]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/mmu_notifier.h
Merge tag 'nfs-for-5.2-4' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-eoan-kernel.git] / include / linux / mmu_notifier.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
cddb8a5c
AA
2#ifndef _LINUX_MMU_NOTIFIER_H
3#define _LINUX_MMU_NOTIFIER_H
4
5#include <linux/list.h>
6#include <linux/spinlock.h>
7#include <linux/mm_types.h>
21a92735 8#include <linux/srcu.h>
cddb8a5c
AA
9
10struct mmu_notifier;
11struct mmu_notifier_ops;
12
d87f055b
JG
13/**
14 * enum mmu_notifier_event - reason for the mmu notifier callback
15 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
16 * move the range
17 *
18 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
19 * madvise() or replacing a page by another one, ...).
20 *
21 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
22 * ie using the vma access permission (vm_page_prot) to update the whole range
23 * is enough no need to inspect changes to the CPU page table (mprotect()
24 * syscall)
25 *
26 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
27 * pages in the range so to mirror those changes the user must inspect the CPU
28 * page table (from the end callback).
29 *
30 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
31 * access flags). User should soft dirty the page in the end callback to make
32 * sure that anyone relying on soft dirtyness catch pages that might be written
33 * through non CPU mappings.
34 */
35enum mmu_notifier_event {
36 MMU_NOTIFY_UNMAP = 0,
37 MMU_NOTIFY_CLEAR,
38 MMU_NOTIFY_PROTECTION_VMA,
39 MMU_NOTIFY_PROTECTION_PAGE,
40 MMU_NOTIFY_SOFT_DIRTY,
41};
42
cddb8a5c
AA
43#ifdef CONFIG_MMU_NOTIFIER
44
45/*
46 * The mmu notifier_mm structure is allocated and installed in
47 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
48 * critical section and it's released only when mm_count reaches zero
49 * in mmdrop().
50 */
51struct mmu_notifier_mm {
52 /* all mmu notifiers registerd in this mm are queued in this list */
53 struct hlist_head list;
54 /* to serialize the list modifications and hlist_unhashed */
55 spinlock_t lock;
56};
57
27560ee9
JG
58#define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
59
5d6527a7 60struct mmu_notifier_range {
bf198b2b 61 struct vm_area_struct *vma;
5d6527a7
JG
62 struct mm_struct *mm;
63 unsigned long start;
64 unsigned long end;
27560ee9 65 unsigned flags;
bf198b2b 66 enum mmu_notifier_event event;
5d6527a7
JG
67};
68
cddb8a5c
AA
69struct mmu_notifier_ops {
70 /*
71 * Called either by mmu_notifier_unregister or when the mm is
72 * being destroyed by exit_mmap, always before all pages are
73 * freed. This can run concurrently with other mmu notifier
74 * methods (the ones invoked outside the mm context) and it
75 * should tear down all secondary mmu mappings and freeze the
76 * secondary mmu. If this method isn't implemented you've to
77 * be sure that nothing could possibly write to the pages
78 * through the secondary mmu by the time the last thread with
79 * tsk->mm == mm exits.
80 *
81 * As side note: the pages freed after ->release returns could
82 * be immediately reallocated by the gart at an alias physical
83 * address with a different cache model, so if ->release isn't
84 * implemented because all _software_ driven memory accesses
85 * through the secondary mmu are terminated by the time the
86 * last thread of this mm quits, you've also to be sure that
87 * speculative _hardware_ operations can't allocate dirty
88 * cachelines in the cpu that could not be snooped and made
89 * coherent with the other read and write operations happening
90 * through the gart alias address, so leading to memory
91 * corruption.
92 */
93 void (*release)(struct mmu_notifier *mn,
94 struct mm_struct *mm);
95
96 /*
97 * clear_flush_young is called after the VM is
98 * test-and-clearing the young/accessed bitflag in the
99 * pte. This way the VM will provide proper aging to the
100 * accesses to the page through the secondary MMUs and not
101 * only to the ones through the Linux pte.
57128468
ALC
102 * Start-end is necessary in case the secondary MMU is mapping the page
103 * at a smaller granularity than the primary MMU.
cddb8a5c
AA
104 */
105 int (*clear_flush_young)(struct mmu_notifier *mn,
106 struct mm_struct *mm,
57128468
ALC
107 unsigned long start,
108 unsigned long end);
cddb8a5c 109
1d7715c6
VD
110 /*
111 * clear_young is a lightweight version of clear_flush_young. Like the
112 * latter, it is supposed to test-and-clear the young/accessed bitflag
113 * in the secondary pte, but it may omit flushing the secondary tlb.
114 */
115 int (*clear_young)(struct mmu_notifier *mn,
116 struct mm_struct *mm,
117 unsigned long start,
118 unsigned long end);
119
8ee53820
AA
120 /*
121 * test_young is called to check the young/accessed bitflag in
122 * the secondary pte. This is used to know if the page is
123 * frequently used without actually clearing the flag or tearing
124 * down the secondary mapping on the page.
125 */
126 int (*test_young)(struct mmu_notifier *mn,
127 struct mm_struct *mm,
128 unsigned long address);
129
828502d3
IE
130 /*
131 * change_pte is called in cases that pte mapping to page is changed:
132 * for example, when ksm remaps pte to point to a new shared page.
133 */
134 void (*change_pte)(struct mmu_notifier *mn,
135 struct mm_struct *mm,
136 unsigned long address,
137 pte_t pte);
138
cddb8a5c
AA
139 /*
140 * invalidate_range_start() and invalidate_range_end() must be
141 * paired and are called only when the mmap_sem and/or the
0f0a327f
JR
142 * locks protecting the reverse maps are held. If the subsystem
143 * can't guarantee that no additional references are taken to
144 * the pages in the range, it has to implement the
145 * invalidate_range() notifier to remove any references taken
146 * after invalidate_range_start().
cddb8a5c
AA
147 *
148 * Invalidation of multiple concurrent ranges may be
149 * optionally permitted by the driver. Either way the
150 * establishment of sptes is forbidden in the range passed to
151 * invalidate_range_begin/end for the whole duration of the
152 * invalidate_range_begin/end critical section.
153 *
154 * invalidate_range_start() is called when all pages in the
155 * range are still mapped and have at least a refcount of one.
156 *
157 * invalidate_range_end() is called when all pages in the
158 * range have been unmapped and the pages have been freed by
159 * the VM.
160 *
161 * The VM will remove the page table entries and potentially
162 * the page between invalidate_range_start() and
163 * invalidate_range_end(). If the page must not be freed
164 * because of pending I/O or other circumstances then the
165 * invalidate_range_start() callback (or the initial mapping
166 * by the driver) must make sure that the refcount is kept
167 * elevated.
168 *
169 * If the driver increases the refcount when the pages are
170 * initially mapped into an address space then either
171 * invalidate_range_start() or invalidate_range_end() may
172 * decrease the refcount. If the refcount is decreased on
173 * invalidate_range_start() then the VM can free pages as page
174 * table entries are removed. If the refcount is only
175 * droppped on invalidate_range_end() then the driver itself
176 * will drop the last refcount but it must take care to flush
177 * any secondary tlb before doing the final free on the
178 * page. Pages will no longer be referenced by the linux
179 * address space but may still be referenced by sptes until
180 * the last refcount is dropped.
5ff7091f 181 *
93065ac7
MH
182 * If blockable argument is set to false then the callback cannot
183 * sleep and has to return with -EAGAIN. 0 should be returned
33490af3
MH
184 * otherwise. Please note that if invalidate_range_start approves
185 * a non-blocking behavior then the same applies to
186 * invalidate_range_end.
93065ac7 187 *
cddb8a5c 188 */
93065ac7 189 int (*invalidate_range_start)(struct mmu_notifier *mn,
5d6527a7 190 const struct mmu_notifier_range *range);
cddb8a5c 191 void (*invalidate_range_end)(struct mmu_notifier *mn,
5d6527a7 192 const struct mmu_notifier_range *range);
0f0a327f
JR
193
194 /*
195 * invalidate_range() is either called between
196 * invalidate_range_start() and invalidate_range_end() when the
197 * VM has to free pages that where unmapped, but before the
198 * pages are actually freed, or outside of _start()/_end() when
199 * a (remote) TLB is necessary.
200 *
201 * If invalidate_range() is used to manage a non-CPU TLB with
202 * shared page-tables, it not necessary to implement the
203 * invalidate_range_start()/end() notifiers, as
204 * invalidate_range() alread catches the points in time when an
0f10851e 205 * external TLB range needs to be flushed. For more in depth
ad56b738 206 * discussion on this see Documentation/vm/mmu_notifier.rst
0f0a327f 207 *
0f0a327f
JR
208 * Note that this function might be called with just a sub-range
209 * of what was passed to invalidate_range_start()/end(), if
210 * called between those functions.
211 */
212 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
213 unsigned long start, unsigned long end);
cddb8a5c
AA
214};
215
216/*
217 * The notifier chains are protected by mmap_sem and/or the reverse map
218 * semaphores. Notifier chains are only changed when all reverse maps and
219 * the mmap_sem locks are taken.
220 *
221 * Therefore notifier chains can only be traversed when either
222 *
223 * 1. mmap_sem is held.
c8c06efa 224 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
cddb8a5c
AA
225 * 3. No other concurrent thread can access the list (release)
226 */
227struct mmu_notifier {
228 struct hlist_node hlist;
229 const struct mmu_notifier_ops *ops;
230};
231
232static inline int mm_has_notifiers(struct mm_struct *mm)
233{
234 return unlikely(mm->mmu_notifier_mm);
235}
236
237extern int mmu_notifier_register(struct mmu_notifier *mn,
238 struct mm_struct *mm);
239extern int __mmu_notifier_register(struct mmu_notifier *mn,
240 struct mm_struct *mm);
241extern void mmu_notifier_unregister(struct mmu_notifier *mn,
242 struct mm_struct *mm);
b972216e
PZ
243extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
244 struct mm_struct *mm);
cddb8a5c
AA
245extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
246extern void __mmu_notifier_release(struct mm_struct *mm);
247extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
57128468
ALC
248 unsigned long start,
249 unsigned long end);
1d7715c6
VD
250extern int __mmu_notifier_clear_young(struct mm_struct *mm,
251 unsigned long start,
252 unsigned long end);
8ee53820
AA
253extern int __mmu_notifier_test_young(struct mm_struct *mm,
254 unsigned long address);
828502d3
IE
255extern void __mmu_notifier_change_pte(struct mm_struct *mm,
256 unsigned long address, pte_t pte);
ac46d4f3
JG
257extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
258extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
4645b9fe 259 bool only_end);
0f0a327f
JR
260extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
261 unsigned long start, unsigned long end);
c6d23413
JG
262extern bool
263mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
cddb8a5c 264
4a83bfe9
JG
265static inline bool
266mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
267{
27560ee9 268 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
4a83bfe9
JG
269}
270
cddb8a5c
AA
271static inline void mmu_notifier_release(struct mm_struct *mm)
272{
273 if (mm_has_notifiers(mm))
274 __mmu_notifier_release(mm);
275}
276
277static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
57128468
ALC
278 unsigned long start,
279 unsigned long end)
cddb8a5c
AA
280{
281 if (mm_has_notifiers(mm))
57128468 282 return __mmu_notifier_clear_flush_young(mm, start, end);
cddb8a5c
AA
283 return 0;
284}
285
1d7715c6
VD
286static inline int mmu_notifier_clear_young(struct mm_struct *mm,
287 unsigned long start,
288 unsigned long end)
289{
290 if (mm_has_notifiers(mm))
291 return __mmu_notifier_clear_young(mm, start, end);
292 return 0;
293}
294
8ee53820
AA
295static inline int mmu_notifier_test_young(struct mm_struct *mm,
296 unsigned long address)
297{
298 if (mm_has_notifiers(mm))
299 return __mmu_notifier_test_young(mm, address);
300 return 0;
301}
302
828502d3
IE
303static inline void mmu_notifier_change_pte(struct mm_struct *mm,
304 unsigned long address, pte_t pte)
305{
306 if (mm_has_notifiers(mm))
307 __mmu_notifier_change_pte(mm, address, pte);
308}
309
ac46d4f3
JG
310static inline void
311mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
cddb8a5c 312{
ac46d4f3 313 if (mm_has_notifiers(range->mm)) {
27560ee9 314 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
ac46d4f3
JG
315 __mmu_notifier_invalidate_range_start(range);
316 }
93065ac7
MH
317}
318
ac46d4f3
JG
319static inline int
320mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
93065ac7 321{
ac46d4f3 322 if (mm_has_notifiers(range->mm)) {
27560ee9 323 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
ac46d4f3
JG
324 return __mmu_notifier_invalidate_range_start(range);
325 }
93065ac7 326 return 0;
cddb8a5c
AA
327}
328
ac46d4f3
JG
329static inline void
330mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
cddb8a5c 331{
ac46d4f3
JG
332 if (mm_has_notifiers(range->mm))
333 __mmu_notifier_invalidate_range_end(range, false);
4645b9fe
JG
334}
335
ac46d4f3
JG
336static inline void
337mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
4645b9fe 338{
ac46d4f3
JG
339 if (mm_has_notifiers(range->mm))
340 __mmu_notifier_invalidate_range_end(range, true);
cddb8a5c
AA
341}
342
1897bdc4
JR
343static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
344 unsigned long start, unsigned long end)
345{
0f0a327f
JR
346 if (mm_has_notifiers(mm))
347 __mmu_notifier_invalidate_range(mm, start, end);
1897bdc4
JR
348}
349
cddb8a5c
AA
350static inline void mmu_notifier_mm_init(struct mm_struct *mm)
351{
352 mm->mmu_notifier_mm = NULL;
353}
354
355static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
356{
357 if (mm_has_notifiers(mm))
358 __mmu_notifier_mm_destroy(mm);
359}
360
ac46d4f3
JG
361
362static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
6f4f13e8
JG
363 enum mmu_notifier_event event,
364 unsigned flags,
365 struct vm_area_struct *vma,
ac46d4f3
JG
366 struct mm_struct *mm,
367 unsigned long start,
368 unsigned long end)
369{
bf198b2b
JG
370 range->vma = vma;
371 range->event = event;
ac46d4f3
JG
372 range->mm = mm;
373 range->start = start;
374 range->end = end;
bf198b2b 375 range->flags = flags;
ac46d4f3
JG
376}
377
cddb8a5c
AA
378#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
379({ \
380 int __young; \
381 struct vm_area_struct *___vma = __vma; \
382 unsigned long ___address = __address; \
383 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
384 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
57128468
ALC
385 ___address, \
386 ___address + \
387 PAGE_SIZE); \
cddb8a5c
AA
388 __young; \
389})
390
91a4ee26
AA
391#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
392({ \
393 int __young; \
394 struct vm_area_struct *___vma = __vma; \
395 unsigned long ___address = __address; \
396 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
397 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
57128468
ALC
398 ___address, \
399 ___address + \
400 PMD_SIZE); \
91a4ee26
AA
401 __young; \
402})
403
1d7715c6
VD
404#define ptep_clear_young_notify(__vma, __address, __ptep) \
405({ \
406 int __young; \
407 struct vm_area_struct *___vma = __vma; \
408 unsigned long ___address = __address; \
409 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
410 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
411 ___address + PAGE_SIZE); \
412 __young; \
413})
414
415#define pmdp_clear_young_notify(__vma, __address, __pmdp) \
416({ \
417 int __young; \
418 struct vm_area_struct *___vma = __vma; \
419 unsigned long ___address = __address; \
420 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
421 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
422 ___address + PMD_SIZE); \
423 __young; \
424})
425
34ee645e
JR
426#define ptep_clear_flush_notify(__vma, __address, __ptep) \
427({ \
428 unsigned long ___addr = __address & PAGE_MASK; \
429 struct mm_struct *___mm = (__vma)->vm_mm; \
430 pte_t ___pte; \
431 \
432 ___pte = ptep_clear_flush(__vma, __address, __ptep); \
433 mmu_notifier_invalidate_range(___mm, ___addr, \
434 ___addr + PAGE_SIZE); \
435 \
436 ___pte; \
437})
438
8809aa2d 439#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
34ee645e
JR
440({ \
441 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
442 struct mm_struct *___mm = (__vma)->vm_mm; \
443 pmd_t ___pmd; \
444 \
8809aa2d 445 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
34ee645e
JR
446 mmu_notifier_invalidate_range(___mm, ___haddr, \
447 ___haddr + HPAGE_PMD_SIZE); \
448 \
449 ___pmd; \
450})
451
a00cc7d9
MW
452#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
453({ \
454 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
455 struct mm_struct *___mm = (__vma)->vm_mm; \
456 pud_t ___pud; \
457 \
458 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
459 mmu_notifier_invalidate_range(___mm, ___haddr, \
460 ___haddr + HPAGE_PUD_SIZE); \
461 \
462 ___pud; \
463})
464
48af0d7c
XG
465/*
466 * set_pte_at_notify() sets the pte _after_ running the notifier.
467 * This is safe to start by updating the secondary MMUs, because the primary MMU
468 * pte invalidate must have already happened with a ptep_clear_flush() before
469 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
470 * required when we change both the protection of the mapping from read-only to
471 * read-write and the pfn (like during copy on write page faults). Otherwise the
472 * old page would remain mapped readonly in the secondary MMUs after the new
473 * page is already writable by some CPU through the primary MMU.
474 */
828502d3
IE
475#define set_pte_at_notify(__mm, __address, __ptep, __pte) \
476({ \
477 struct mm_struct *___mm = __mm; \
478 unsigned long ___address = __address; \
479 pte_t ___pte = __pte; \
480 \
828502d3 481 mmu_notifier_change_pte(___mm, ___address, ___pte); \
48af0d7c 482 set_pte_at(___mm, ___address, __ptep, ___pte); \
828502d3
IE
483})
484
b972216e
PZ
485extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
486 void (*func)(struct rcu_head *rcu));
b972216e 487
cddb8a5c
AA
488#else /* CONFIG_MMU_NOTIFIER */
489
ac46d4f3
JG
490struct mmu_notifier_range {
491 unsigned long start;
492 unsigned long end;
493};
494
495static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
496 unsigned long start,
497 unsigned long end)
498{
499 range->start = start;
500 range->end = end;
501}
502
6f4f13e8 503#define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \
ac46d4f3
JG
504 _mmu_notifier_range_init(range, start, end)
505
4a83bfe9
JG
506static inline bool
507mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
508{
509 return true;
510}
ac46d4f3 511
4d4bbd85
MH
512static inline int mm_has_notifiers(struct mm_struct *mm)
513{
514 return 0;
515}
516
cddb8a5c
AA
517static inline void mmu_notifier_release(struct mm_struct *mm)
518{
519}
520
521static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
57128468
ALC
522 unsigned long start,
523 unsigned long end)
8ee53820
AA
524{
525 return 0;
526}
527
528static inline int mmu_notifier_test_young(struct mm_struct *mm,
529 unsigned long address)
cddb8a5c
AA
530{
531 return 0;
532}
533
828502d3
IE
534static inline void mmu_notifier_change_pte(struct mm_struct *mm,
535 unsigned long address, pte_t pte)
536{
537}
538
ac46d4f3
JG
539static inline void
540mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
cddb8a5c
AA
541{
542}
543
ac46d4f3
JG
544static inline int
545mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
93065ac7
MH
546{
547 return 0;
548}
549
ac46d4f3
JG
550static inline
551void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
cddb8a5c
AA
552{
553}
554
ac46d4f3
JG
555static inline void
556mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
4645b9fe
JG
557{
558}
559
1897bdc4
JR
560static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
561 unsigned long start, unsigned long end)
562{
563}
564
cddb8a5c
AA
565static inline void mmu_notifier_mm_init(struct mm_struct *mm)
566{
567}
568
569static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
570{
571}
572
c6d23413
JG
573#define mmu_notifier_range_update_to_read_only(r) false
574
cddb8a5c 575#define ptep_clear_flush_young_notify ptep_clear_flush_young
91a4ee26 576#define pmdp_clear_flush_young_notify pmdp_clear_flush_young
33c3fc71
VD
577#define ptep_clear_young_notify ptep_test_and_clear_young
578#define pmdp_clear_young_notify pmdp_test_and_clear_young
34ee645e 579#define ptep_clear_flush_notify ptep_clear_flush
8809aa2d 580#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
a00cc7d9 581#define pudp_huge_clear_flush_notify pudp_huge_clear_flush
828502d3 582#define set_pte_at_notify set_pte_at
cddb8a5c
AA
583
584#endif /* CONFIG_MMU_NOTIFIER */
585
586#endif /* _LINUX_MMU_NOTIFIER_H */