct vm_area_struct **pprev, unsigned long start,
1436 unsigned long end, unsigned long newflags);
1da177e4 1437
465a454f
PZ
1438/*
1439 * doesn't attempt to fault and will return short.
1440 */
1441int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1442 struct page **pages);
d559db08
KH
1443/*
1444 * per-process(per-mm_struct) statistics.
1445 */
d559db08
KH
1446static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1447{
69c97823
KK
1448 long val = atomic_long_read(&mm->rss_stat.count[member]);
1449
1450#ifdef SPLIT_RSS_COUNTING
1451 /*
1452 * counter is updated in asynchronous manner and may go to minus.
1453 * But it's never be expected number for users.
1454 */
1455 if (val < 0)
1456 val = 0;
172703b0 1457#endif
69c97823
KK
1458 return (unsigned long)val;
1459}
d559db08
KH
1460
1461static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1462{
172703b0 1463 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1464}
1465
1466static inline void inc_mm_counter(struct mm_struct *mm, int member)
1467{
172703b0 1468 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1469}
1470
1471static inline void dec_mm_counter(struct mm_struct *mm, int member)
1472{
172703b0 1473 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1474}
1475
eca56ff9
JM
1476/* Optimized variant when page is already known not to be PageAnon */
1477static inline int mm_counter_file(struct page *page)
1478{
1479 if (PageSwapBacked(page))
1480 return MM_SHMEMPAGES;
1481 return MM_FILEPAGES;
1482}
1483
1484static inline int mm_counter(struct page *page)
1485{
1486 if (PageAnon(page))
1487 return MM_ANONPAGES;
1488 return mm_counter_file(page);
1489}
1490
d559db08
KH
1491static inline unsigned long get_mm_rss(struct mm_struct *mm)
1492{
1493 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1494 get_mm_counter(mm, MM_ANONPAGES) +
1495 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1496}
1497
1498static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1499{
1500 return max(mm->hiwater_rss, get_mm_rss(mm));
1501}
1502
1503static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1504{
1505 return max(mm->hiwater_vm, mm->total_vm);
1506}
1507
1508static inline void update_hiwater_rss(struct mm_struct *mm)
1509{
1510 unsigned long _rss = get_mm_rss(mm);
1511
1512 if ((mm)->hiwater_rss < _rss)
1513 (mm)->hiwater_rss = _rss;
1514}
1515
1516static inline void update_hiwater_vm(struct mm_struct *mm)
1517{
1518 if (mm->hiwater_vm < mm->total_vm)
1519 mm->hiwater_vm = mm->total_vm;
1520}
1521
695f0559
PC
1522static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1523{
1524 mm->hiwater_rss = get_mm_rss(mm);
1525}
1526
d559db08
KH
1527static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1528 struct mm_struct *mm)
1529{
1530 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1531
1532 if (*maxrss < hiwater_rss)
1533 *maxrss = hiwater_rss;
1534}
1535
53bddb4e 1536#if defined(SPLIT_RSS_COUNTING)
05af2e10 1537void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1538#else
05af2e10 1539static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1540{
1541}
1542#endif
465a454f 1543
3565fce3
DW
1544#ifndef __HAVE_ARCH_PTE_DEVMAP
1545static inline int pte_devmap(pte_t pte)
1546{
1547 return 0;
1548}
1549#endif
1550
6d2329f8 1551int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1552
25ca1d6c
NK
1553extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1554 spinlock_t **ptl);
1555static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1556 spinlock_t **ptl)
1557{
1558 pte_t *ptep;
1559 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1560 return ptep;
1561}
c9cfcddf 1562
c2febafc
KS
1563#ifdef __PAGETABLE_P4D_FOLDED
1564static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1565 unsigned long address)
1566{
1567 return 0;
1568}
1569#else
1570int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1571#endif
1572
5f22df00 1573#ifdef __PAGETABLE_PUD_FOLDED
c2febafc 1574static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1575 unsigned long address)
1576{
1577 return 0;
1578}
1579#else
c2febafc 1580int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
5f22df00
NP
1581#endif
1582
2d2f5119 1583#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1584static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1585 unsigned long address)
1586{
1587 return 0;
1588}
dc6c9a35 1589
2d2f5119
KS
1590static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1591
dc6c9a35
KS
1592static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1593{
1594 return 0;
1595}
1596
1597static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1598static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1599
5f22df00 1600#else
1bb3630e 1601int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1602
2d2f5119
KS
1603static inline void mm_nr_pmds_init(struct mm_struct *mm)
1604{
1605 atomic_long_set(&mm->nr_pmds, 0);
1606}
1607
dc6c9a35
KS
1608static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1609{
1610 return atomic_long_read(&mm->nr_pmds);
1611}
1612
1613static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1614{
1615 atomic_long_inc(&mm->nr_pmds);
1616}
1617
1618static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1619{
1620 atomic_long_dec(&mm->nr_pmds);
1621}
5f22df00
NP
1622#endif
1623
3ed3a4f0 1624int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1625int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1626
1da177e4
LT
1627/*
1628 * The following ifdef needed to get the 4level-fixup.h header to work.
1629 * Remove it when 4level-fixup.h has been removed.
1630 */
1bb3630e 1631#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1632
1633#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1634static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1635 unsigned long address)
1636{
1637 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1638 NULL : p4d_offset(pgd, address);
1639}
1640
1641static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1642 unsigned long address)
1da177e4 1643{
c2febafc
KS
1644 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1645 NULL : pud_offset(p4d, address);
1da177e4 1646}
505a60e2 1647#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1648
1649static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1650{
1bb3630e
HD
1651 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1652 NULL: pmd_offset(pud, address);
1da177e4 1653}
1bb3630e
HD
1654#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1655
57c1ffce 1656#if USE_SPLIT_PTE_PTLOCKS
597d795a 1657#if ALLOC_SPLIT_PTLOCKS
b35f1819 1658void __init ptlock_cache_init(void);
539edb58
PZ
1659extern bool ptlock_alloc(struct page *page);
1660extern void ptlock_free(struct page *page);
1661
1662static inline spinlock_t *ptlock_ptr(struct page *page)
1663{
1664 return page->ptl;
1665}
597d795a 1666#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1667static inline void ptlock_cache_init(void)
1668{
1669}
1670
49076ec2
KS
1671static inline bool ptlock_alloc(struct page *page)
1672{
49076ec2
KS
1673 return true;
1674}
539edb58 1675
49076ec2
KS
1676static inline void ptlock_free(struct page *page)
1677{
49076ec2
KS
1678}
1679
1680static inline spinlock_t *ptlock_ptr(struct page *page)
1681{
539edb58 1682 return &page->ptl;
49076ec2 1683}
597d795a 1684#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1685
1686static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1687{
1688 return ptlock_ptr(pmd_page(*pmd));
1689}
1690
1691static inline bool ptlock_init(struct page *page)
1692{
1693 /*
1694 * prep_new_page() initialize page->private (and therefore page->ptl)
1695 * with 0. Make sure nobody took it in use in between.
1696 *
1697 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1698 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1699 */
309381fe 1700 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1701 if (!ptlock_alloc(page))
1702 return false;
1703 spin_lock_init(ptlock_ptr(page));
1704 return true;
1705}
1706
1707/* Reset page->mapping so free_pages_check won't complain. */
1708static inline void pte_lock_deinit(struct page *page)
1709{
1710 page->mapping = NULL;
1711 ptlock_free(page);
1712}
1713
57c1ffce 1714#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1715/*
1716 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1717 */
49076ec2
KS
1718static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1719{
1720 return &mm->page_table_lock;
1721}
b35f1819 1722static inline void ptlock_cache_init(void) {}
49076ec2
KS
1723static inline bool ptlock_init(struct page *page) { return true; }
1724static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1725#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1726
b35f1819
KS
1727static inline void pgtable_init(void)
1728{
1729 ptlock_cache_init();
1730 pgtable_cache_init();
1731}
1732
390f44e2 1733static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1734{
706874e9
VD
1735 if (!ptlock_init(page))
1736 return false;
2f569afd 1737 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1738 return true;
2f569afd
MS
1739}
1740
1741static inline void pgtable_page_dtor(struct page *page)
1742{
1743 pte_lock_deinit(page);
1744 dec_zone_page_state(page, NR_PAGETABLE);
1745}
1746
c74df32c
HD
1747#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1748({ \
4c21e2f2 1749 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1750 pte_t *__pte = pte_offset_map(pmd, address); \
1751 *(ptlp) = __ptl; \
1752 spin_lock(__ptl); \
1753 __pte; \
1754})
1755
1756#define pte_unmap_unlock(pte, ptl) do { \
1757 spin_unlock(ptl); \
1758 pte_unmap(pte); \
1759} while (0)
1760
3ed3a4f0
KS
1761#define pte_alloc(mm, pmd, address) \
1762 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1763
1764#define pte_alloc_map(mm, pmd, address) \
1765 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1766
c74df32c 1767#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1768 (pte_alloc(mm, pmd, address) ? \
1769 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1770
1bb3630e 1771#define pte_alloc_kernel(pmd, address) \
8ac1f832 1772 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1773 NULL: pte_offset_kernel(pmd, address))
1da177e4 1774
e009bb30
KS
1775#if USE_SPLIT_PMD_PTLOCKS
1776
634391ac
MS
1777static struct page *pmd_to_page(pmd_t *pmd)
1778{
1779 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1780 return virt_to_page((void *)((unsigned long) pmd & mask));
1781}
1782
e009bb30
KS
1783static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1784{
634391ac 1785 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1786}
1787
1788static inline bool pgtable_pmd_page_ctor(struct page *page)
1789{
e009bb30
KS
1790#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1791 page->pmd_huge_pte = NULL;
1792#endif
49076ec2 1793 return ptlock_init(page);
e009bb30
KS
1794}
1795
1796static inline void pgtable_pmd_page_dtor(struct page *page)
1797{
1798#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1799 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1800#endif
49076ec2 1801 ptlock_free(page);
e009bb30
KS
1802}
1803
634391ac 1804#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1805
1806#else
1807
9a86cb7b
KS
1808static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1809{
1810 return &mm->page_table_lock;
1811}
1812
e009bb30
KS
1813static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1814static inline void pgtable_pmd_page_dtor(struct page *page) {}
1815
c389a250 1816#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1817
e009bb30
KS
1818#endif
1819
9a86cb7b
KS
1820static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1821{
1822 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1823 spin_lock(ptl);
1824 return ptl;
1825}
1826
a00cc7d9
MW
1827/*
1828 * No scalability reason to split PUD locks yet, but follow the same pattern
1829 * as the PMD locks to make it easier if we decide to. The VM should not be
1830 * considered ready to switch to split PUD locks yet; there may be places
1831 * which need to be converted from page_table_lock.
1832 */
1833static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1834{
1835 return &mm->page_table_lock;
1836}
1837
1838static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1839{
1840 spinlock_t *ptl = pud_lockptr(mm, pud);
1841
1842 spin_lock(ptl);
1843 return ptl;
1844}
62906027 1845
a00cc7d9 1846extern void __init pagecache_init(void);
1da177e4 1847extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1848extern void free_area_init_node(int nid, unsigned long * zones_size,
1849 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1850extern void free_initmem(void);
1851
69afade7
JL
1852/*
1853 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1854 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1855 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1856 * Return pages freed into the buddy system.
1857 */
11199692 1858extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1859 int poison, char *s);
c3d5f5f0 1860
cfa11e08
JL
1861#ifdef CONFIG_HIGHMEM
1862/*
1863 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1864 * and totalram_pages.
1865 */
1866extern void free_highmem_page(struct page *page);
1867#endif
69afade7 1868
c3d5f5f0 1869extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1870extern void mem_init_print_info(const char *str);
69afade7 1871
4b50bcc7 1872extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1873
69afade7
JL
1874/* Free the reserved page into the buddy system, so it gets managed. */
1875static inline void __free_reserved_page(struct page *page)
1876{
1877 ClearPageReserved(page);
1878 init_page_count(page);
1879 __free_page(page);
1880}
1881
1882static inline void free_reserved_page(struct page *page)
1883{
1884 __free_reserved_page(page);
1885 adjust_managed_page_count(page, 1);
1886}
1887
1888static inline void mark_page_reserved(struct page *page)
1889{
1890 SetPageReserved(page);
1891 adjust_managed_page_count(page, -1);
1892}
1893
1894/*
1895 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1896 * The freed pages will be poisoned with pattern "poison" if it's within
1897 * range [0, UCHAR_MAX].
1898 * Return pages freed into the buddy system.
69afade7
JL
1899 */
1900static inline unsigned long free_initmem_default(int poison)
1901{
1902 extern char __init_begin[], __init_end[];
1903
11199692 1904 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1905 poison, "unused kernel");
1906}
1907
7ee3d4e8
JL
1908static inline unsigned long get_num_physpages(void)
1909{
1910 int nid;
1911 unsigned long phys_pages = 0;
1912
1913 for_each_online_node(nid)
1914 phys_pages += node_present_pages(nid);
1915
1916 return phys_pages;
1917}
1918
0ee332c1 1919#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1920/*
0ee332c1 1921 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1922 * zones, allocate the backing mem_map and account for memory holes in a more
1923 * architecture independent manner. This is a substitute for creating the
1924 * zone_sizes[] and zholes_size[] arrays and passing them to
1925 * free_area_init_node()
1926 *
1927 * An architecture is expected to register range of page frames backed by
0ee332c1 1928 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1929 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1930 * usage, an architecture is expected to do something like
1931 *
1932 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1933 * max_highmem_pfn};
1934 * for_each_valid_physical_page_range()
0ee332c1 1935 * memblock_add_node(base, size, nid)
c713216d
MG
1936 * free_area_init_nodes(max_zone_pfns);
1937 *
0ee332c1
TH
1938 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1939 * registered physical page range. Similarly
1940 * sparse_memory_present_with_active_regions() calls memory_present() for
1941 * each range when SPARSEMEM is enabled.
c713216d
MG
1942 *
1943 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1944 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1945 */
1946extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1947unsigned long node_map_pfn_alignment(void);
32996250
YL
1948unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1949 unsigned long end_pfn);
c713216d
MG
1950extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1951 unsigned long end_pfn);
1952extern void get_pfn_range_for_nid(unsigned int nid,
1953 unsigned long *start_pfn, unsigned long *end_pfn);
1954extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1955extern void free_bootmem_with_active_regions(int nid,
1956 unsigned long max_low_pfn);
1957extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1958
0ee332c1 1959#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1960
0ee332c1 1961#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1962 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1963static inline int __early_pfn_to_nid(unsigned long pfn,
1964 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1965{
1966 return 0;
1967}
1968#else
1969/* please see mm/page_alloc.c */
1970extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1971/* there is a per-arch backend function. */
8a942fde
MG
1972extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1973 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1974#endif
1975
0e0b864e 1976extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1977extern void memmap_init_zone(unsigned long, int, unsigned long,
1978 unsigned long, enum memmap_context);
bc75d33f 1979extern void setup_per_zone_wmarks(void);
1b79acc9 1980extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1981extern void mem_init(void);
8feae131 1982extern void __init mmap_init(void);
9af744d7 1983extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 1984extern long si_mem_available(void);
1da177e4
LT
1985extern void si_meminfo(struct sysinfo * val);
1986extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
1987#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1988extern unsigned long arch_reserved_kernel_pages(void);
1989#endif
1da177e4 1990
a8e99259
MH
1991extern __printf(3, 4)
1992void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 1993
e7c8d5c9 1994extern void setup_per_cpu_pageset(void);
e7c8d5c9 1995
112067f0 1996extern void zone_pcp_update(struct zone *zone);
340175b7 1997extern void zone_pcp_reset(struct zone *zone);
112067f0 1998
75f7ad8e
PS
1999/* page_alloc.c */
2000extern int min_free_kbytes;
795ae7a0 2001extern int watermark_scale_factor;
75f7ad8e 2002
8feae131 2003/* nommu.c */
33e5d769 2004extern atomic_long_t mmap_pages_allocated;
7e660872 2005extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2006
6b2dbba8 2007/* interval_tree.c */
6b2dbba8
ML
2008void vma_interval_tree_insert(struct vm_area_struct *node,
2009 struct rb_root *root);
9826a516
ML
2010void vma_interval_tree_insert_after(struct vm_area_struct *node,
2011 struct vm_area_struct *prev,
2012 struct rb_root *root);
6b2dbba8
ML
2013void vma_interval_tree_remove(struct vm_area_struct *node,
2014 struct rb_root *root);
2015struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2016 unsigned long start, unsigned long last);
2017struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2018 unsigned long start, unsigned long last);
2019
2020#define vma_interval_tree_foreach(vma, root, start, last) \
2021 for (vma = vma_interval_tree_iter_first(root, start, last); \
2022 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2023
bf181b9f
ML
2024void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2025 struct rb_root *root);
2026void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2027 struct rb_root *root);
2028struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2029 struct rb_root *root, unsigned long start, unsigned long last);
2030struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2031 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2032#ifdef CONFIG_DEBUG_VM_RB
2033void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2034#endif
bf181b9f
ML
2035
2036#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2037 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2038 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2039
1da177e4 2040/* mmap.c */
34b4e4aa 2041extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2042extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2043 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2044 struct vm_area_struct *expand);
2045static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2046 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2047{
2048 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2049}
1da177e4
LT
2050extern struct vm_area_struct *vma_merge(struct mm_struct *,
2051 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2052 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2053 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2054extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2055extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2056 unsigned long addr, int new_below);
2057extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2058 unsigned long addr, int new_below);
1da177e4
LT
2059extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2060extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2061 struct rb_node **, struct rb_node *);
a8fb5618 2062extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2063extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2064 unsigned long addr, unsigned long len, pgoff_t pgoff,
2065 bool *need_rmap_locks);
1da177e4 2066extern void exit_mmap(struct mm_struct *);
925d1c40 2067
9c599024
CG
2068static inline int check_data_rlimit(unsigned long rlim,
2069 unsigned long new,
2070 unsigned long start,
2071 unsigned long end_data,
2072 unsigned long start_data)
2073{
2074 if (rlim < RLIM_INFINITY) {
2075 if (((new - start) + (end_data - start_data)) > rlim)
2076 return -ENOSPC;
2077 }
2078
2079 return 0;
2080}
2081
7906d00c
AA
2082extern int mm_take_all_locks(struct mm_struct *mm);
2083extern void mm_drop_all_locks(struct mm_struct *mm);
2084
38646013
JS
2085extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2086extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2087extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2088
84638335
KK
2089extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2090extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2091
2eefd878
DS
2092extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2093 const struct vm_special_mapping *sm);
3935ed6a
SS
2094extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2095 unsigned long addr, unsigned long len,
a62c34bd
AL
2096 unsigned long flags,
2097 const struct vm_special_mapping *spec);
2098/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2099extern int install_special_mapping(struct mm_struct *mm,
2100 unsigned long addr, unsigned long len,
2101 unsigned long flags, struct page **pages);
1da177e4
LT
2102
2103extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2104
0165ab44 2105extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2106 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2107 struct list_head *uf);
1fcfd8db 2108extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2109 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2110 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2111 struct list_head *uf);
2112extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2113 struct list_head *uf);
1da177e4 2114
1fcfd8db
ON
2115static inline unsigned long
2116do_mmap_pgoff(struct file *file, unsigned long addr,
2117 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2118 unsigned long pgoff, unsigned long *populate,
2119 struct list_head *uf)
1fcfd8db 2120{
897ab3e0 2121 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2122}
2123
bebeb3d6
ML
2124#ifdef CONFIG_MMU
2125extern int __mm_populate(unsigned long addr, unsigned long len,
2126 int ignore_errors);
2127static inline void mm_populate(unsigned long addr, unsigned long len)
2128{
2129 /* Ignore errors */
2130 (void) __mm_populate(addr, len, 1);
2131}
2132#else
2133static inline void mm_populate(unsigned long addr, unsigned long len) {}
2134#endif
2135
e4eb1ff6 2136/* These take the mm semaphore themselves */
5d22fc25 2137extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2138extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2139extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2140extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2141 unsigned long, unsigned long,
2142 unsigned long, unsigned long);
1da177e4 2143
db4fbfb9
ML
2144struct vm_unmapped_area_info {
2145#define VM_UNMAPPED_AREA_TOPDOWN 1
2146 unsigned long flags;
2147 unsigned long length;
2148 unsigned long low_limit;
2149 unsigned long high_limit;
2150 unsigned long align_mask;
2151 unsigned long align_offset;
2152};
2153
2154extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2155extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2156
2157/*
2158 * Search for an unmapped address range.
2159 *
2160 * We are looking for a range that:
2161 * - does not intersect with any VMA;
2162 * - is contained within the [low_limit, high_limit) interval;
2163 * - is at least the desired size.
2164 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2165 */
2166static inline unsigned long
2167vm_unmapped_area(struct vm_unmapped_area_info *info)
2168{
cdd7875e 2169 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2170 return unmapped_area_topdown(info);
cdd7875e
BP
2171 else
2172 return unmapped_area(info);
db4fbfb9
ML
2173}
2174
85821aab 2175/* truncate.c */
1da177e4 2176extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2177extern void truncate_inode_pages_range(struct address_space *,
2178 loff_t lstart, loff_t lend);
91b0abe3 2179extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2180
2181/* generic vm_area_ops exported for stackable file systems */
11bac800 2182extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2183extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2184 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2185extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2186
2187/* mm/page-writeback.c */
2188int write_one_page(struct page *page, int wait);
1cf6e7d8 2189void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2190
2191/* readahead.c */
2192#define VM_MAX_READAHEAD 128 /* kbytes */
2193#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2194
1da177e4 2195int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2196 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2197
2198void page_cache_sync_readahead(struct address_space *mapping,
2199 struct file_ra_state *ra,
2200 struct file *filp,
2201 pgoff_t offset,
2202 unsigned long size);
2203
2204void page_cache_async_readahead(struct address_space *mapping,
2205 struct file_ra_state *ra,
2206 struct file *filp,
2207 struct page *pg,
2208 pgoff_t offset,
2209 unsigned long size);
2210
d05f3169 2211/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2212extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2213
2214/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2215extern int expand_downwards(struct vm_area_struct *vma,
2216 unsigned long address);
8ca3eb08 2217#if VM_GROWSUP
46dea3d0 2218extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2219#else
fee7e49d 2220 #define expand_upwards(vma, address) (0)
9ab88515 2221#endif
1da177e4
LT
2222
2223/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2224extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2225extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2226 struct vm_area_struct **pprev);
2227
2228/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2229 NULL if none. Assume start_addr < end_addr. */
2230static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2231{
2232 struct vm_area_struct * vma = find_vma(mm,start_addr);
2233
2234 if (vma && end_addr <= vma->vm_start)
2235 vma = NULL;
2236 return vma;
2237}
2238
2239static inline unsigned long vma_pages(struct vm_area_struct *vma)
2240{
2241 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2242}
2243
640708a2
PE
2244/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2245static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2246 unsigned long vm_start, unsigned long vm_end)
2247{
2248 struct vm_area_struct *vma = find_vma(mm, vm_start);
2249
2250 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2251 vma = NULL;
2252
2253 return vma;
2254}
2255
bad849b3 2256#ifdef CONFIG_MMU
804af2cf 2257pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2258void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2259#else
2260static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2261{
2262 return __pgprot(0);
2263}
64e45507
PF
2264static inline void vma_set_page_prot(struct vm_area_struct *vma)
2265{
2266 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2267}
bad849b3
DH
2268#endif
2269
5877231f 2270#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2271unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2272 unsigned long start, unsigned long end);
2273#endif
2274
deceb6cd 2275struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2276int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2277 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2278int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2279int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2280 unsigned long pfn);
1745cbc5
AL
2281int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2282 unsigned long pfn, pgprot_t pgprot);
423bad60 2283int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2284 pfn_t pfn);
b4cbb197
LT
2285int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2286
deceb6cd 2287
240aadee
ML
2288struct page *follow_page_mask(struct vm_area_struct *vma,
2289 unsigned long address, unsigned int foll_flags,
2290 unsigned int *page_mask);
2291
2292static inline struct page *follow_page(struct vm_area_struct *vma,
2293 unsigned long address, unsigned int foll_flags)
2294{
2295 unsigned int unused_page_mask;
2296 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2297}
2298
deceb6cd
HD
2299#define FOLL_WRITE 0x01 /* check pte is writable */
2300#define FOLL_TOUCH 0x02 /* mark page accessed */
2301#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2302#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2303#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2304#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2305 * and return without waiting upon it */
84d33df2 2306#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2307#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2308#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2309#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2310#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2311#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2312#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2313#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2314#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2315
2f569afd 2316typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2317 void *data);
2318extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2319 unsigned long size, pte_fn_t fn, void *data);
2320
1da177e4 2321
8823b1db
LA
2322#ifdef CONFIG_PAGE_POISONING
2323extern bool page_poisoning_enabled(void);
2324extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2325extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2326#else
2327static inline bool page_poisoning_enabled(void) { return false; }
2328static inline void kernel_poison_pages(struct page *page, int numpages,
2329 int enable) { }
1414c7f4 2330static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2331#endif
2332
12d6f21e 2333#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2334extern bool _debug_pagealloc_enabled;
2335extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2336
2337static inline bool debug_pagealloc_enabled(void)
2338{
2339 return _debug_pagealloc_enabled;
2340}
2341
2342static inline void
2343kernel_map_pages(struct page *page, int numpages, int enable)
2344{
2345 if (!debug_pagealloc_enabled())
2346 return;
2347
2348 __kernel_map_pages(page, numpages, enable);
2349}
8a235efa
RW
2350#ifdef CONFIG_HIBERNATION
2351extern bool kernel_page_present(struct page *page);
40b44137
JK
2352#endif /* CONFIG_HIBERNATION */
2353#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2354static inline void
9858db50 2355kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2356#ifdef CONFIG_HIBERNATION
2357static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2358#endif /* CONFIG_HIBERNATION */
2359static inline bool debug_pagealloc_enabled(void)
2360{
2361 return false;
2362}
2363#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2364
a6c19dfe 2365#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2366extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2367extern int in_gate_area_no_mm(unsigned long addr);
2368extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2369#else
a6c19dfe
AL
2370static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2371{
2372 return NULL;
2373}
2374static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2375static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2376{
2377 return 0;
2378}
1da177e4
LT
2379#endif /* __HAVE_ARCH_GATE_AREA */
2380
44a70ade
MH
2381extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2382
146732ce
JT
2383#ifdef CONFIG_SYSCTL
2384extern int sysctl_drop_caches;
8d65af78 2385int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2386 void __user *, size_t *, loff_t *);
146732ce
JT
2387#endif
2388
cb731d6c
VD
2389void drop_slab(void);
2390void drop_slab_node(int nid);
9d0243bc 2391
7a9166e3
LY
2392#ifndef CONFIG_MMU
2393#define randomize_va_space 0
2394#else
a62eaf15 2395extern int randomize_va_space;
7a9166e3 2396#endif
a62eaf15 2397
045e72ac 2398const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2399void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2400
9bdac914
YL
2401void sparse_mem_maps_populate_node(struct page **map_map,
2402 unsigned long pnum_begin,
2403 unsigned long pnum_end,
2404 unsigned long map_count,
2405 int nodeid);
2406
98f3cfc1 2407struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111 2408pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2409p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2410pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2411pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2412pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2413void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2414struct vmem_altmap;
2415void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2416 struct vmem_altmap *altmap);
2417static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2418{
2419 return __vmemmap_alloc_block_buf(size, node, NULL);
2420}
2421
8f6aac41 2422void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2423int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2424 int node);
2425int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2426void vmemmap_populate_print_last(void);
0197518c 2427#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2428void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2429#endif
46723bfa
YI
2430void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2431 unsigned long size);
6a46079c 2432
82ba011b
AK
2433enum mf_flags {
2434 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2435 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2436 MF_MUST_KILL = 1 << 2,
cf870c70 2437 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2438};
cd42f4a3 2439extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2440extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2441extern int unpoison_memory(unsigned long pfn);
ead07f6a 2442extern int get_hwpoison_page(struct page *page);
4e41a30c 2443#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2444extern int sysctl_memory_failure_early_kill;
2445extern int sysctl_memory_failure_recovery;
facb6011 2446extern void shake_page(struct page *p, int access);
293c07e3 2447extern atomic_long_t num_poisoned_pages;
facb6011 2448extern int soft_offline_page(struct page *page, int flags);
6a46079c 2449
cc637b17
XX
2450
2451/*
2452 * Error handlers for various types of pages.
2453 */
cc3e2af4 2454enum mf_result {
cc637b17
XX
2455 MF_IGNORED, /* Error: cannot be handled */
2456 MF_FAILED, /* Error: handling failed */
2457 MF_DELAYED, /* Will be handled later */
2458 MF_RECOVERED, /* Successfully recovered */
2459};
2460
2461enum mf_action_page_type {
2462 MF_MSG_KERNEL,
2463 MF_MSG_KERNEL_HIGH_ORDER,
2464 MF_MSG_SLAB,
2465 MF_MSG_DIFFERENT_COMPOUND,
2466 MF_MSG_POISONED_HUGE,
2467 MF_MSG_HUGE,
2468 MF_MSG_FREE_HUGE,
2469 MF_MSG_UNMAP_FAILED,
2470 MF_MSG_DIRTY_SWAPCACHE,
2471 MF_MSG_CLEAN_SWAPCACHE,
2472 MF_MSG_DIRTY_MLOCKED_LRU,
2473 MF_MSG_CLEAN_MLOCKED_LRU,
2474 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2475 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2476 MF_MSG_DIRTY_LRU,
2477 MF_MSG_CLEAN_LRU,
2478 MF_MSG_TRUNCATED_LRU,
2479 MF_MSG_BUDDY,
2480 MF_MSG_BUDDY_2ND,
2481 MF_MSG_UNKNOWN,
2482};
2483
47ad8475
AA
2484#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2485extern void clear_huge_page(struct page *page,
2486 unsigned long addr,
2487 unsigned int pages_per_huge_page);
2488extern void copy_user_huge_page(struct page *dst, struct page *src,
2489 unsigned long addr, struct vm_area_struct *vma,
2490 unsigned int pages_per_huge_page);
fa4d75c1
MK
2491extern long copy_huge_page_from_user(struct page *dst_page,
2492 const void __user *usr_src,
810a56b9
MK
2493 unsigned int pages_per_huge_page,
2494 bool allow_pagefault);
47ad8475
AA
2495#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2496
e30825f1
JK
2497extern struct page_ext_operations debug_guardpage_ops;
2498extern struct page_ext_operations page_poisoning_ops;
2499
c0a32fc5
SG
2500#ifdef CONFIG_DEBUG_PAGEALLOC
2501extern unsigned int _debug_guardpage_minorder;
e30825f1 2502extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2503
2504static inline unsigned int debug_guardpage_minorder(void)
2505{
2506 return _debug_guardpage_minorder;
2507}
2508
e30825f1
JK
2509static inline bool debug_guardpage_enabled(void)
2510{
2511 return _debug_guardpage_enabled;
2512}
2513
c0a32fc5
SG
2514static inline bool page_is_guard(struct page *page)
2515{
e30825f1
JK
2516 struct page_ext *page_ext;
2517
2518 if (!debug_guardpage_enabled())
2519 return false;
2520
2521 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2522 if (unlikely(!page_ext))
2523 return false;
2524
e30825f1 2525 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2526}
2527#else
2528static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2529static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2530static inline bool page_is_guard(struct page *page) { return false; }
2531#endif /* CONFIG_DEBUG_PAGEALLOC */
2532
f9872caf
CS
2533#if MAX_NUMNODES > 1
2534void __init setup_nr_node_ids(void);
2535#else
2536static inline void setup_nr_node_ids(void) {}
2537#endif
2538
1da177e4
LT
2539#endif /* __KERNEL__ */
2540#endif /* _LINUX_MM_H */