]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | #ifndef _LINUX_MMZONE_H |
2 | #define _LINUX_MMZONE_H | |
3 | ||
4 | #ifdef __KERNEL__ | |
5 | #ifndef __ASSEMBLY__ | |
6 | ||
1da177e4 LT |
7 | #include <linux/spinlock.h> |
8 | #include <linux/list.h> | |
9 | #include <linux/wait.h> | |
e815af95 | 10 | #include <linux/bitops.h> |
1da177e4 LT |
11 | #include <linux/cache.h> |
12 | #include <linux/threads.h> | |
13 | #include <linux/numa.h> | |
14 | #include <linux/init.h> | |
bdc8cb98 | 15 | #include <linux/seqlock.h> |
8357f869 | 16 | #include <linux/nodemask.h> |
835c134e | 17 | #include <linux/pageblock-flags.h> |
1da177e4 | 18 | #include <asm/atomic.h> |
93ff66bf | 19 | #include <asm/page.h> |
1da177e4 LT |
20 | |
21 | /* Free memory management - zoned buddy allocator. */ | |
22 | #ifndef CONFIG_FORCE_MAX_ZONEORDER | |
23 | #define MAX_ORDER 11 | |
24 | #else | |
25 | #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER | |
26 | #endif | |
e984bb43 | 27 | #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) |
1da177e4 | 28 | |
5ad333eb AW |
29 | /* |
30 | * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed | |
31 | * costly to service. That is between allocation orders which should | |
32 | * coelesce naturally under reasonable reclaim pressure and those which | |
33 | * will not. | |
34 | */ | |
35 | #define PAGE_ALLOC_COSTLY_ORDER 3 | |
36 | ||
b2a0ac88 | 37 | #define MIGRATE_UNMOVABLE 0 |
e12ba74d MG |
38 | #define MIGRATE_RECLAIMABLE 1 |
39 | #define MIGRATE_MOVABLE 2 | |
64c5e135 | 40 | #define MIGRATE_RESERVE 3 |
a5d76b54 KH |
41 | #define MIGRATE_ISOLATE 4 /* can't allocate from here */ |
42 | #define MIGRATE_TYPES 5 | |
b2a0ac88 MG |
43 | |
44 | #define for_each_migratetype_order(order, type) \ | |
45 | for (order = 0; order < MAX_ORDER; order++) \ | |
46 | for (type = 0; type < MIGRATE_TYPES; type++) | |
47 | ||
467c996c MG |
48 | extern int page_group_by_mobility_disabled; |
49 | ||
50 | static inline int get_pageblock_migratetype(struct page *page) | |
51 | { | |
52 | if (unlikely(page_group_by_mobility_disabled)) | |
53 | return MIGRATE_UNMOVABLE; | |
54 | ||
55 | return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); | |
56 | } | |
57 | ||
1da177e4 | 58 | struct free_area { |
b2a0ac88 | 59 | struct list_head free_list[MIGRATE_TYPES]; |
1da177e4 LT |
60 | unsigned long nr_free; |
61 | }; | |
62 | ||
63 | struct pglist_data; | |
64 | ||
65 | /* | |
66 | * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. | |
67 | * So add a wild amount of padding here to ensure that they fall into separate | |
68 | * cachelines. There are very few zone structures in the machine, so space | |
69 | * consumption is not a concern here. | |
70 | */ | |
71 | #if defined(CONFIG_SMP) | |
72 | struct zone_padding { | |
73 | char x[0]; | |
22fc6ecc | 74 | } ____cacheline_internodealigned_in_smp; |
1da177e4 LT |
75 | #define ZONE_PADDING(name) struct zone_padding name; |
76 | #else | |
77 | #define ZONE_PADDING(name) | |
78 | #endif | |
79 | ||
2244b95a | 80 | enum zone_stat_item { |
51ed4491 | 81 | /* First 128 byte cacheline (assuming 64 bit words) */ |
d23ad423 | 82 | NR_FREE_PAGES, |
c8785385 CL |
83 | NR_INACTIVE, |
84 | NR_ACTIVE, | |
f3dbd344 CL |
85 | NR_ANON_PAGES, /* Mapped anonymous pages */ |
86 | NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. | |
65ba55f5 | 87 | only modified from process context */ |
347ce434 | 88 | NR_FILE_PAGES, |
b1e7a8fd | 89 | NR_FILE_DIRTY, |
ce866b34 | 90 | NR_WRITEBACK, |
51ed4491 CL |
91 | /* Second 128 byte cacheline */ |
92 | NR_SLAB_RECLAIMABLE, | |
93 | NR_SLAB_UNRECLAIMABLE, | |
94 | NR_PAGETABLE, /* used for pagetables */ | |
fd39fc85 | 95 | NR_UNSTABLE_NFS, /* NFS unstable pages */ |
d2c5e30c | 96 | NR_BOUNCE, |
e129b5c2 | 97 | NR_VMSCAN_WRITE, |
ca889e6c CL |
98 | #ifdef CONFIG_NUMA |
99 | NUMA_HIT, /* allocated in intended node */ | |
100 | NUMA_MISS, /* allocated in non intended node */ | |
101 | NUMA_FOREIGN, /* was intended here, hit elsewhere */ | |
102 | NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ | |
103 | NUMA_LOCAL, /* allocation from local node */ | |
104 | NUMA_OTHER, /* allocation from other node */ | |
105 | #endif | |
2244b95a CL |
106 | NR_VM_ZONE_STAT_ITEMS }; |
107 | ||
1da177e4 LT |
108 | struct per_cpu_pages { |
109 | int count; /* number of pages in the list */ | |
1da177e4 LT |
110 | int high; /* high watermark, emptying needed */ |
111 | int batch; /* chunk size for buddy add/remove */ | |
112 | struct list_head list; /* the list of pages */ | |
113 | }; | |
114 | ||
115 | struct per_cpu_pageset { | |
3dfa5721 | 116 | struct per_cpu_pages pcp; |
4037d452 CL |
117 | #ifdef CONFIG_NUMA |
118 | s8 expire; | |
119 | #endif | |
2244b95a | 120 | #ifdef CONFIG_SMP |
df9ecaba | 121 | s8 stat_threshold; |
2244b95a CL |
122 | s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; |
123 | #endif | |
1da177e4 LT |
124 | } ____cacheline_aligned_in_smp; |
125 | ||
e7c8d5c9 CL |
126 | #ifdef CONFIG_NUMA |
127 | #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) | |
128 | #else | |
129 | #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) | |
130 | #endif | |
131 | ||
2f1b6248 | 132 | enum zone_type { |
4b51d669 | 133 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 CL |
134 | /* |
135 | * ZONE_DMA is used when there are devices that are not able | |
136 | * to do DMA to all of addressable memory (ZONE_NORMAL). Then we | |
137 | * carve out the portion of memory that is needed for these devices. | |
138 | * The range is arch specific. | |
139 | * | |
140 | * Some examples | |
141 | * | |
142 | * Architecture Limit | |
143 | * --------------------------- | |
144 | * parisc, ia64, sparc <4G | |
145 | * s390 <2G | |
2f1b6248 CL |
146 | * arm Various |
147 | * alpha Unlimited or 0-16MB. | |
148 | * | |
149 | * i386, x86_64 and multiple other arches | |
150 | * <16M. | |
151 | */ | |
152 | ZONE_DMA, | |
4b51d669 | 153 | #endif |
fb0e7942 | 154 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 CL |
155 | /* |
156 | * x86_64 needs two ZONE_DMAs because it supports devices that are | |
157 | * only able to do DMA to the lower 16M but also 32 bit devices that | |
158 | * can only do DMA areas below 4G. | |
159 | */ | |
160 | ZONE_DMA32, | |
fb0e7942 | 161 | #endif |
2f1b6248 CL |
162 | /* |
163 | * Normal addressable memory is in ZONE_NORMAL. DMA operations can be | |
164 | * performed on pages in ZONE_NORMAL if the DMA devices support | |
165 | * transfers to all addressable memory. | |
166 | */ | |
167 | ZONE_NORMAL, | |
e53ef38d | 168 | #ifdef CONFIG_HIGHMEM |
2f1b6248 CL |
169 | /* |
170 | * A memory area that is only addressable by the kernel through | |
171 | * mapping portions into its own address space. This is for example | |
172 | * used by i386 to allow the kernel to address the memory beyond | |
173 | * 900MB. The kernel will set up special mappings (page | |
174 | * table entries on i386) for each page that the kernel needs to | |
175 | * access. | |
176 | */ | |
177 | ZONE_HIGHMEM, | |
e53ef38d | 178 | #endif |
2a1e274a | 179 | ZONE_MOVABLE, |
2f1b6248 CL |
180 | MAX_NR_ZONES |
181 | }; | |
1da177e4 | 182 | |
1da177e4 LT |
183 | /* |
184 | * When a memory allocation must conform to specific limitations (such | |
185 | * as being suitable for DMA) the caller will pass in hints to the | |
186 | * allocator in the gfp_mask, in the zone modifier bits. These bits | |
187 | * are used to select a priority ordered list of memory zones which | |
19655d34 | 188 | * match the requested limits. See gfp_zone() in include/linux/gfp.h |
1da177e4 | 189 | */ |
fb0e7942 | 190 | |
4b51d669 CL |
191 | /* |
192 | * Count the active zones. Note that the use of defined(X) outside | |
193 | * #if and family is not necessarily defined so ensure we cannot use | |
194 | * it later. Use __ZONE_COUNT to work out how many shift bits we need. | |
195 | */ | |
196 | #define __ZONE_COUNT ( \ | |
197 | defined(CONFIG_ZONE_DMA) \ | |
198 | + defined(CONFIG_ZONE_DMA32) \ | |
199 | + 1 \ | |
200 | + defined(CONFIG_HIGHMEM) \ | |
2a1e274a | 201 | + 1 \ |
4b51d669 CL |
202 | ) |
203 | #if __ZONE_COUNT < 2 | |
204 | #define ZONES_SHIFT 0 | |
205 | #elif __ZONE_COUNT <= 2 | |
19655d34 | 206 | #define ZONES_SHIFT 1 |
4b51d669 | 207 | #elif __ZONE_COUNT <= 4 |
19655d34 | 208 | #define ZONES_SHIFT 2 |
4b51d669 CL |
209 | #else |
210 | #error ZONES_SHIFT -- too many zones configured adjust calculation | |
fb0e7942 | 211 | #endif |
4b51d669 | 212 | #undef __ZONE_COUNT |
1da177e4 | 213 | |
1da177e4 LT |
214 | struct zone { |
215 | /* Fields commonly accessed by the page allocator */ | |
1da177e4 LT |
216 | unsigned long pages_min, pages_low, pages_high; |
217 | /* | |
218 | * We don't know if the memory that we're going to allocate will be freeable | |
219 | * or/and it will be released eventually, so to avoid totally wasting several | |
220 | * GB of ram we must reserve some of the lower zone memory (otherwise we risk | |
221 | * to run OOM on the lower zones despite there's tons of freeable ram | |
222 | * on the higher zones). This array is recalculated at runtime if the | |
223 | * sysctl_lowmem_reserve_ratio sysctl changes. | |
224 | */ | |
225 | unsigned long lowmem_reserve[MAX_NR_ZONES]; | |
226 | ||
e7c8d5c9 | 227 | #ifdef CONFIG_NUMA |
d5f541ed | 228 | int node; |
9614634f CL |
229 | /* |
230 | * zone reclaim becomes active if more unmapped pages exist. | |
231 | */ | |
8417bba4 | 232 | unsigned long min_unmapped_pages; |
0ff38490 | 233 | unsigned long min_slab_pages; |
e7c8d5c9 CL |
234 | struct per_cpu_pageset *pageset[NR_CPUS]; |
235 | #else | |
1da177e4 | 236 | struct per_cpu_pageset pageset[NR_CPUS]; |
e7c8d5c9 | 237 | #endif |
1da177e4 LT |
238 | /* |
239 | * free areas of different sizes | |
240 | */ | |
241 | spinlock_t lock; | |
bdc8cb98 DH |
242 | #ifdef CONFIG_MEMORY_HOTPLUG |
243 | /* see spanned/present_pages for more description */ | |
244 | seqlock_t span_seqlock; | |
245 | #endif | |
1da177e4 LT |
246 | struct free_area free_area[MAX_ORDER]; |
247 | ||
835c134e MG |
248 | #ifndef CONFIG_SPARSEMEM |
249 | /* | |
d9c23400 | 250 | * Flags for a pageblock_nr_pages block. See pageblock-flags.h. |
835c134e MG |
251 | * In SPARSEMEM, this map is stored in struct mem_section |
252 | */ | |
253 | unsigned long *pageblock_flags; | |
254 | #endif /* CONFIG_SPARSEMEM */ | |
255 | ||
1da177e4 LT |
256 | |
257 | ZONE_PADDING(_pad1_) | |
258 | ||
259 | /* Fields commonly accessed by the page reclaim scanner */ | |
260 | spinlock_t lru_lock; | |
261 | struct list_head active_list; | |
262 | struct list_head inactive_list; | |
263 | unsigned long nr_scan_active; | |
264 | unsigned long nr_scan_inactive; | |
1da177e4 | 265 | unsigned long pages_scanned; /* since last reclaim */ |
e815af95 | 266 | unsigned long flags; /* zone flags, see below */ |
753ee728 | 267 | |
2244b95a CL |
268 | /* Zone statistics */ |
269 | atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; | |
9eeff239 | 270 | |
1da177e4 LT |
271 | /* |
272 | * prev_priority holds the scanning priority for this zone. It is | |
273 | * defined as the scanning priority at which we achieved our reclaim | |
274 | * target at the previous try_to_free_pages() or balance_pgdat() | |
275 | * invokation. | |
276 | * | |
277 | * We use prev_priority as a measure of how much stress page reclaim is | |
278 | * under - it drives the swappiness decision: whether to unmap mapped | |
279 | * pages. | |
280 | * | |
3bb1a852 | 281 | * Access to both this field is quite racy even on uniprocessor. But |
1da177e4 LT |
282 | * it is expected to average out OK. |
283 | */ | |
1da177e4 LT |
284 | int prev_priority; |
285 | ||
286 | ||
287 | ZONE_PADDING(_pad2_) | |
288 | /* Rarely used or read-mostly fields */ | |
289 | ||
290 | /* | |
291 | * wait_table -- the array holding the hash table | |
02b694de | 292 | * wait_table_hash_nr_entries -- the size of the hash table array |
1da177e4 LT |
293 | * wait_table_bits -- wait_table_size == (1 << wait_table_bits) |
294 | * | |
295 | * The purpose of all these is to keep track of the people | |
296 | * waiting for a page to become available and make them | |
297 | * runnable again when possible. The trouble is that this | |
298 | * consumes a lot of space, especially when so few things | |
299 | * wait on pages at a given time. So instead of using | |
300 | * per-page waitqueues, we use a waitqueue hash table. | |
301 | * | |
302 | * The bucket discipline is to sleep on the same queue when | |
303 | * colliding and wake all in that wait queue when removing. | |
304 | * When something wakes, it must check to be sure its page is | |
305 | * truly available, a la thundering herd. The cost of a | |
306 | * collision is great, but given the expected load of the | |
307 | * table, they should be so rare as to be outweighed by the | |
308 | * benefits from the saved space. | |
309 | * | |
310 | * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the | |
311 | * primary users of these fields, and in mm/page_alloc.c | |
312 | * free_area_init_core() performs the initialization of them. | |
313 | */ | |
314 | wait_queue_head_t * wait_table; | |
02b694de | 315 | unsigned long wait_table_hash_nr_entries; |
1da177e4 LT |
316 | unsigned long wait_table_bits; |
317 | ||
318 | /* | |
319 | * Discontig memory support fields. | |
320 | */ | |
321 | struct pglist_data *zone_pgdat; | |
1da177e4 LT |
322 | /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ |
323 | unsigned long zone_start_pfn; | |
324 | ||
bdc8cb98 DH |
325 | /* |
326 | * zone_start_pfn, spanned_pages and present_pages are all | |
327 | * protected by span_seqlock. It is a seqlock because it has | |
328 | * to be read outside of zone->lock, and it is done in the main | |
329 | * allocator path. But, it is written quite infrequently. | |
330 | * | |
331 | * The lock is declared along with zone->lock because it is | |
332 | * frequently read in proximity to zone->lock. It's good to | |
333 | * give them a chance of being in the same cacheline. | |
334 | */ | |
1da177e4 LT |
335 | unsigned long spanned_pages; /* total size, including holes */ |
336 | unsigned long present_pages; /* amount of memory (excluding holes) */ | |
337 | ||
338 | /* | |
339 | * rarely used fields: | |
340 | */ | |
15ad7cdc | 341 | const char *name; |
22fc6ecc | 342 | } ____cacheline_internodealigned_in_smp; |
1da177e4 | 343 | |
e815af95 DR |
344 | typedef enum { |
345 | ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ | |
346 | ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ | |
098d7f12 | 347 | ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ |
e815af95 DR |
348 | } zone_flags_t; |
349 | ||
350 | static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) | |
351 | { | |
352 | set_bit(flag, &zone->flags); | |
353 | } | |
d773ed6b DR |
354 | |
355 | static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) | |
356 | { | |
357 | return test_and_set_bit(flag, &zone->flags); | |
358 | } | |
359 | ||
e815af95 DR |
360 | static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) |
361 | { | |
362 | clear_bit(flag, &zone->flags); | |
363 | } | |
364 | ||
365 | static inline int zone_is_all_unreclaimable(const struct zone *zone) | |
366 | { | |
367 | return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); | |
368 | } | |
d773ed6b | 369 | |
e815af95 DR |
370 | static inline int zone_is_reclaim_locked(const struct zone *zone) |
371 | { | |
372 | return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); | |
373 | } | |
d773ed6b | 374 | |
098d7f12 DR |
375 | static inline int zone_is_oom_locked(const struct zone *zone) |
376 | { | |
377 | return test_bit(ZONE_OOM_LOCKED, &zone->flags); | |
378 | } | |
e815af95 | 379 | |
1da177e4 LT |
380 | /* |
381 | * The "priority" of VM scanning is how much of the queues we will scan in one | |
382 | * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the | |
383 | * queues ("queue_length >> 12") during an aging round. | |
384 | */ | |
385 | #define DEF_PRIORITY 12 | |
386 | ||
9276b1bc PJ |
387 | /* Maximum number of zones on a zonelist */ |
388 | #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) | |
389 | ||
390 | #ifdef CONFIG_NUMA | |
523b9458 CL |
391 | |
392 | /* | |
393 | * The NUMA zonelists are doubled becausse we need zonelists that restrict the | |
394 | * allocations to a single node for GFP_THISNODE. | |
395 | * | |
396 | * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback | |
397 | * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE) | |
398 | */ | |
399 | #define MAX_ZONELISTS (2 * MAX_NR_ZONES) | |
400 | ||
401 | ||
9276b1bc PJ |
402 | /* |
403 | * We cache key information from each zonelist for smaller cache | |
404 | * footprint when scanning for free pages in get_page_from_freelist(). | |
405 | * | |
406 | * 1) The BITMAP fullzones tracks which zones in a zonelist have come | |
407 | * up short of free memory since the last time (last_fullzone_zap) | |
408 | * we zero'd fullzones. | |
409 | * 2) The array z_to_n[] maps each zone in the zonelist to its node | |
410 | * id, so that we can efficiently evaluate whether that node is | |
411 | * set in the current tasks mems_allowed. | |
412 | * | |
413 | * Both fullzones and z_to_n[] are one-to-one with the zonelist, | |
414 | * indexed by a zones offset in the zonelist zones[] array. | |
415 | * | |
416 | * The get_page_from_freelist() routine does two scans. During the | |
417 | * first scan, we skip zones whose corresponding bit in 'fullzones' | |
418 | * is set or whose corresponding node in current->mems_allowed (which | |
419 | * comes from cpusets) is not set. During the second scan, we bypass | |
420 | * this zonelist_cache, to ensure we look methodically at each zone. | |
421 | * | |
422 | * Once per second, we zero out (zap) fullzones, forcing us to | |
423 | * reconsider nodes that might have regained more free memory. | |
424 | * The field last_full_zap is the time we last zapped fullzones. | |
425 | * | |
426 | * This mechanism reduces the amount of time we waste repeatedly | |
427 | * reexaming zones for free memory when they just came up low on | |
428 | * memory momentarilly ago. | |
429 | * | |
430 | * The zonelist_cache struct members logically belong in struct | |
431 | * zonelist. However, the mempolicy zonelists constructed for | |
432 | * MPOL_BIND are intentionally variable length (and usually much | |
433 | * shorter). A general purpose mechanism for handling structs with | |
434 | * multiple variable length members is more mechanism than we want | |
435 | * here. We resort to some special case hackery instead. | |
436 | * | |
437 | * The MPOL_BIND zonelists don't need this zonelist_cache (in good | |
438 | * part because they are shorter), so we put the fixed length stuff | |
439 | * at the front of the zonelist struct, ending in a variable length | |
440 | * zones[], as is needed by MPOL_BIND. | |
441 | * | |
442 | * Then we put the optional zonelist cache on the end of the zonelist | |
443 | * struct. This optional stuff is found by a 'zlcache_ptr' pointer in | |
444 | * the fixed length portion at the front of the struct. This pointer | |
445 | * both enables us to find the zonelist cache, and in the case of | |
446 | * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) | |
447 | * to know that the zonelist cache is not there. | |
448 | * | |
449 | * The end result is that struct zonelists come in two flavors: | |
450 | * 1) The full, fixed length version, shown below, and | |
451 | * 2) The custom zonelists for MPOL_BIND. | |
452 | * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. | |
453 | * | |
454 | * Even though there may be multiple CPU cores on a node modifying | |
455 | * fullzones or last_full_zap in the same zonelist_cache at the same | |
456 | * time, we don't lock it. This is just hint data - if it is wrong now | |
457 | * and then, the allocator will still function, perhaps a bit slower. | |
458 | */ | |
459 | ||
460 | ||
461 | struct zonelist_cache { | |
9276b1bc | 462 | unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ |
7253f4ef | 463 | DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ |
9276b1bc PJ |
464 | unsigned long last_full_zap; /* when last zap'd (jiffies) */ |
465 | }; | |
466 | #else | |
523b9458 | 467 | #define MAX_ZONELISTS MAX_NR_ZONES |
9276b1bc PJ |
468 | struct zonelist_cache; |
469 | #endif | |
470 | ||
1da177e4 LT |
471 | /* |
472 | * One allocation request operates on a zonelist. A zonelist | |
473 | * is a list of zones, the first one is the 'goal' of the | |
474 | * allocation, the other zones are fallback zones, in decreasing | |
475 | * priority. | |
476 | * | |
9276b1bc PJ |
477 | * If zlcache_ptr is not NULL, then it is just the address of zlcache, |
478 | * as explained above. If zlcache_ptr is NULL, there is no zlcache. | |
1da177e4 | 479 | */ |
9276b1bc | 480 | |
1da177e4 | 481 | struct zonelist { |
9276b1bc PJ |
482 | struct zonelist_cache *zlcache_ptr; // NULL or &zlcache |
483 | struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited | |
484 | #ifdef CONFIG_NUMA | |
485 | struct zonelist_cache zlcache; // optional ... | |
486 | #endif | |
1da177e4 LT |
487 | }; |
488 | ||
b377fd39 MG |
489 | #ifdef CONFIG_NUMA |
490 | /* | |
491 | * Only custom zonelists like MPOL_BIND need to be filtered as part of | |
492 | * policies. As described in the comment for struct zonelist_cache, these | |
493 | * zonelists will not have a zlcache so zlcache_ptr will not be set. Use | |
494 | * that to determine if the zonelists needs to be filtered or not. | |
495 | */ | |
496 | static inline int alloc_should_filter_zonelist(struct zonelist *zonelist) | |
497 | { | |
498 | return !zonelist->zlcache_ptr; | |
499 | } | |
500 | #else | |
501 | static inline int alloc_should_filter_zonelist(struct zonelist *zonelist) | |
502 | { | |
503 | return 0; | |
504 | } | |
505 | #endif /* CONFIG_NUMA */ | |
506 | ||
c713216d MG |
507 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP |
508 | struct node_active_region { | |
509 | unsigned long start_pfn; | |
510 | unsigned long end_pfn; | |
511 | int nid; | |
512 | }; | |
513 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | |
1da177e4 | 514 | |
5b99cd0e HC |
515 | #ifndef CONFIG_DISCONTIGMEM |
516 | /* The array of struct pages - for discontigmem use pgdat->lmem_map */ | |
517 | extern struct page *mem_map; | |
518 | #endif | |
519 | ||
1da177e4 LT |
520 | /* |
521 | * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM | |
522 | * (mostly NUMA machines?) to denote a higher-level memory zone than the | |
523 | * zone denotes. | |
524 | * | |
525 | * On NUMA machines, each NUMA node would have a pg_data_t to describe | |
526 | * it's memory layout. | |
527 | * | |
528 | * Memory statistics and page replacement data structures are maintained on a | |
529 | * per-zone basis. | |
530 | */ | |
531 | struct bootmem_data; | |
532 | typedef struct pglist_data { | |
533 | struct zone node_zones[MAX_NR_ZONES]; | |
523b9458 | 534 | struct zonelist node_zonelists[MAX_ZONELISTS]; |
1da177e4 | 535 | int nr_zones; |
d41dee36 | 536 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 | 537 | struct page *node_mem_map; |
d41dee36 | 538 | #endif |
1da177e4 | 539 | struct bootmem_data *bdata; |
208d54e5 DH |
540 | #ifdef CONFIG_MEMORY_HOTPLUG |
541 | /* | |
542 | * Must be held any time you expect node_start_pfn, node_present_pages | |
543 | * or node_spanned_pages stay constant. Holding this will also | |
544 | * guarantee that any pfn_valid() stays that way. | |
545 | * | |
546 | * Nests above zone->lock and zone->size_seqlock. | |
547 | */ | |
548 | spinlock_t node_size_lock; | |
549 | #endif | |
1da177e4 LT |
550 | unsigned long node_start_pfn; |
551 | unsigned long node_present_pages; /* total number of physical pages */ | |
552 | unsigned long node_spanned_pages; /* total size of physical page | |
553 | range, including holes */ | |
554 | int node_id; | |
1da177e4 LT |
555 | wait_queue_head_t kswapd_wait; |
556 | struct task_struct *kswapd; | |
557 | int kswapd_max_order; | |
558 | } pg_data_t; | |
559 | ||
560 | #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) | |
561 | #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) | |
d41dee36 | 562 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
408fde81 | 563 | #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) |
d41dee36 AW |
564 | #else |
565 | #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) | |
566 | #endif | |
408fde81 | 567 | #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) |
1da177e4 | 568 | |
208d54e5 DH |
569 | #include <linux/memory_hotplug.h> |
570 | ||
1da177e4 LT |
571 | void get_zone_counts(unsigned long *active, unsigned long *inactive, |
572 | unsigned long *free); | |
573 | void build_all_zonelists(void); | |
574 | void wakeup_kswapd(struct zone *zone, int order); | |
575 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | |
7fb1d9fc | 576 | int classzone_idx, int alloc_flags); |
a2f3aa02 DH |
577 | enum memmap_context { |
578 | MEMMAP_EARLY, | |
579 | MEMMAP_HOTPLUG, | |
580 | }; | |
718127cc | 581 | extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, |
a2f3aa02 DH |
582 | unsigned long size, |
583 | enum memmap_context context); | |
718127cc | 584 | |
1da177e4 LT |
585 | #ifdef CONFIG_HAVE_MEMORY_PRESENT |
586 | void memory_present(int nid, unsigned long start, unsigned long end); | |
587 | #else | |
588 | static inline void memory_present(int nid, unsigned long start, unsigned long end) {} | |
589 | #endif | |
590 | ||
591 | #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE | |
592 | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | |
593 | #endif | |
594 | ||
595 | /* | |
596 | * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. | |
597 | */ | |
598 | #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) | |
599 | ||
f3fe6512 CK |
600 | static inline int populated_zone(struct zone *zone) |
601 | { | |
602 | return (!!zone->present_pages); | |
603 | } | |
604 | ||
2a1e274a MG |
605 | extern int movable_zone; |
606 | ||
607 | static inline int zone_movable_is_highmem(void) | |
608 | { | |
609 | #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) | |
610 | return movable_zone == ZONE_HIGHMEM; | |
611 | #else | |
612 | return 0; | |
613 | #endif | |
614 | } | |
615 | ||
2f1b6248 | 616 | static inline int is_highmem_idx(enum zone_type idx) |
1da177e4 | 617 | { |
e53ef38d | 618 | #ifdef CONFIG_HIGHMEM |
2a1e274a MG |
619 | return (idx == ZONE_HIGHMEM || |
620 | (idx == ZONE_MOVABLE && zone_movable_is_highmem())); | |
e53ef38d CL |
621 | #else |
622 | return 0; | |
623 | #endif | |
1da177e4 LT |
624 | } |
625 | ||
2f1b6248 | 626 | static inline int is_normal_idx(enum zone_type idx) |
1da177e4 LT |
627 | { |
628 | return (idx == ZONE_NORMAL); | |
629 | } | |
9328b8fa | 630 | |
1da177e4 LT |
631 | /** |
632 | * is_highmem - helper function to quickly check if a struct zone is a | |
633 | * highmem zone or not. This is an attempt to keep references | |
634 | * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. | |
635 | * @zone - pointer to struct zone variable | |
636 | */ | |
637 | static inline int is_highmem(struct zone *zone) | |
638 | { | |
e53ef38d | 639 | #ifdef CONFIG_HIGHMEM |
2a1e274a MG |
640 | int zone_idx = zone - zone->zone_pgdat->node_zones; |
641 | return zone_idx == ZONE_HIGHMEM || | |
642 | (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem()); | |
e53ef38d CL |
643 | #else |
644 | return 0; | |
645 | #endif | |
1da177e4 LT |
646 | } |
647 | ||
648 | static inline int is_normal(struct zone *zone) | |
649 | { | |
650 | return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; | |
651 | } | |
652 | ||
9328b8fa NP |
653 | static inline int is_dma32(struct zone *zone) |
654 | { | |
fb0e7942 | 655 | #ifdef CONFIG_ZONE_DMA32 |
9328b8fa | 656 | return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; |
fb0e7942 CL |
657 | #else |
658 | return 0; | |
659 | #endif | |
9328b8fa NP |
660 | } |
661 | ||
662 | static inline int is_dma(struct zone *zone) | |
663 | { | |
4b51d669 | 664 | #ifdef CONFIG_ZONE_DMA |
9328b8fa | 665 | return zone == zone->zone_pgdat->node_zones + ZONE_DMA; |
4b51d669 CL |
666 | #else |
667 | return 0; | |
668 | #endif | |
9328b8fa NP |
669 | } |
670 | ||
1da177e4 LT |
671 | /* These two functions are used to setup the per zone pages min values */ |
672 | struct ctl_table; | |
673 | struct file; | |
674 | int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, | |
675 | void __user *, size_t *, loff_t *); | |
676 | extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; | |
677 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, | |
678 | void __user *, size_t *, loff_t *); | |
8ad4b1fb RS |
679 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, |
680 | void __user *, size_t *, loff_t *); | |
9614634f CL |
681 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, |
682 | struct file *, void __user *, size_t *, loff_t *); | |
0ff38490 CL |
683 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, |
684 | struct file *, void __user *, size_t *, loff_t *); | |
1da177e4 | 685 | |
f0c0b2b8 KH |
686 | extern int numa_zonelist_order_handler(struct ctl_table *, int, |
687 | struct file *, void __user *, size_t *, loff_t *); | |
688 | extern char numa_zonelist_order[]; | |
689 | #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ | |
690 | ||
1da177e4 LT |
691 | #include <linux/topology.h> |
692 | /* Returns the number of the current Node. */ | |
69d81fcd | 693 | #ifndef numa_node_id |
39c715b7 | 694 | #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) |
69d81fcd | 695 | #endif |
1da177e4 | 696 | |
93b7504e | 697 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
698 | |
699 | extern struct pglist_data contig_page_data; | |
700 | #define NODE_DATA(nid) (&contig_page_data) | |
701 | #define NODE_MEM_MAP(nid) mem_map | |
702 | #define MAX_NODES_SHIFT 1 | |
1da177e4 | 703 | |
93b7504e | 704 | #else /* CONFIG_NEED_MULTIPLE_NODES */ |
1da177e4 LT |
705 | |
706 | #include <asm/mmzone.h> | |
707 | ||
93b7504e | 708 | #endif /* !CONFIG_NEED_MULTIPLE_NODES */ |
348f8b6c | 709 | |
95144c78 KH |
710 | extern struct pglist_data *first_online_pgdat(void); |
711 | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); | |
712 | extern struct zone *next_zone(struct zone *zone); | |
8357f869 KH |
713 | |
714 | /** | |
715 | * for_each_pgdat - helper macro to iterate over all nodes | |
716 | * @pgdat - pointer to a pg_data_t variable | |
717 | */ | |
718 | #define for_each_online_pgdat(pgdat) \ | |
719 | for (pgdat = first_online_pgdat(); \ | |
720 | pgdat; \ | |
721 | pgdat = next_online_pgdat(pgdat)) | |
8357f869 KH |
722 | /** |
723 | * for_each_zone - helper macro to iterate over all memory zones | |
724 | * @zone - pointer to struct zone variable | |
725 | * | |
726 | * The user only needs to declare the zone variable, for_each_zone | |
727 | * fills it in. | |
728 | */ | |
729 | #define for_each_zone(zone) \ | |
730 | for (zone = (first_online_pgdat())->node_zones; \ | |
731 | zone; \ | |
732 | zone = next_zone(zone)) | |
733 | ||
d41dee36 AW |
734 | #ifdef CONFIG_SPARSEMEM |
735 | #include <asm/sparsemem.h> | |
736 | #endif | |
737 | ||
07808b74 | 738 | #if BITS_PER_LONG == 32 |
1da177e4 | 739 | /* |
a2f1b424 AK |
740 | * with 32 bit page->flags field, we reserve 9 bits for node/zone info. |
741 | * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. | |
1da177e4 | 742 | */ |
a2f1b424 | 743 | #define FLAGS_RESERVED 9 |
348f8b6c | 744 | |
1da177e4 LT |
745 | #elif BITS_PER_LONG == 64 |
746 | /* | |
747 | * with 64 bit flags field, there's plenty of room. | |
748 | */ | |
348f8b6c | 749 | #define FLAGS_RESERVED 32 |
1da177e4 | 750 | |
348f8b6c | 751 | #else |
1da177e4 | 752 | |
348f8b6c | 753 | #error BITS_PER_LONG not defined |
1da177e4 | 754 | |
1da177e4 LT |
755 | #endif |
756 | ||
c713216d MG |
757 | #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ |
758 | !defined(CONFIG_ARCH_POPULATES_NODE_MAP) | |
b159d43f AW |
759 | #define early_pfn_to_nid(nid) (0UL) |
760 | #endif | |
761 | ||
2bdaf115 AW |
762 | #ifdef CONFIG_FLATMEM |
763 | #define pfn_to_nid(pfn) (0) | |
764 | #endif | |
765 | ||
d41dee36 AW |
766 | #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) |
767 | #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) | |
768 | ||
769 | #ifdef CONFIG_SPARSEMEM | |
770 | ||
771 | /* | |
772 | * SECTION_SHIFT #bits space required to store a section # | |
773 | * | |
774 | * PA_SECTION_SHIFT physical address to/from section number | |
775 | * PFN_SECTION_SHIFT pfn to/from section number | |
776 | */ | |
777 | #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) | |
778 | ||
779 | #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) | |
780 | #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) | |
781 | ||
782 | #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) | |
783 | ||
784 | #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) | |
785 | #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) | |
786 | ||
835c134e | 787 | #define SECTION_BLOCKFLAGS_BITS \ |
d9c23400 | 788 | ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) |
835c134e | 789 | |
d41dee36 AW |
790 | #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS |
791 | #error Allocator MAX_ORDER exceeds SECTION_SIZE | |
792 | #endif | |
793 | ||
794 | struct page; | |
795 | struct mem_section { | |
29751f69 AW |
796 | /* |
797 | * This is, logically, a pointer to an array of struct | |
798 | * pages. However, it is stored with some other magic. | |
799 | * (see sparse.c::sparse_init_one_section()) | |
800 | * | |
30c253e6 AW |
801 | * Additionally during early boot we encode node id of |
802 | * the location of the section here to guide allocation. | |
803 | * (see sparse.c::memory_present()) | |
804 | * | |
29751f69 AW |
805 | * Making it a UL at least makes someone do a cast |
806 | * before using it wrong. | |
807 | */ | |
808 | unsigned long section_mem_map; | |
5c0e3066 MG |
809 | |
810 | /* See declaration of similar field in struct zone */ | |
811 | unsigned long *pageblock_flags; | |
d41dee36 AW |
812 | }; |
813 | ||
3e347261 BP |
814 | #ifdef CONFIG_SPARSEMEM_EXTREME |
815 | #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) | |
816 | #else | |
817 | #define SECTIONS_PER_ROOT 1 | |
818 | #endif | |
802f192e | 819 | |
3e347261 BP |
820 | #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) |
821 | #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) | |
822 | #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) | |
802f192e | 823 | |
3e347261 BP |
824 | #ifdef CONFIG_SPARSEMEM_EXTREME |
825 | extern struct mem_section *mem_section[NR_SECTION_ROOTS]; | |
802f192e | 826 | #else |
3e347261 BP |
827 | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; |
828 | #endif | |
d41dee36 | 829 | |
29751f69 AW |
830 | static inline struct mem_section *__nr_to_section(unsigned long nr) |
831 | { | |
3e347261 BP |
832 | if (!mem_section[SECTION_NR_TO_ROOT(nr)]) |
833 | return NULL; | |
834 | return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; | |
29751f69 | 835 | } |
4ca644d9 | 836 | extern int __section_nr(struct mem_section* ms); |
29751f69 AW |
837 | |
838 | /* | |
839 | * We use the lower bits of the mem_map pointer to store | |
840 | * a little bit of information. There should be at least | |
841 | * 3 bits here due to 32-bit alignment. | |
842 | */ | |
843 | #define SECTION_MARKED_PRESENT (1UL<<0) | |
844 | #define SECTION_HAS_MEM_MAP (1UL<<1) | |
845 | #define SECTION_MAP_LAST_BIT (1UL<<2) | |
846 | #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) | |
30c253e6 | 847 | #define SECTION_NID_SHIFT 2 |
29751f69 AW |
848 | |
849 | static inline struct page *__section_mem_map_addr(struct mem_section *section) | |
850 | { | |
851 | unsigned long map = section->section_mem_map; | |
852 | map &= SECTION_MAP_MASK; | |
853 | return (struct page *)map; | |
854 | } | |
855 | ||
540557b9 | 856 | static inline int present_section(struct mem_section *section) |
29751f69 | 857 | { |
802f192e | 858 | return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); |
29751f69 AW |
859 | } |
860 | ||
540557b9 AW |
861 | static inline int present_section_nr(unsigned long nr) |
862 | { | |
863 | return present_section(__nr_to_section(nr)); | |
864 | } | |
865 | ||
866 | static inline int valid_section(struct mem_section *section) | |
29751f69 | 867 | { |
802f192e | 868 | return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); |
29751f69 AW |
869 | } |
870 | ||
871 | static inline int valid_section_nr(unsigned long nr) | |
872 | { | |
873 | return valid_section(__nr_to_section(nr)); | |
874 | } | |
875 | ||
d41dee36 AW |
876 | static inline struct mem_section *__pfn_to_section(unsigned long pfn) |
877 | { | |
29751f69 | 878 | return __nr_to_section(pfn_to_section_nr(pfn)); |
d41dee36 AW |
879 | } |
880 | ||
d41dee36 AW |
881 | static inline int pfn_valid(unsigned long pfn) |
882 | { | |
883 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | |
884 | return 0; | |
29751f69 | 885 | return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); |
d41dee36 AW |
886 | } |
887 | ||
540557b9 AW |
888 | static inline int pfn_present(unsigned long pfn) |
889 | { | |
890 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) | |
891 | return 0; | |
892 | return present_section(__nr_to_section(pfn_to_section_nr(pfn))); | |
893 | } | |
894 | ||
d41dee36 AW |
895 | /* |
896 | * These are _only_ used during initialisation, therefore they | |
897 | * can use __initdata ... They could have names to indicate | |
898 | * this restriction. | |
899 | */ | |
900 | #ifdef CONFIG_NUMA | |
161599ff AW |
901 | #define pfn_to_nid(pfn) \ |
902 | ({ \ | |
903 | unsigned long __pfn_to_nid_pfn = (pfn); \ | |
904 | page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ | |
905 | }) | |
2bdaf115 AW |
906 | #else |
907 | #define pfn_to_nid(pfn) (0) | |
d41dee36 AW |
908 | #endif |
909 | ||
d41dee36 AW |
910 | #define early_pfn_valid(pfn) pfn_valid(pfn) |
911 | void sparse_init(void); | |
912 | #else | |
913 | #define sparse_init() do {} while (0) | |
28ae55c9 | 914 | #define sparse_index_init(_sec, _nid) do {} while (0) |
d41dee36 AW |
915 | #endif /* CONFIG_SPARSEMEM */ |
916 | ||
75167957 AW |
917 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES |
918 | #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) | |
919 | #else | |
920 | #define early_pfn_in_nid(pfn, nid) (1) | |
921 | #endif | |
922 | ||
d41dee36 AW |
923 | #ifndef early_pfn_valid |
924 | #define early_pfn_valid(pfn) (1) | |
925 | #endif | |
926 | ||
927 | void memory_present(int nid, unsigned long start, unsigned long end); | |
928 | unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); | |
929 | ||
14e07298 AW |
930 | /* |
931 | * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we | |
932 | * need to check pfn validility within that MAX_ORDER_NR_PAGES block. | |
933 | * pfn_valid_within() should be used in this case; we optimise this away | |
934 | * when we have no holes within a MAX_ORDER_NR_PAGES block. | |
935 | */ | |
936 | #ifdef CONFIG_HOLES_IN_ZONE | |
937 | #define pfn_valid_within(pfn) pfn_valid(pfn) | |
938 | #else | |
939 | #define pfn_valid_within(pfn) (1) | |
940 | #endif | |
941 | ||
1da177e4 LT |
942 | #endif /* !__ASSEMBLY__ */ |
943 | #endif /* __KERNEL__ */ | |
944 | #endif /* _LINUX_MMZONE_H */ |