]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/mmzone.h
nfs: don't atempt blocking locks on nfs reexports
[mirror_ubuntu-jammy-kernel.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
e815af95 11#include <linux/bitops.h>
1da177e4
LT
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
bdc8cb98 16#include <linux/seqlock.h>
8357f869 17#include <linux/nodemask.h>
835c134e 18#include <linux/pageblock-flags.h>
bbeae5b0 19#include <linux/page-flags-layout.h>
60063497 20#include <linux/atomic.h>
b03641af
DW
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
dbbee9d5 23#include <linux/local_lock.h>
93ff66bf 24#include <asm/page.h>
1da177e4
LT
25
26/* Free memory management - zoned buddy allocator. */
27#ifndef CONFIG_FORCE_MAX_ZONEORDER
28#define MAX_ORDER 11
29#else
30#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31#endif
e984bb43 32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 33
5ad333eb
AW
34/*
35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36 * costly to service. That is between allocation orders which should
35fca53e 37 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
38 * will not.
39 */
40#define PAGE_ALLOC_COSTLY_ORDER 3
41
a6ffdc07 42enum migratetype {
47118af0 43 MIGRATE_UNMOVABLE,
47118af0 44 MIGRATE_MOVABLE,
016c13da 45 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
48#ifdef CONFIG_CMA
49 /*
50 * MIGRATE_CMA migration type is designed to mimic the way
51 * ZONE_MOVABLE works. Only movable pages can be allocated
52 * from MIGRATE_CMA pageblocks and page allocator never
53 * implicitly change migration type of MIGRATE_CMA pageblock.
54 *
55 * The way to use it is to change migratetype of a range of
56 * pageblocks to MIGRATE_CMA which can be done by
57 * __free_pageblock_cma() function. What is important though
58 * is that a range of pageblocks must be aligned to
cb152a1a 59 * MAX_ORDER_NR_PAGES should biggest page be bigger than
47118af0
MN
60 * a single pageblock.
61 */
62 MIGRATE_CMA,
63#endif
194159fb 64#ifdef CONFIG_MEMORY_ISOLATION
47118af0 65 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 66#endif
47118af0
MN
67 MIGRATE_TYPES
68};
69
60f30350 70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 71extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 72
47118af0
MN
73#ifdef CONFIG_CMA
74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
76#else
77# define is_migrate_cma(migratetype) false
7c15d9bb 78# define is_migrate_cma_page(_page) false
47118af0 79#endif
b2a0ac88 80
b682debd
VB
81static inline bool is_migrate_movable(int mt)
82{
83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84}
85
b2a0ac88
MG
86#define for_each_migratetype_order(order, type) \
87 for (order = 0; order < MAX_ORDER; order++) \
88 for (type = 0; type < MIGRATE_TYPES; type++)
89
467c996c
MG
90extern int page_group_by_mobility_disabled;
91
d38ac97f 92#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
e58469ba 93
dc4b0caf 94#define get_pageblock_migratetype(page) \
535b81e2 95 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
dc4b0caf 96
1da177e4 97struct free_area {
b2a0ac88 98 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
99 unsigned long nr_free;
100};
101
b03641af
DW
102static inline struct page *get_page_from_free_area(struct free_area *area,
103 int migratetype)
104{
105 return list_first_entry_or_null(&area->free_list[migratetype],
106 struct page, lru);
107}
108
b03641af
DW
109static inline bool free_area_empty(struct free_area *area, int migratetype)
110{
111 return list_empty(&area->free_list[migratetype]);
112}
113
1da177e4
LT
114struct pglist_data;
115
116/*
041711ce 117 * Add a wild amount of padding here to ensure data fall into separate
1da177e4
LT
118 * cachelines. There are very few zone structures in the machine, so space
119 * consumption is not a concern here.
120 */
121#if defined(CONFIG_SMP)
122struct zone_padding {
123 char x[0];
22fc6ecc 124} ____cacheline_internodealigned_in_smp;
1da177e4
LT
125#define ZONE_PADDING(name) struct zone_padding name;
126#else
127#define ZONE_PADDING(name)
128#endif
129
3a321d2a
KW
130#ifdef CONFIG_NUMA
131enum numa_stat_item {
132 NUMA_HIT, /* allocated in intended node */
133 NUMA_MISS, /* allocated in non intended node */
134 NUMA_FOREIGN, /* was intended here, hit elsewhere */
135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
136 NUMA_LOCAL, /* allocation from local node */
137 NUMA_OTHER, /* allocation from other node */
f19298b9 138 NR_VM_NUMA_EVENT_ITEMS
3a321d2a
KW
139};
140#else
f19298b9 141#define NR_VM_NUMA_EVENT_ITEMS 0
3a321d2a
KW
142#endif
143
2244b95a 144enum zone_stat_item {
51ed4491 145 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 146 NR_FREE_PAGES,
71c799f4
MK
147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 NR_ZONE_ACTIVE_ANON,
150 NR_ZONE_INACTIVE_FILE,
151 NR_ZONE_ACTIVE_FILE,
152 NR_ZONE_UNEVICTABLE,
5a1c84b4 153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
c6a7f572 155 /* Second 128 byte cacheline */
d2c5e30c 156 NR_BOUNCE,
91537fee
MK
157#if IS_ENABLED(CONFIG_ZSMALLOC)
158 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 159#endif
d1ce749a 160 NR_FREE_CMA_PAGES,
2244b95a
CL
161 NR_VM_ZONE_STAT_ITEMS };
162
75ef7184 163enum node_stat_item {
599d0c95
MG
164 NR_LRU_BASE,
165 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
166 NR_ACTIVE_ANON, /* " " " " " */
167 NR_INACTIVE_FILE, /* " " " " " */
168 NR_ACTIVE_FILE, /* " " " " " */
169 NR_UNEVICTABLE, /* " " " " " */
d42f3245
RG
170 NR_SLAB_RECLAIMABLE_B,
171 NR_SLAB_UNRECLAIMABLE_B,
599d0c95
MG
172 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
173 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 174 WORKINGSET_NODES,
170b04b7
JK
175 WORKINGSET_REFAULT_BASE,
176 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_FILE,
178 WORKINGSET_ACTIVATE_BASE,
179 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_FILE,
181 WORKINGSET_RESTORE_BASE,
182 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_FILE,
1e6b1085 184 WORKINGSET_NODERECLAIM,
4b9d0fab 185 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
186 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
187 only modified from process context */
11fb9989
MG
188 NR_FILE_PAGES,
189 NR_FILE_DIRTY,
190 NR_WRITEBACK,
191 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
192 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
193 NR_SHMEM_THPS,
194 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
195 NR_FILE_THPS,
196 NR_FILE_PMDMAPPED,
11fb9989 197 NR_ANON_THPS,
c4a25635
MG
198 NR_VMSCAN_WRITE,
199 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
200 NR_DIRTIED, /* page dirtyings since bootup */
201 NR_WRITTEN, /* page writings since bootup */
b29940c1 202 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
1970dc6f
JH
203 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
204 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
991e7673
SB
205 NR_KERNEL_STACK_KB, /* measured in KiB */
206#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
207 NR_KERNEL_SCS_KB, /* measured in KiB */
208#endif
f0c0c115 209 NR_PAGETABLE, /* used for pagetables */
b6038942
SB
210#ifdef CONFIG_SWAP
211 NR_SWAPCACHE,
212#endif
75ef7184
MG
213 NR_VM_NODE_STAT_ITEMS
214};
215
69473e5d
MS
216/*
217 * Returns true if the item should be printed in THPs (/proc/vmstat
218 * currently prints number of anon, file and shmem THPs. But the item
219 * is charged in pages).
220 */
221static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
222{
223 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
224 return false;
225
bf9ecead 226 return item == NR_ANON_THPS ||
57b2847d 227 item == NR_FILE_THPS ||
a1528e21 228 item == NR_SHMEM_THPS ||
380780e7
MS
229 item == NR_SHMEM_PMDMAPPED ||
230 item == NR_FILE_PMDMAPPED;
69473e5d
MS
231}
232
ea426c2a
RG
233/*
234 * Returns true if the value is measured in bytes (most vmstat values are
235 * measured in pages). This defines the API part, the internal representation
236 * might be different.
237 */
238static __always_inline bool vmstat_item_in_bytes(int idx)
239{
d42f3245
RG
240 /*
241 * Global and per-node slab counters track slab pages.
242 * It's expected that changes are multiples of PAGE_SIZE.
243 * Internally values are stored in pages.
244 *
245 * Per-memcg and per-lruvec counters track memory, consumed
246 * by individual slab objects. These counters are actually
247 * byte-precise.
248 */
249 return (idx == NR_SLAB_RECLAIMABLE_B ||
250 idx == NR_SLAB_UNRECLAIMABLE_B);
ea426c2a
RG
251}
252
4f98a2fe
RR
253/*
254 * We do arithmetic on the LRU lists in various places in the code,
255 * so it is important to keep the active lists LRU_ACTIVE higher in
256 * the array than the corresponding inactive lists, and to keep
257 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
258 *
259 * This has to be kept in sync with the statistics in zone_stat_item
260 * above and the descriptions in vmstat_text in mm/vmstat.c
261 */
262#define LRU_BASE 0
263#define LRU_ACTIVE 1
264#define LRU_FILE 2
265
b69408e8 266enum lru_list {
4f98a2fe
RR
267 LRU_INACTIVE_ANON = LRU_BASE,
268 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
269 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
270 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 271 LRU_UNEVICTABLE,
894bc310
LS
272 NR_LRU_LISTS
273};
b69408e8 274
4111304d 275#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 276
4111304d 277#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 278
b91ac374 279static inline bool is_file_lru(enum lru_list lru)
4f98a2fe 280{
4111304d 281 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
282}
283
b91ac374 284static inline bool is_active_lru(enum lru_list lru)
b69408e8 285{
4111304d 286 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
287}
288
ed017373
YZ
289#define ANON_AND_FILE 2
290
1b05117d
JW
291enum lruvec_flags {
292 LRUVEC_CONGESTED, /* lruvec has many dirty pages
293 * backed by a congested BDI
294 */
295};
296
6290df54 297struct lruvec {
23047a96 298 struct list_head lists[NR_LRU_LISTS];
6168d0da
AS
299 /* per lruvec lru_lock for memcg */
300 spinlock_t lru_lock;
1431d4d1
JW
301 /*
302 * These track the cost of reclaiming one LRU - file or anon -
303 * over the other. As the observed cost of reclaiming one LRU
304 * increases, the reclaim scan balance tips toward the other.
305 */
306 unsigned long anon_cost;
307 unsigned long file_cost;
31d8fcac
JW
308 /* Non-resident age, driven by LRU movement */
309 atomic_long_t nonresident_age;
ed017373
YZ
310 /* Refaults at the time of last reclaim cycle */
311 unsigned long refaults[ANON_AND_FILE];
1b05117d
JW
312 /* Various lruvec state flags (enum lruvec_flags) */
313 unsigned long flags;
c255a458 314#ifdef CONFIG_MEMCG
599d0c95 315 struct pglist_data *pgdat;
7f5e86c2 316#endif
6290df54
JW
317};
318
653e003d 319/* Isolate unmapped pages */
f3fd4a61 320#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 321/* Isolate for asynchronous migration */
f3fd4a61 322#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
323/* Isolate unevictable pages */
324#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
325
326/* LRU Isolation modes. */
9efeccac 327typedef unsigned __bitwise isolate_mode_t;
4356f21d 328
41858966
MG
329enum zone_watermarks {
330 WMARK_MIN,
331 WMARK_LOW,
332 WMARK_HIGH,
333 NR_WMARK
334};
335
44042b44
MG
336/*
337 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
338 * for pageblock size for THP if configured.
339 */
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
341#define NR_PCP_THP 1
342#else
343#define NR_PCP_THP 0
344#endif
345#define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
346
347/*
348 * Shift to encode migratetype and order in the same integer, with order
349 * in the least significant bits.
350 */
351#define NR_PCP_ORDER_WIDTH 8
352#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
353
1c30844d
MG
354#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
355#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
356#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
357#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 358
dbbee9d5 359/* Fields and list protected by pagesets local_lock in page_alloc.c */
1da177e4
LT
360struct per_cpu_pages {
361 int count; /* number of pages in the list */
1da177e4
LT
362 int high; /* high watermark, emptying needed */
363 int batch; /* chunk size for buddy add/remove */
3b12e7e9 364 short free_factor; /* batch scaling factor during free */
28f836b6 365#ifdef CONFIG_NUMA
3b12e7e9 366 short expire; /* When 0, remote pagesets are drained */
28f836b6 367#endif
5f8dcc21
MG
368
369 /* Lists of pages, one per migrate type stored on the pcp-lists */
44042b44 370 struct list_head lists[NR_PCP_LISTS];
1da177e4
LT
371};
372
28f836b6 373struct per_cpu_zonestat {
2244b95a
CL
374#ifdef CONFIG_SMP
375 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
28f836b6
MG
376 s8 stat_threshold;
377#endif
378#ifdef CONFIG_NUMA
f19298b9
MG
379 /*
380 * Low priority inaccurate counters that are only folded
381 * on demand. Use a large type to avoid the overhead of
382 * folding during refresh_cpu_vm_stats.
383 */
384 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
2244b95a 385#endif
99dcc3e5 386};
e7c8d5c9 387
75ef7184
MG
388struct per_cpu_nodestat {
389 s8 stat_threshold;
390 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
391};
392
97965478
CL
393#endif /* !__GENERATING_BOUNDS.H */
394
2f1b6248
CL
395enum zone_type {
396 /*
734f9246
NSJ
397 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
398 * to DMA to all of the addressable memory (ZONE_NORMAL).
399 * On architectures where this area covers the whole 32 bit address
400 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
401 * DMA addressing constraints. This distinction is important as a 32bit
402 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
403 * platforms may need both zones as they support peripherals with
404 * different DMA addressing limitations.
2f1b6248 405 */
734f9246 406#ifdef CONFIG_ZONE_DMA
2f1b6248 407 ZONE_DMA,
4b51d669 408#endif
fb0e7942 409#ifdef CONFIG_ZONE_DMA32
2f1b6248 410 ZONE_DMA32,
fb0e7942 411#endif
2f1b6248
CL
412 /*
413 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
414 * performed on pages in ZONE_NORMAL if the DMA devices support
415 * transfers to all addressable memory.
416 */
417 ZONE_NORMAL,
e53ef38d 418#ifdef CONFIG_HIGHMEM
2f1b6248
CL
419 /*
420 * A memory area that is only addressable by the kernel through
421 * mapping portions into its own address space. This is for example
422 * used by i386 to allow the kernel to address the memory beyond
423 * 900MB. The kernel will set up special mappings (page
424 * table entries on i386) for each page that the kernel needs to
425 * access.
426 */
427 ZONE_HIGHMEM,
e53ef38d 428#endif
9181a980
DH
429 /*
430 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
431 * movable pages with few exceptional cases described below. Main use
432 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
433 * likely to succeed, and to locally limit unmovable allocations - e.g.,
434 * to increase the number of THP/huge pages. Notable special cases are:
435 *
436 * 1. Pinned pages: (long-term) pinning of movable pages might
d1e153fe
PT
437 * essentially turn such pages unmovable. Therefore, we do not allow
438 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
439 * faulted, they come from the right zone right away. However, it is
440 * still possible that address space already has pages in
441 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
442 * touches that memory before pinning). In such case we migrate them
443 * to a different zone. When migration fails - pinning fails.
9181a980
DH
444 * 2. memblock allocations: kernelcore/movablecore setups might create
445 * situations where ZONE_MOVABLE contains unmovable allocations
446 * after boot. Memory offlining and allocations fail early.
447 * 3. Memory holes: kernelcore/movablecore setups might create very rare
448 * situations where ZONE_MOVABLE contains memory holes after boot,
449 * for example, if we have sections that are only partially
450 * populated. Memory offlining and allocations fail early.
451 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
452 * memory offlining, such pages cannot be allocated.
453 * 5. Unmovable PG_offline pages: in paravirtualized environments,
454 * hotplugged memory blocks might only partially be managed by the
455 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
456 * parts not manged by the buddy are unmovable PG_offline pages. In
457 * some cases (virtio-mem), such pages can be skipped during
458 * memory offlining, however, cannot be moved/allocated. These
459 * techniques might use alloc_contig_range() to hide previously
460 * exposed pages from the buddy again (e.g., to implement some sort
461 * of memory unplug in virtio-mem).
9afaf30f
PT
462 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
463 * situations where ZERO_PAGE(0) which is allocated differently
464 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
465 * cannot be migrated.
a08a2ae3
OS
466 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
467 * memory to the MOVABLE zone, the vmemmap pages are also placed in
468 * such zone. Such pages cannot be really moved around as they are
469 * self-stored in the range, but they are treated as movable when
470 * the range they describe is about to be offlined.
9181a980
DH
471 *
472 * In general, no unmovable allocations that degrade memory offlining
473 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
474 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
475 * if has_unmovable_pages() states that there are no unmovable pages,
476 * there can be false negatives).
477 */
2a1e274a 478 ZONE_MOVABLE,
033fbae9
DW
479#ifdef CONFIG_ZONE_DEVICE
480 ZONE_DEVICE,
481#endif
97965478 482 __MAX_NR_ZONES
033fbae9 483
2f1b6248 484};
1da177e4 485
97965478
CL
486#ifndef __GENERATING_BOUNDS_H
487
ed017373
YZ
488#define ASYNC_AND_SYNC 2
489
1da177e4 490struct zone {
3484b2de 491 /* Read-mostly fields */
41858966
MG
492
493 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 494 unsigned long _watermark[NR_WMARK];
1c30844d 495 unsigned long watermark_boost;
41858966 496
0aaa29a5
MG
497 unsigned long nr_reserved_highatomic;
498
1da177e4 499 /*
89903327
AM
500 * We don't know if the memory that we're going to allocate will be
501 * freeable or/and it will be released eventually, so to avoid totally
502 * wasting several GB of ram we must reserve some of the lower zone
503 * memory (otherwise we risk to run OOM on the lower zones despite
504 * there being tons of freeable ram on the higher zones). This array is
505 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
506 * changes.
1da177e4 507 */
3484b2de 508 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 509
e7c8d5c9 510#ifdef CONFIG_NUMA
d5f541ed 511 int node;
3484b2de 512#endif
3484b2de 513 struct pglist_data *zone_pgdat;
28f836b6
MG
514 struct per_cpu_pages __percpu *per_cpu_pageset;
515 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
952eaf81
VB
516 /*
517 * the high and batch values are copied to individual pagesets for
518 * faster access
519 */
520 int pageset_high;
521 int pageset_batch;
3484b2de 522
835c134e
MG
523#ifndef CONFIG_SPARSEMEM
524 /*
d9c23400 525 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
526 * In SPARSEMEM, this map is stored in struct mem_section
527 */
528 unsigned long *pageblock_flags;
529#endif /* CONFIG_SPARSEMEM */
530
1da177e4
LT
531 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
532 unsigned long zone_start_pfn;
533
bdc8cb98 534 /*
9feedc9d
JL
535 * spanned_pages is the total pages spanned by the zone, including
536 * holes, which is calculated as:
537 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 538 *
9feedc9d
JL
539 * present_pages is physical pages existing within the zone, which
540 * is calculated as:
8761e31c 541 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
542 *
543 * managed_pages is present pages managed by the buddy system, which
544 * is calculated as (reserved_pages includes pages allocated by the
545 * bootmem allocator):
546 * managed_pages = present_pages - reserved_pages;
547 *
3c381db1
DH
548 * cma pages is present pages that are assigned for CMA use
549 * (MIGRATE_CMA).
550 *
9feedc9d
JL
551 * So present_pages may be used by memory hotplug or memory power
552 * management logic to figure out unmanaged pages by checking
553 * (present_pages - managed_pages). And managed_pages should be used
554 * by page allocator and vm scanner to calculate all kinds of watermarks
555 * and thresholds.
556 *
557 * Locking rules:
558 *
559 * zone_start_pfn and spanned_pages are protected by span_seqlock.
560 * It is a seqlock because it has to be read outside of zone->lock,
561 * and it is done in the main allocator path. But, it is written
562 * quite infrequently.
563 *
564 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
565 * frequently read in proximity to zone->lock. It's good to
566 * give them a chance of being in the same cacheline.
9feedc9d 567 *
c3d5f5f0 568 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
569 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
570 * present_pages should get_online_mems() to get a stable value.
bdc8cb98 571 */
9705bea5 572 atomic_long_t managed_pages;
9feedc9d
JL
573 unsigned long spanned_pages;
574 unsigned long present_pages;
3c381db1
DH
575#ifdef CONFIG_CMA
576 unsigned long cma_pages;
577#endif
3484b2de
MG
578
579 const char *name;
1da177e4 580
ad53f92e
JK
581#ifdef CONFIG_MEMORY_ISOLATION
582 /*
583 * Number of isolated pageblock. It is used to solve incorrect
584 * freepage counting problem due to racy retrieving migratetype
585 * of pageblock. Protected by zone->lock.
586 */
587 unsigned long nr_isolate_pageblock;
588#endif
589
3484b2de
MG
590#ifdef CONFIG_MEMORY_HOTPLUG
591 /* see spanned/present_pages for more description */
592 seqlock_t span_seqlock;
593#endif
594
9dcb8b68 595 int initialized;
3484b2de 596
0f661148 597 /* Write-intensive fields used from the page allocator */
3484b2de 598 ZONE_PADDING(_pad1_)
0f661148 599
3484b2de
MG
600 /* free areas of different sizes */
601 struct free_area free_area[MAX_ORDER];
602
603 /* zone flags, see below */
604 unsigned long flags;
605
0f661148 606 /* Primarily protects free_area */
a368ab67
MG
607 spinlock_t lock;
608
0f661148 609 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
610 ZONE_PADDING(_pad2_)
611
3484b2de
MG
612 /*
613 * When free pages are below this point, additional steps are taken
614 * when reading the number of free pages to avoid per-cpu counter
615 * drift allowing watermarks to be breached
616 */
617 unsigned long percpu_drift_mark;
618
619#if defined CONFIG_COMPACTION || defined CONFIG_CMA
620 /* pfn where compaction free scanner should start */
621 unsigned long compact_cached_free_pfn;
ed017373
YZ
622 /* pfn where compaction migration scanner should start */
623 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
e332f741
MG
624 unsigned long compact_init_migrate_pfn;
625 unsigned long compact_init_free_pfn;
3484b2de
MG
626#endif
627
628#ifdef CONFIG_COMPACTION
629 /*
630 * On compaction failure, 1<<compact_defer_shift compactions
631 * are skipped before trying again. The number attempted since
632 * last failure is tracked with compact_considered.
860b3272 633 * compact_order_failed is the minimum compaction failed order.
3484b2de
MG
634 */
635 unsigned int compact_considered;
636 unsigned int compact_defer_shift;
637 int compact_order_failed;
638#endif
639
640#if defined CONFIG_COMPACTION || defined CONFIG_CMA
641 /* Set to true when the PG_migrate_skip bits should be cleared */
642 bool compact_blockskip_flush;
643#endif
644
7cf91a98
JK
645 bool contiguous;
646
3484b2de
MG
647 ZONE_PADDING(_pad3_)
648 /* Zone statistics */
649 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
f19298b9 650 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
22fc6ecc 651} ____cacheline_internodealigned_in_smp;
1da177e4 652
599d0c95 653enum pgdat_flags {
599d0c95 654 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
655 * many dirty file pages at the tail
656 * of the LRU.
657 */
599d0c95 658 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
659 * many pages under writeback
660 */
a5f5f91d 661 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 662};
e815af95 663
73444bc4
MG
664enum zone_flags {
665 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
666 * Cleared when kswapd is woken.
667 */
c49c2c47 668 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
73444bc4
MG
669};
670
9705bea5
AK
671static inline unsigned long zone_managed_pages(struct zone *zone)
672{
673 return (unsigned long)atomic_long_read(&zone->managed_pages);
674}
675
3c381db1
DH
676static inline unsigned long zone_cma_pages(struct zone *zone)
677{
678#ifdef CONFIG_CMA
679 return zone->cma_pages;
680#else
681 return 0;
682#endif
683}
684
f9228b20 685static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
686{
687 return zone->zone_start_pfn + zone->spanned_pages;
688}
689
690static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
691{
692 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
693}
694
2a6e3ebe
CS
695static inline bool zone_is_initialized(struct zone *zone)
696{
9dcb8b68 697 return zone->initialized;
2a6e3ebe
CS
698}
699
700static inline bool zone_is_empty(struct zone *zone)
701{
702 return zone->spanned_pages == 0;
703}
704
f1dd2cd1
MH
705/*
706 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
707 * intersection with the given zone
708 */
709static inline bool zone_intersects(struct zone *zone,
710 unsigned long start_pfn, unsigned long nr_pages)
711{
712 if (zone_is_empty(zone))
713 return false;
714 if (start_pfn >= zone_end_pfn(zone) ||
715 start_pfn + nr_pages <= zone->zone_start_pfn)
716 return false;
717
718 return true;
719}
720
1da177e4
LT
721/*
722 * The "priority" of VM scanning is how much of the queues we will scan in one
723 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
724 * queues ("queue_length >> 12") during an aging round.
725 */
726#define DEF_PRIORITY 12
727
9276b1bc
PJ
728/* Maximum number of zones on a zonelist */
729#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
730
c00eb15a
YB
731enum {
732 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 733#ifdef CONFIG_NUMA
c00eb15a
YB
734 /*
735 * The NUMA zonelists are doubled because we need zonelists that
736 * restrict the allocations to a single node for __GFP_THISNODE.
737 */
738 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 739#endif
c00eb15a
YB
740 MAX_ZONELISTS
741};
9276b1bc 742
dd1a239f
MG
743/*
744 * This struct contains information about a zone in a zonelist. It is stored
745 * here to avoid dereferences into large structures and lookups of tables
746 */
747struct zoneref {
748 struct zone *zone; /* Pointer to actual zone */
749 int zone_idx; /* zone_idx(zoneref->zone) */
750};
751
1da177e4
LT
752/*
753 * One allocation request operates on a zonelist. A zonelist
754 * is a list of zones, the first one is the 'goal' of the
755 * allocation, the other zones are fallback zones, in decreasing
756 * priority.
757 *
dd1a239f
MG
758 * To speed the reading of the zonelist, the zonerefs contain the zone index
759 * of the entry being read. Helper functions to access information given
760 * a struct zoneref are
761 *
762 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
763 * zonelist_zone_idx() - Return the index of the zone for an entry
764 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
765 */
766struct zonelist {
dd1a239f 767 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
768};
769
bb1c50d3
MR
770/*
771 * The array of struct pages for flatmem.
772 * It must be declared for SPARSEMEM as well because there are configurations
773 * that rely on that.
774 */
5b99cd0e 775extern struct page *mem_map;
5b99cd0e 776
364c1eeb
YS
777#ifdef CONFIG_TRANSPARENT_HUGEPAGE
778struct deferred_split {
779 spinlock_t split_queue_lock;
780 struct list_head split_queue;
781 unsigned long split_queue_len;
782};
783#endif
784
1da177e4 785/*
1da177e4 786 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
787 * it's memory layout. On UMA machines there is a single pglist_data which
788 * describes the whole memory.
1da177e4
LT
789 *
790 * Memory statistics and page replacement data structures are maintained on a
791 * per-zone basis.
792 */
1da177e4 793typedef struct pglist_data {
496df3d3
BW
794 /*
795 * node_zones contains just the zones for THIS node. Not all of the
796 * zones may be populated, but it is the full list. It is referenced by
797 * this node's node_zonelists as well as other node's node_zonelists.
798 */
1da177e4 799 struct zone node_zones[MAX_NR_ZONES];
496df3d3
BW
800
801 /*
802 * node_zonelists contains references to all zones in all nodes.
803 * Generally the first zones will be references to this node's
804 * node_zones.
805 */
523b9458 806 struct zonelist node_zonelists[MAX_ZONELISTS];
496df3d3
BW
807
808 int nr_zones; /* number of populated zones in this node */
43b02ba9 809#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1da177e4 810 struct page *node_mem_map;
eefa864b
JK
811#ifdef CONFIG_PAGE_EXTENSION
812 struct page_ext *node_page_ext;
813#endif
d41dee36 814#endif
3a2d7fa8 815#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 816 /*
fa004ab7
WY
817 * Must be held any time you expect node_start_pfn,
818 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
3d060856
PT
819 * Also synchronizes pgdat->first_deferred_pfn during deferred page
820 * init.
208d54e5 821 *
114d4b79 822 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
823 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
824 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 825 *
72c3b51b 826 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
827 */
828 spinlock_t node_size_lock;
829#endif
1da177e4
LT
830 unsigned long node_start_pfn;
831 unsigned long node_present_pages; /* total number of physical pages */
832 unsigned long node_spanned_pages; /* total size of physical page
833 range, including holes */
834 int node_id;
1da177e4 835 wait_queue_head_t kswapd_wait;
5515061d 836 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
837 struct task_struct *kswapd; /* Protected by
838 mem_hotplug_begin/end() */
38087d9b 839 int kswapd_order;
97a225e6 840 enum zone_type kswapd_highest_zoneidx;
38087d9b 841
c73322d0
JW
842 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
843
698b1b30
VB
844#ifdef CONFIG_COMPACTION
845 int kcompactd_max_order;
97a225e6 846 enum zone_type kcompactd_highest_zoneidx;
698b1b30
VB
847 wait_queue_head_t kcompactd_wait;
848 struct task_struct *kcompactd;
8177a420 849#endif
281e3726
MG
850 /*
851 * This is a per-node reserve of pages that are not available
852 * to userspace allocations.
853 */
854 unsigned long totalreserve_pages;
855
a5f5f91d
MG
856#ifdef CONFIG_NUMA
857 /*
0a3c5772 858 * node reclaim becomes active if more unmapped pages exist.
a5f5f91d
MG
859 */
860 unsigned long min_unmapped_pages;
861 unsigned long min_slab_pages;
862#endif /* CONFIG_NUMA */
863
a52633d8
MG
864 /* Write-intensive fields used by page reclaim */
865 ZONE_PADDING(_pad1_)
3a80a7fa
MG
866
867#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
868 /*
869 * If memory initialisation on large machines is deferred then this
870 * is the first PFN that needs to be initialised.
871 */
872 unsigned long first_deferred_pfn;
873#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
874
875#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 876 struct deferred_split deferred_split_queue;
a3d0a918 877#endif
75ef7184 878
599d0c95 879 /* Fields commonly accessed by the page reclaim scanner */
867e5e1d
JW
880
881 /*
882 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
883 *
884 * Use mem_cgroup_lruvec() to look up lruvecs.
885 */
886 struct lruvec __lruvec;
599d0c95 887
599d0c95
MG
888 unsigned long flags;
889
890 ZONE_PADDING(_pad2_)
891
75ef7184
MG
892 /* Per-node vmstats */
893 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
894 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
895} pg_data_t;
896
897#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
898#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
43b02ba9 899#ifdef CONFIG_FLATMEM
408fde81 900#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
901#else
902#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
903#endif
408fde81 904#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 905
c6830c22 906#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 907#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 908
da3649e1
CS
909static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
910{
911 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
912}
913
914static inline bool pgdat_is_empty(pg_data_t *pgdat)
915{
916 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
917}
c6830c22 918
208d54e5
DH
919#include <linux/memory_hotplug.h>
920
72675e13 921void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40 922void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
97a225e6 923 enum zone_type highest_zoneidx);
86a294a8 924bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 925 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 926 long free_pages);
7aeb09f9 927bool zone_watermark_ok(struct zone *z, unsigned int order,
97a225e6 928 unsigned long mark, int highest_zoneidx,
c603844b 929 unsigned int alloc_flags);
7aeb09f9 930bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 931 unsigned long mark, int highest_zoneidx);
c1d0da83
LD
932/*
933 * Memory initialization context, use to differentiate memory added by
934 * the platform statically or via memory hotplug interface.
935 */
936enum meminit_context {
937 MEMINIT_EARLY,
938 MEMINIT_HOTPLUG,
a2f3aa02 939};
c1d0da83 940
dc0bbf3b 941extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 942 unsigned long size);
718127cc 943
bea8c150 944extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 945
599d0c95 946static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 947{
c255a458 948#ifdef CONFIG_MEMCG
599d0c95 949 return lruvec->pgdat;
7f5e86c2 950#else
867e5e1d 951 return container_of(lruvec, struct pglist_data, __lruvec);
7f5e86c2
KK
952#endif
953}
954
7aac7898
LS
955#ifdef CONFIG_HAVE_MEMORYLESS_NODES
956int local_memory_node(int node_id);
957#else
958static inline int local_memory_node(int node_id) { return node_id; };
959#endif
960
1da177e4
LT
961/*
962 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
963 */
964#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
965
1f90a347
DW
966#ifdef CONFIG_ZONE_DEVICE
967static inline bool zone_is_zone_device(struct zone *zone)
968{
969 return zone_idx(zone) == ZONE_DEVICE;
970}
971#else
972static inline bool zone_is_zone_device(struct zone *zone)
973{
974 return false;
975}
976#endif
977
6aa303de
MG
978/*
979 * Returns true if a zone has pages managed by the buddy allocator.
980 * All the reclaim decisions have to use this function rather than
981 * populated_zone(). If the whole zone is reserved then we can easily
982 * end up with populated_zone() && !managed_zone().
983 */
984static inline bool managed_zone(struct zone *zone)
985{
9705bea5 986 return zone_managed_pages(zone);
6aa303de
MG
987}
988
989/* Returns true if a zone has memory */
990static inline bool populated_zone(struct zone *zone)
f3fe6512 991{
6aa303de 992 return zone->present_pages;
f3fe6512
CK
993}
994
c1093b74
PT
995#ifdef CONFIG_NUMA
996static inline int zone_to_nid(struct zone *zone)
997{
998 return zone->node;
999}
1000
1001static inline void zone_set_nid(struct zone *zone, int nid)
1002{
1003 zone->node = nid;
1004}
1005#else
1006static inline int zone_to_nid(struct zone *zone)
1007{
1008 return 0;
1009}
1010
1011static inline void zone_set_nid(struct zone *zone, int nid) {}
1012#endif
1013
2a1e274a
MG
1014extern int movable_zone;
1015
2f1b6248 1016static inline int is_highmem_idx(enum zone_type idx)
1da177e4 1017{
e53ef38d 1018#ifdef CONFIG_HIGHMEM
2a1e274a 1019 return (idx == ZONE_HIGHMEM ||
b19bd1c9 1020 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
e53ef38d
CL
1021#else
1022 return 0;
1023#endif
1da177e4
LT
1024}
1025
1da177e4 1026/**
b4a991ec 1027 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
1028 * highmem zone or not. This is an attempt to keep references
1029 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
198fba41
MR
1030 * @zone: pointer to struct zone variable
1031 * Return: 1 for a highmem zone, 0 otherwise
1da177e4
LT
1032 */
1033static inline int is_highmem(struct zone *zone)
1034{
e53ef38d 1035#ifdef CONFIG_HIGHMEM
29f9cb53 1036 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
1037#else
1038 return 0;
1039#endif
1da177e4
LT
1040}
1041
1da177e4
LT
1042/* These two functions are used to setup the per zone pages min values */
1043struct ctl_table;
2374c09b 1044
32927393
CH
1045int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1046 loff_t *);
1047int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1048 size_t *, loff_t *);
d3cda233 1049extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
32927393
CH
1050int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1051 size_t *, loff_t *);
74f44822
MG
1052int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1053 void *, size_t *, loff_t *);
9614634f 1054int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
32927393 1055 void *, size_t *, loff_t *);
0ff38490 1056int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
32927393
CH
1057 void *, size_t *, loff_t *);
1058int numa_zonelist_order_handler(struct ctl_table *, int,
1059 void *, size_t *, loff_t *);
74f44822 1060extern int percpu_pagelist_high_fraction;
f0c0b2b8 1061extern char numa_zonelist_order[];
c9bff3ee 1062#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 1063
a9ee6cf5 1064#ifndef CONFIG_NUMA
1da177e4
LT
1065
1066extern struct pglist_data contig_page_data;
351de44f
MG
1067static inline struct pglist_data *NODE_DATA(int nid)
1068{
1069 return &contig_page_data;
1070}
1da177e4 1071#define NODE_MEM_MAP(nid) mem_map
1da177e4 1072
a9ee6cf5 1073#else /* CONFIG_NUMA */
1da177e4
LT
1074
1075#include <asm/mmzone.h>
1076
a9ee6cf5 1077#endif /* !CONFIG_NUMA */
348f8b6c 1078
95144c78
KH
1079extern struct pglist_data *first_online_pgdat(void);
1080extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1081extern struct zone *next_zone(struct zone *zone);
8357f869
KH
1082
1083/**
12d15f0d 1084 * for_each_online_pgdat - helper macro to iterate over all online nodes
198fba41 1085 * @pgdat: pointer to a pg_data_t variable
8357f869
KH
1086 */
1087#define for_each_online_pgdat(pgdat) \
1088 for (pgdat = first_online_pgdat(); \
1089 pgdat; \
1090 pgdat = next_online_pgdat(pgdat))
8357f869
KH
1091/**
1092 * for_each_zone - helper macro to iterate over all memory zones
198fba41 1093 * @zone: pointer to struct zone variable
8357f869
KH
1094 *
1095 * The user only needs to declare the zone variable, for_each_zone
1096 * fills it in.
1097 */
1098#define for_each_zone(zone) \
1099 for (zone = (first_online_pgdat())->node_zones; \
1100 zone; \
1101 zone = next_zone(zone))
1102
ee99c71c
KM
1103#define for_each_populated_zone(zone) \
1104 for (zone = (first_online_pgdat())->node_zones; \
1105 zone; \
1106 zone = next_zone(zone)) \
1107 if (!populated_zone(zone)) \
1108 ; /* do nothing */ \
1109 else
1110
dd1a239f
MG
1111static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1112{
1113 return zoneref->zone;
1114}
1115
1116static inline int zonelist_zone_idx(struct zoneref *zoneref)
1117{
1118 return zoneref->zone_idx;
1119}
1120
1121static inline int zonelist_node_idx(struct zoneref *zoneref)
1122{
c1093b74 1123 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1124}
1125
682a3385
MG
1126struct zoneref *__next_zones_zonelist(struct zoneref *z,
1127 enum zone_type highest_zoneidx,
1128 nodemask_t *nodes);
1129
19770b32
MG
1130/**
1131 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
198fba41
MR
1132 * @z: The cursor used as a starting point for the search
1133 * @highest_zoneidx: The zone index of the highest zone to return
1134 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1135 *
1136 * This function returns the next zone at or below a given zone index that is
1137 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1138 * search. The zoneref returned is a cursor that represents the current zone
1139 * being examined. It should be advanced by one before calling
1140 * next_zones_zonelist again.
198fba41
MR
1141 *
1142 * Return: the next zone at or below highest_zoneidx within the allowed
1143 * nodemask using a cursor within a zonelist as a starting point
19770b32 1144 */
682a3385 1145static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1146 enum zone_type highest_zoneidx,
682a3385
MG
1147 nodemask_t *nodes)
1148{
1149 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1150 return z;
1151 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1152}
dd1a239f 1153
19770b32
MG
1154/**
1155 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
198fba41
MR
1156 * @zonelist: The zonelist to search for a suitable zone
1157 * @highest_zoneidx: The zone index of the highest zone to return
1158 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1159 *
1160 * This function returns the first zone at or below a given zone index that is
1161 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1162 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1163 * one before calling.
ea57485a
VB
1164 *
1165 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1166 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1167 * update due to cpuset modification.
198fba41
MR
1168 *
1169 * Return: Zoneref pointer for the first suitable zone found
19770b32 1170 */
dd1a239f 1171static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1172 enum zone_type highest_zoneidx,
c33d6c06 1173 nodemask_t *nodes)
54a6eb5c 1174{
c33d6c06 1175 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1176 highest_zoneidx, nodes);
54a6eb5c
MG
1177}
1178
19770b32
MG
1179/**
1180 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
198fba41
MR
1181 * @zone: The current zone in the iterator
1182 * @z: The current pointer within zonelist->_zonerefs being iterated
1183 * @zlist: The zonelist being iterated
1184 * @highidx: The zone index of the highest zone to return
1185 * @nodemask: Nodemask allowed by the allocator
19770b32
MG
1186 *
1187 * This iterator iterates though all zones at or below a given zone index and
1188 * within a given nodemask
1189 */
1190#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1191 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1192 zone; \
05891fb0 1193 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1194 zone = zonelist_zone(z))
1195
30d8ec73 1196#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
c33d6c06
MG
1197 for (zone = z->zone; \
1198 zone; \
1199 z = next_zones_zonelist(++z, highidx, nodemask), \
1200 zone = zonelist_zone(z))
1201
54a6eb5c
MG
1202
1203/**
1204 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
198fba41
MR
1205 * @zone: The current zone in the iterator
1206 * @z: The current pointer within zonelist->zones being iterated
1207 * @zlist: The zonelist being iterated
1208 * @highidx: The zone index of the highest zone to return
54a6eb5c
MG
1209 *
1210 * This iterator iterates though all zones at or below a given zone index.
1211 */
1212#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1213 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1214
d41dee36
AW
1215#ifdef CONFIG_SPARSEMEM
1216#include <asm/sparsemem.h>
1217#endif
1218
2bdaf115
AW
1219#ifdef CONFIG_FLATMEM
1220#define pfn_to_nid(pfn) (0)
1221#endif
1222
d41dee36
AW
1223#ifdef CONFIG_SPARSEMEM
1224
1225/*
d41dee36
AW
1226 * PA_SECTION_SHIFT physical address to/from section number
1227 * PFN_SECTION_SHIFT pfn to/from section number
1228 */
d41dee36
AW
1229#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1230#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1231
1232#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1233
1234#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1235#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1236
835c134e 1237#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1238 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1239
d41dee36
AW
1240#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1241#error Allocator MAX_ORDER exceeds SECTION_SIZE
1242#endif
1243
1dd2bfc8
YI
1244static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1245{
1246 return pfn >> PFN_SECTION_SHIFT;
1247}
1248static inline unsigned long section_nr_to_pfn(unsigned long sec)
1249{
1250 return sec << PFN_SECTION_SHIFT;
1251}
e3c40f37 1252
a539f353
DK
1253#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1254#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1255
f1eca35a 1256#define SUBSECTION_SHIFT 21
9ffc1d19 1257#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
f1eca35a
DW
1258
1259#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1260#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1261#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1262
1263#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1264#error Subsection size exceeds section size
1265#else
1266#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1267#endif
1268
a3619190
DW
1269#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1270#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1271
f1eca35a 1272struct mem_section_usage {
0a9f9f62 1273#ifdef CONFIG_SPARSEMEM_VMEMMAP
f1eca35a 1274 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
0a9f9f62 1275#endif
f1eca35a
DW
1276 /* See declaration of similar field in struct zone */
1277 unsigned long pageblock_flags[0];
1278};
1279
f46edbd1
DW
1280void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1281
d41dee36 1282struct page;
eefa864b 1283struct page_ext;
d41dee36 1284struct mem_section {
29751f69
AW
1285 /*
1286 * This is, logically, a pointer to an array of struct
1287 * pages. However, it is stored with some other magic.
1288 * (see sparse.c::sparse_init_one_section())
1289 *
30c253e6
AW
1290 * Additionally during early boot we encode node id of
1291 * the location of the section here to guide allocation.
1292 * (see sparse.c::memory_present())
1293 *
29751f69
AW
1294 * Making it a UL at least makes someone do a cast
1295 * before using it wrong.
1296 */
1297 unsigned long section_mem_map;
5c0e3066 1298
f1eca35a 1299 struct mem_section_usage *usage;
eefa864b
JK
1300#ifdef CONFIG_PAGE_EXTENSION
1301 /*
0c9ad804 1302 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1303 * section. (see page_ext.h about this.)
1304 */
1305 struct page_ext *page_ext;
1306 unsigned long pad;
1307#endif
55878e88
CS
1308 /*
1309 * WARNING: mem_section must be a power-of-2 in size for the
1310 * calculation and use of SECTION_ROOT_MASK to make sense.
1311 */
d41dee36
AW
1312};
1313
3e347261
BP
1314#ifdef CONFIG_SPARSEMEM_EXTREME
1315#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1316#else
1317#define SECTIONS_PER_ROOT 1
1318#endif
802f192e 1319
3e347261 1320#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1321#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1322#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1323
3e347261 1324#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1325extern struct mem_section **mem_section;
802f192e 1326#else
3e347261
BP
1327extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1328#endif
d41dee36 1329
f1eca35a
DW
1330static inline unsigned long *section_to_usemap(struct mem_section *ms)
1331{
1332 return ms->usage->pageblock_flags;
1333}
1334
29751f69
AW
1335static inline struct mem_section *__nr_to_section(unsigned long nr)
1336{
83e3c487
KS
1337#ifdef CONFIG_SPARSEMEM_EXTREME
1338 if (!mem_section)
1339 return NULL;
1340#endif
3e347261
BP
1341 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1342 return NULL;
1343 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1344}
2491f0a2 1345extern unsigned long __section_nr(struct mem_section *ms);
f1eca35a 1346extern size_t mem_section_usage_size(void);
29751f69
AW
1347
1348/*
1349 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1350 * a little bit of information. The pointer is calculated
1351 * as mem_map - section_nr_to_pfn(pnum). The result is
1352 * aligned to the minimum alignment of the two values:
1353 * 1. All mem_map arrays are page-aligned.
1354 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1355 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1356 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1357 * worst combination is powerpc with 256k pages,
1358 * which results in PFN_SECTION_SHIFT equal 6.
1359 * To sum it up, at least 6 bits are available.
29751f69 1360 */
1f90a347
DW
1361#define SECTION_MARKED_PRESENT (1UL<<0)
1362#define SECTION_HAS_MEM_MAP (1UL<<1)
1363#define SECTION_IS_ONLINE (1UL<<2)
1364#define SECTION_IS_EARLY (1UL<<3)
1365#define SECTION_TAINT_ZONE_DEVICE (1UL<<4)
1366#define SECTION_MAP_LAST_BIT (1UL<<5)
1367#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1368#define SECTION_NID_SHIFT 3
29751f69
AW
1369
1370static inline struct page *__section_mem_map_addr(struct mem_section *section)
1371{
1372 unsigned long map = section->section_mem_map;
1373 map &= SECTION_MAP_MASK;
1374 return (struct page *)map;
1375}
1376
540557b9 1377static inline int present_section(struct mem_section *section)
29751f69 1378{
802f192e 1379 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1380}
1381
540557b9
AW
1382static inline int present_section_nr(unsigned long nr)
1383{
1384 return present_section(__nr_to_section(nr));
1385}
1386
1387static inline int valid_section(struct mem_section *section)
29751f69 1388{
802f192e 1389 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1390}
1391
326e1b8f
DW
1392static inline int early_section(struct mem_section *section)
1393{
1394 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1395}
1396
29751f69
AW
1397static inline int valid_section_nr(unsigned long nr)
1398{
1399 return valid_section(__nr_to_section(nr));
1400}
1401
2d070eab
MH
1402static inline int online_section(struct mem_section *section)
1403{
1404 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1405}
1406
1f90a347
DW
1407static inline int online_device_section(struct mem_section *section)
1408{
1409 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1410
1411 return section && ((section->section_mem_map & flags) == flags);
1412}
1413
2d070eab
MH
1414static inline int online_section_nr(unsigned long nr)
1415{
1416 return online_section(__nr_to_section(nr));
1417}
1418
1419#ifdef CONFIG_MEMORY_HOTPLUG
1420void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2d070eab
MH
1421void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1422#endif
2d070eab 1423
d41dee36
AW
1424static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1425{
29751f69 1426 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1427}
1428
2491f0a2 1429extern unsigned long __highest_present_section_nr;
c4e1be9e 1430
f46edbd1
DW
1431static inline int subsection_map_index(unsigned long pfn)
1432{
1433 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1434}
1435
1436#ifdef CONFIG_SPARSEMEM_VMEMMAP
1437static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1438{
1439 int idx = subsection_map_index(pfn);
1440
1441 return test_bit(idx, ms->usage->subsection_map);
1442}
1443#else
1444static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1445{
1446 return 1;
1447}
1448#endif
1449
7b7bf499 1450#ifndef CONFIG_HAVE_ARCH_PFN_VALID
51c656ae
MR
1451/**
1452 * pfn_valid - check if there is a valid memory map entry for a PFN
1453 * @pfn: the page frame number to check
1454 *
1455 * Check if there is a valid memory map entry aka struct page for the @pfn.
1456 * Note, that availability of the memory map entry does not imply that
1457 * there is actual usable memory at that @pfn. The struct page may
1458 * represent a hole or an unusable page frame.
1459 *
1460 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1461 */
d41dee36
AW
1462static inline int pfn_valid(unsigned long pfn)
1463{
f46edbd1
DW
1464 struct mem_section *ms;
1465
16c9afc7
AK
1466 /*
1467 * Ensure the upper PAGE_SHIFT bits are clear in the
1468 * pfn. Else it might lead to false positives when
1469 * some of the upper bits are set, but the lower bits
1470 * match a valid pfn.
1471 */
1472 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1473 return 0;
1474
d41dee36
AW
1475 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1476 return 0;
f46edbd1
DW
1477 ms = __nr_to_section(pfn_to_section_nr(pfn));
1478 if (!valid_section(ms))
1479 return 0;
1480 /*
1481 * Traditionally early sections always returned pfn_valid() for
1482 * the entire section-sized span.
1483 */
1484 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 1485}
7b7bf499 1486#endif
d41dee36 1487
e03d1f78 1488static inline int pfn_in_present_section(unsigned long pfn)
540557b9
AW
1489{
1490 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1491 return 0;
1492 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1493}
1494
4c605881
DH
1495static inline unsigned long next_present_section_nr(unsigned long section_nr)
1496{
1497 while (++section_nr <= __highest_present_section_nr) {
1498 if (present_section_nr(section_nr))
1499 return section_nr;
1500 }
1501
1502 return -1;
1503}
1504
d41dee36
AW
1505/*
1506 * These are _only_ used during initialisation, therefore they
1507 * can use __initdata ... They could have names to indicate
1508 * this restriction.
1509 */
1510#ifdef CONFIG_NUMA
161599ff
AW
1511#define pfn_to_nid(pfn) \
1512({ \
1513 unsigned long __pfn_to_nid_pfn = (pfn); \
1514 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1515})
2bdaf115
AW
1516#else
1517#define pfn_to_nid(pfn) (0)
d41dee36
AW
1518#endif
1519
d41dee36
AW
1520void sparse_init(void);
1521#else
1522#define sparse_init() do {} while (0)
28ae55c9 1523#define sparse_index_init(_sec, _nid) do {} while (0)
e03d1f78 1524#define pfn_in_present_section pfn_valid
f46edbd1 1525#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
1526#endif /* CONFIG_SPARSEMEM */
1527
14e07298
AW
1528/*
1529 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
8bb4e7a2 1530 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
14e07298
AW
1531 * pfn_valid_within() should be used in this case; we optimise this away
1532 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1533 */
1534#ifdef CONFIG_HOLES_IN_ZONE
1535#define pfn_valid_within(pfn) pfn_valid(pfn)
1536#else
1537#define pfn_valid_within(pfn) (1)
1538#endif
1539
97965478 1540#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1541#endif /* !__ASSEMBLY__ */
1da177e4 1542#endif /* _LINUX_MMZONE_H */