]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/mmzone.h
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2
[mirror_ubuntu-zesty-kernel.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
835c134e 16#include <linux/pageblock-flags.h>
1da177e4 17#include <asm/atomic.h>
93ff66bf 18#include <asm/page.h>
1da177e4
LT
19
20/* Free memory management - zoned buddy allocator. */
21#ifndef CONFIG_FORCE_MAX_ZONEORDER
22#define MAX_ORDER 11
23#else
24#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25#endif
e984bb43 26#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 27
5ad333eb
AW
28/*
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
33 */
34#define PAGE_ALLOC_COSTLY_ORDER 3
35
b92a6edd 36#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
b2a0ac88 37#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
38#define MIGRATE_RECLAIMABLE 1
39#define MIGRATE_MOVABLE 2
e010487d
MG
40#define MIGRATE_HIGHATOMIC 3
41#define MIGRATE_TYPES 4
b92a6edd
MG
42#else
43#define MIGRATE_UNMOVABLE 0
e12ba74d 44#define MIGRATE_UNRECLAIMABLE 0
b92a6edd 45#define MIGRATE_MOVABLE 0
e010487d 46#define MIGRATE_HIGHATOMIC 0
b92a6edd
MG
47#define MIGRATE_TYPES 1
48#endif
b2a0ac88
MG
49
50#define for_each_migratetype_order(order, type) \
51 for (order = 0; order < MAX_ORDER; order++) \
52 for (type = 0; type < MIGRATE_TYPES; type++)
53
1da177e4 54struct free_area {
b2a0ac88 55 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
56 unsigned long nr_free;
57};
58
59struct pglist_data;
60
61/*
62 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
63 * So add a wild amount of padding here to ensure that they fall into separate
64 * cachelines. There are very few zone structures in the machine, so space
65 * consumption is not a concern here.
66 */
67#if defined(CONFIG_SMP)
68struct zone_padding {
69 char x[0];
22fc6ecc 70} ____cacheline_internodealigned_in_smp;
1da177e4
LT
71#define ZONE_PADDING(name) struct zone_padding name;
72#else
73#define ZONE_PADDING(name)
74#endif
75
2244b95a 76enum zone_stat_item {
51ed4491 77 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 78 NR_FREE_PAGES,
c8785385
CL
79 NR_INACTIVE,
80 NR_ACTIVE,
f3dbd344
CL
81 NR_ANON_PAGES, /* Mapped anonymous pages */
82 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 83 only modified from process context */
347ce434 84 NR_FILE_PAGES,
b1e7a8fd 85 NR_FILE_DIRTY,
ce866b34 86 NR_WRITEBACK,
51ed4491
CL
87 /* Second 128 byte cacheline */
88 NR_SLAB_RECLAIMABLE,
89 NR_SLAB_UNRECLAIMABLE,
90 NR_PAGETABLE, /* used for pagetables */
fd39fc85 91 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 92 NR_BOUNCE,
e129b5c2 93 NR_VMSCAN_WRITE,
ca889e6c
CL
94#ifdef CONFIG_NUMA
95 NUMA_HIT, /* allocated in intended node */
96 NUMA_MISS, /* allocated in non intended node */
97 NUMA_FOREIGN, /* was intended here, hit elsewhere */
98 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
99 NUMA_LOCAL, /* allocation from local node */
100 NUMA_OTHER, /* allocation from other node */
101#endif
2244b95a
CL
102 NR_VM_ZONE_STAT_ITEMS };
103
1da177e4
LT
104struct per_cpu_pages {
105 int count; /* number of pages in the list */
1da177e4
LT
106 int high; /* high watermark, emptying needed */
107 int batch; /* chunk size for buddy add/remove */
108 struct list_head list; /* the list of pages */
109};
110
111struct per_cpu_pageset {
112 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
4037d452
CL
113#ifdef CONFIG_NUMA
114 s8 expire;
115#endif
2244b95a 116#ifdef CONFIG_SMP
df9ecaba 117 s8 stat_threshold;
2244b95a
CL
118 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
119#endif
1da177e4
LT
120} ____cacheline_aligned_in_smp;
121
e7c8d5c9
CL
122#ifdef CONFIG_NUMA
123#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
124#else
125#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
126#endif
127
2f1b6248 128enum zone_type {
4b51d669 129#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
130 /*
131 * ZONE_DMA is used when there are devices that are not able
132 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
133 * carve out the portion of memory that is needed for these devices.
134 * The range is arch specific.
135 *
136 * Some examples
137 *
138 * Architecture Limit
139 * ---------------------------
140 * parisc, ia64, sparc <4G
141 * s390 <2G
2f1b6248
CL
142 * arm Various
143 * alpha Unlimited or 0-16MB.
144 *
145 * i386, x86_64 and multiple other arches
146 * <16M.
147 */
148 ZONE_DMA,
4b51d669 149#endif
fb0e7942 150#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
151 /*
152 * x86_64 needs two ZONE_DMAs because it supports devices that are
153 * only able to do DMA to the lower 16M but also 32 bit devices that
154 * can only do DMA areas below 4G.
155 */
156 ZONE_DMA32,
fb0e7942 157#endif
2f1b6248
CL
158 /*
159 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
160 * performed on pages in ZONE_NORMAL if the DMA devices support
161 * transfers to all addressable memory.
162 */
163 ZONE_NORMAL,
e53ef38d 164#ifdef CONFIG_HIGHMEM
2f1b6248
CL
165 /*
166 * A memory area that is only addressable by the kernel through
167 * mapping portions into its own address space. This is for example
168 * used by i386 to allow the kernel to address the memory beyond
169 * 900MB. The kernel will set up special mappings (page
170 * table entries on i386) for each page that the kernel needs to
171 * access.
172 */
173 ZONE_HIGHMEM,
e53ef38d 174#endif
2a1e274a 175 ZONE_MOVABLE,
2f1b6248
CL
176 MAX_NR_ZONES
177};
1da177e4 178
1da177e4
LT
179/*
180 * When a memory allocation must conform to specific limitations (such
181 * as being suitable for DMA) the caller will pass in hints to the
182 * allocator in the gfp_mask, in the zone modifier bits. These bits
183 * are used to select a priority ordered list of memory zones which
19655d34 184 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 185 */
fb0e7942 186
4b51d669
CL
187/*
188 * Count the active zones. Note that the use of defined(X) outside
189 * #if and family is not necessarily defined so ensure we cannot use
190 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
191 */
192#define __ZONE_COUNT ( \
193 defined(CONFIG_ZONE_DMA) \
194 + defined(CONFIG_ZONE_DMA32) \
195 + 1 \
196 + defined(CONFIG_HIGHMEM) \
2a1e274a 197 + 1 \
4b51d669
CL
198)
199#if __ZONE_COUNT < 2
200#define ZONES_SHIFT 0
201#elif __ZONE_COUNT <= 2
19655d34 202#define ZONES_SHIFT 1
4b51d669 203#elif __ZONE_COUNT <= 4
19655d34 204#define ZONES_SHIFT 2
4b51d669
CL
205#else
206#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 207#endif
4b51d669 208#undef __ZONE_COUNT
1da177e4 209
1da177e4
LT
210struct zone {
211 /* Fields commonly accessed by the page allocator */
1da177e4
LT
212 unsigned long pages_min, pages_low, pages_high;
213 /*
214 * We don't know if the memory that we're going to allocate will be freeable
215 * or/and it will be released eventually, so to avoid totally wasting several
216 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
217 * to run OOM on the lower zones despite there's tons of freeable ram
218 * on the higher zones). This array is recalculated at runtime if the
219 * sysctl_lowmem_reserve_ratio sysctl changes.
220 */
221 unsigned long lowmem_reserve[MAX_NR_ZONES];
222
e7c8d5c9 223#ifdef CONFIG_NUMA
d5f541ed 224 int node;
9614634f
CL
225 /*
226 * zone reclaim becomes active if more unmapped pages exist.
227 */
8417bba4 228 unsigned long min_unmapped_pages;
0ff38490 229 unsigned long min_slab_pages;
e7c8d5c9
CL
230 struct per_cpu_pageset *pageset[NR_CPUS];
231#else
1da177e4 232 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 233#endif
1da177e4
LT
234 /*
235 * free areas of different sizes
236 */
237 spinlock_t lock;
bdc8cb98
DH
238#ifdef CONFIG_MEMORY_HOTPLUG
239 /* see spanned/present_pages for more description */
240 seqlock_t span_seqlock;
241#endif
1da177e4
LT
242 struct free_area free_area[MAX_ORDER];
243
835c134e
MG
244#ifndef CONFIG_SPARSEMEM
245 /*
246 * Flags for a MAX_ORDER_NR_PAGES block. See pageblock-flags.h.
247 * In SPARSEMEM, this map is stored in struct mem_section
248 */
249 unsigned long *pageblock_flags;
250#endif /* CONFIG_SPARSEMEM */
251
1da177e4
LT
252
253 ZONE_PADDING(_pad1_)
254
255 /* Fields commonly accessed by the page reclaim scanner */
256 spinlock_t lru_lock;
257 struct list_head active_list;
258 struct list_head inactive_list;
259 unsigned long nr_scan_active;
260 unsigned long nr_scan_inactive;
1da177e4
LT
261 unsigned long pages_scanned; /* since last reclaim */
262 int all_unreclaimable; /* All pages pinned */
263
1e7e5a90
MH
264 /* A count of how many reclaimers are scanning this zone */
265 atomic_t reclaim_in_progress;
753ee728 266
2244b95a
CL
267 /* Zone statistics */
268 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 269
1da177e4
LT
270 /*
271 * prev_priority holds the scanning priority for this zone. It is
272 * defined as the scanning priority at which we achieved our reclaim
273 * target at the previous try_to_free_pages() or balance_pgdat()
274 * invokation.
275 *
276 * We use prev_priority as a measure of how much stress page reclaim is
277 * under - it drives the swappiness decision: whether to unmap mapped
278 * pages.
279 *
3bb1a852 280 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
281 * it is expected to average out OK.
282 */
1da177e4
LT
283 int prev_priority;
284
285
286 ZONE_PADDING(_pad2_)
287 /* Rarely used or read-mostly fields */
288
289 /*
290 * wait_table -- the array holding the hash table
02b694de 291 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
292 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
293 *
294 * The purpose of all these is to keep track of the people
295 * waiting for a page to become available and make them
296 * runnable again when possible. The trouble is that this
297 * consumes a lot of space, especially when so few things
298 * wait on pages at a given time. So instead of using
299 * per-page waitqueues, we use a waitqueue hash table.
300 *
301 * The bucket discipline is to sleep on the same queue when
302 * colliding and wake all in that wait queue when removing.
303 * When something wakes, it must check to be sure its page is
304 * truly available, a la thundering herd. The cost of a
305 * collision is great, but given the expected load of the
306 * table, they should be so rare as to be outweighed by the
307 * benefits from the saved space.
308 *
309 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
310 * primary users of these fields, and in mm/page_alloc.c
311 * free_area_init_core() performs the initialization of them.
312 */
313 wait_queue_head_t * wait_table;
02b694de 314 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
315 unsigned long wait_table_bits;
316
317 /*
318 * Discontig memory support fields.
319 */
320 struct pglist_data *zone_pgdat;
1da177e4
LT
321 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
322 unsigned long zone_start_pfn;
323
bdc8cb98
DH
324 /*
325 * zone_start_pfn, spanned_pages and present_pages are all
326 * protected by span_seqlock. It is a seqlock because it has
327 * to be read outside of zone->lock, and it is done in the main
328 * allocator path. But, it is written quite infrequently.
329 *
330 * The lock is declared along with zone->lock because it is
331 * frequently read in proximity to zone->lock. It's good to
332 * give them a chance of being in the same cacheline.
333 */
1da177e4
LT
334 unsigned long spanned_pages; /* total size, including holes */
335 unsigned long present_pages; /* amount of memory (excluding holes) */
336
337 /*
338 * rarely used fields:
339 */
15ad7cdc 340 const char *name;
22fc6ecc 341} ____cacheline_internodealigned_in_smp;
1da177e4 342
1da177e4
LT
343/*
344 * The "priority" of VM scanning is how much of the queues we will scan in one
345 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
346 * queues ("queue_length >> 12") during an aging round.
347 */
348#define DEF_PRIORITY 12
349
9276b1bc
PJ
350/* Maximum number of zones on a zonelist */
351#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
352
353#ifdef CONFIG_NUMA
523b9458
CL
354
355/*
356 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
357 * allocations to a single node for GFP_THISNODE.
358 *
359 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
360 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
361 */
362#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
363
364
9276b1bc
PJ
365/*
366 * We cache key information from each zonelist for smaller cache
367 * footprint when scanning for free pages in get_page_from_freelist().
368 *
369 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
370 * up short of free memory since the last time (last_fullzone_zap)
371 * we zero'd fullzones.
372 * 2) The array z_to_n[] maps each zone in the zonelist to its node
373 * id, so that we can efficiently evaluate whether that node is
374 * set in the current tasks mems_allowed.
375 *
376 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
377 * indexed by a zones offset in the zonelist zones[] array.
378 *
379 * The get_page_from_freelist() routine does two scans. During the
380 * first scan, we skip zones whose corresponding bit in 'fullzones'
381 * is set or whose corresponding node in current->mems_allowed (which
382 * comes from cpusets) is not set. During the second scan, we bypass
383 * this zonelist_cache, to ensure we look methodically at each zone.
384 *
385 * Once per second, we zero out (zap) fullzones, forcing us to
386 * reconsider nodes that might have regained more free memory.
387 * The field last_full_zap is the time we last zapped fullzones.
388 *
389 * This mechanism reduces the amount of time we waste repeatedly
390 * reexaming zones for free memory when they just came up low on
391 * memory momentarilly ago.
392 *
393 * The zonelist_cache struct members logically belong in struct
394 * zonelist. However, the mempolicy zonelists constructed for
395 * MPOL_BIND are intentionally variable length (and usually much
396 * shorter). A general purpose mechanism for handling structs with
397 * multiple variable length members is more mechanism than we want
398 * here. We resort to some special case hackery instead.
399 *
400 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
401 * part because they are shorter), so we put the fixed length stuff
402 * at the front of the zonelist struct, ending in a variable length
403 * zones[], as is needed by MPOL_BIND.
404 *
405 * Then we put the optional zonelist cache on the end of the zonelist
406 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
407 * the fixed length portion at the front of the struct. This pointer
408 * both enables us to find the zonelist cache, and in the case of
409 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
410 * to know that the zonelist cache is not there.
411 *
412 * The end result is that struct zonelists come in two flavors:
413 * 1) The full, fixed length version, shown below, and
414 * 2) The custom zonelists for MPOL_BIND.
415 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
416 *
417 * Even though there may be multiple CPU cores on a node modifying
418 * fullzones or last_full_zap in the same zonelist_cache at the same
419 * time, we don't lock it. This is just hint data - if it is wrong now
420 * and then, the allocator will still function, perhaps a bit slower.
421 */
422
423
424struct zonelist_cache {
9276b1bc 425 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 426 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
427 unsigned long last_full_zap; /* when last zap'd (jiffies) */
428};
429#else
523b9458 430#define MAX_ZONELISTS MAX_NR_ZONES
9276b1bc
PJ
431struct zonelist_cache;
432#endif
433
1da177e4
LT
434/*
435 * One allocation request operates on a zonelist. A zonelist
436 * is a list of zones, the first one is the 'goal' of the
437 * allocation, the other zones are fallback zones, in decreasing
438 * priority.
439 *
9276b1bc
PJ
440 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
441 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 442 */
9276b1bc 443
1da177e4 444struct zonelist {
9276b1bc
PJ
445 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
446 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
447#ifdef CONFIG_NUMA
448 struct zonelist_cache zlcache; // optional ...
449#endif
1da177e4
LT
450};
451
b377fd39
MG
452#ifdef CONFIG_NUMA
453/*
454 * Only custom zonelists like MPOL_BIND need to be filtered as part of
455 * policies. As described in the comment for struct zonelist_cache, these
456 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
457 * that to determine if the zonelists needs to be filtered or not.
458 */
459static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
460{
461 return !zonelist->zlcache_ptr;
462}
463#else
464static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
465{
466 return 0;
467}
468#endif /* CONFIG_NUMA */
469
c713216d
MG
470#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
471struct node_active_region {
472 unsigned long start_pfn;
473 unsigned long end_pfn;
474 int nid;
475};
476#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 477
5b99cd0e
HC
478#ifndef CONFIG_DISCONTIGMEM
479/* The array of struct pages - for discontigmem use pgdat->lmem_map */
480extern struct page *mem_map;
481#endif
482
1da177e4
LT
483/*
484 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
485 * (mostly NUMA machines?) to denote a higher-level memory zone than the
486 * zone denotes.
487 *
488 * On NUMA machines, each NUMA node would have a pg_data_t to describe
489 * it's memory layout.
490 *
491 * Memory statistics and page replacement data structures are maintained on a
492 * per-zone basis.
493 */
494struct bootmem_data;
495typedef struct pglist_data {
496 struct zone node_zones[MAX_NR_ZONES];
523b9458 497 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 498 int nr_zones;
d41dee36 499#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 500 struct page *node_mem_map;
d41dee36 501#endif
1da177e4 502 struct bootmem_data *bdata;
208d54e5
DH
503#ifdef CONFIG_MEMORY_HOTPLUG
504 /*
505 * Must be held any time you expect node_start_pfn, node_present_pages
506 * or node_spanned_pages stay constant. Holding this will also
507 * guarantee that any pfn_valid() stays that way.
508 *
509 * Nests above zone->lock and zone->size_seqlock.
510 */
511 spinlock_t node_size_lock;
512#endif
1da177e4
LT
513 unsigned long node_start_pfn;
514 unsigned long node_present_pages; /* total number of physical pages */
515 unsigned long node_spanned_pages; /* total size of physical page
516 range, including holes */
517 int node_id;
1da177e4
LT
518 wait_queue_head_t kswapd_wait;
519 struct task_struct *kswapd;
520 int kswapd_max_order;
521} pg_data_t;
522
523#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
524#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 525#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 526#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
527#else
528#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
529#endif
408fde81 530#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 531
208d54e5
DH
532#include <linux/memory_hotplug.h>
533
1da177e4
LT
534void get_zone_counts(unsigned long *active, unsigned long *inactive,
535 unsigned long *free);
536void build_all_zonelists(void);
537void wakeup_kswapd(struct zone *zone, int order);
538int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 539 int classzone_idx, int alloc_flags);
a2f3aa02
DH
540enum memmap_context {
541 MEMMAP_EARLY,
542 MEMMAP_HOTPLUG,
543};
718127cc 544extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
545 unsigned long size,
546 enum memmap_context context);
718127cc 547
1da177e4
LT
548#ifdef CONFIG_HAVE_MEMORY_PRESENT
549void memory_present(int nid, unsigned long start, unsigned long end);
550#else
551static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
552#endif
553
554#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
555unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
556#endif
557
558/*
559 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
560 */
561#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
562
f3fe6512
CK
563static inline int populated_zone(struct zone *zone)
564{
565 return (!!zone->present_pages);
566}
567
2a1e274a
MG
568extern int movable_zone;
569
570static inline int zone_movable_is_highmem(void)
571{
572#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
573 return movable_zone == ZONE_HIGHMEM;
574#else
575 return 0;
576#endif
577}
578
2f1b6248 579static inline int is_highmem_idx(enum zone_type idx)
1da177e4 580{
e53ef38d 581#ifdef CONFIG_HIGHMEM
2a1e274a
MG
582 return (idx == ZONE_HIGHMEM ||
583 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
584#else
585 return 0;
586#endif
1da177e4
LT
587}
588
2f1b6248 589static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
590{
591 return (idx == ZONE_NORMAL);
592}
9328b8fa 593
1da177e4
LT
594/**
595 * is_highmem - helper function to quickly check if a struct zone is a
596 * highmem zone or not. This is an attempt to keep references
597 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
598 * @zone - pointer to struct zone variable
599 */
600static inline int is_highmem(struct zone *zone)
601{
e53ef38d 602#ifdef CONFIG_HIGHMEM
2a1e274a
MG
603 int zone_idx = zone - zone->zone_pgdat->node_zones;
604 return zone_idx == ZONE_HIGHMEM ||
605 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
e53ef38d
CL
606#else
607 return 0;
608#endif
1da177e4
LT
609}
610
611static inline int is_normal(struct zone *zone)
612{
613 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
614}
615
9328b8fa
NP
616static inline int is_dma32(struct zone *zone)
617{
fb0e7942 618#ifdef CONFIG_ZONE_DMA32
9328b8fa 619 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
620#else
621 return 0;
622#endif
9328b8fa
NP
623}
624
625static inline int is_dma(struct zone *zone)
626{
4b51d669 627#ifdef CONFIG_ZONE_DMA
9328b8fa 628 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
629#else
630 return 0;
631#endif
9328b8fa
NP
632}
633
1da177e4
LT
634/* These two functions are used to setup the per zone pages min values */
635struct ctl_table;
636struct file;
637int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
638 void __user *, size_t *, loff_t *);
639extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
640int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
641 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
642int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
643 void __user *, size_t *, loff_t *);
9614634f
CL
644int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
645 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
646int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
647 struct file *, void __user *, size_t *, loff_t *);
1da177e4 648
f0c0b2b8
KH
649extern int numa_zonelist_order_handler(struct ctl_table *, int,
650 struct file *, void __user *, size_t *, loff_t *);
651extern char numa_zonelist_order[];
652#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
653
1da177e4
LT
654#include <linux/topology.h>
655/* Returns the number of the current Node. */
69d81fcd 656#ifndef numa_node_id
39c715b7 657#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 658#endif
1da177e4 659
93b7504e 660#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
661
662extern struct pglist_data contig_page_data;
663#define NODE_DATA(nid) (&contig_page_data)
664#define NODE_MEM_MAP(nid) mem_map
665#define MAX_NODES_SHIFT 1
1da177e4 666
93b7504e 667#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
668
669#include <asm/mmzone.h>
670
93b7504e 671#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 672
95144c78
KH
673extern struct pglist_data *first_online_pgdat(void);
674extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
675extern struct zone *next_zone(struct zone *zone);
8357f869
KH
676
677/**
678 * for_each_pgdat - helper macro to iterate over all nodes
679 * @pgdat - pointer to a pg_data_t variable
680 */
681#define for_each_online_pgdat(pgdat) \
682 for (pgdat = first_online_pgdat(); \
683 pgdat; \
684 pgdat = next_online_pgdat(pgdat))
8357f869
KH
685/**
686 * for_each_zone - helper macro to iterate over all memory zones
687 * @zone - pointer to struct zone variable
688 *
689 * The user only needs to declare the zone variable, for_each_zone
690 * fills it in.
691 */
692#define for_each_zone(zone) \
693 for (zone = (first_online_pgdat())->node_zones; \
694 zone; \
695 zone = next_zone(zone))
696
d41dee36
AW
697#ifdef CONFIG_SPARSEMEM
698#include <asm/sparsemem.h>
699#endif
700
07808b74 701#if BITS_PER_LONG == 32
1da177e4 702/*
a2f1b424
AK
703 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
704 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 705 */
a2f1b424 706#define FLAGS_RESERVED 9
348f8b6c 707
1da177e4
LT
708#elif BITS_PER_LONG == 64
709/*
710 * with 64 bit flags field, there's plenty of room.
711 */
348f8b6c 712#define FLAGS_RESERVED 32
1da177e4 713
348f8b6c 714#else
1da177e4 715
348f8b6c 716#error BITS_PER_LONG not defined
1da177e4 717
1da177e4
LT
718#endif
719
c713216d
MG
720#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
721 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
722#define early_pfn_to_nid(nid) (0UL)
723#endif
724
2bdaf115
AW
725#ifdef CONFIG_FLATMEM
726#define pfn_to_nid(pfn) (0)
727#endif
728
d41dee36
AW
729#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
730#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
731
732#ifdef CONFIG_SPARSEMEM
733
734/*
735 * SECTION_SHIFT #bits space required to store a section #
736 *
737 * PA_SECTION_SHIFT physical address to/from section number
738 * PFN_SECTION_SHIFT pfn to/from section number
739 */
740#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
741
742#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
743#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
744
745#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
746
747#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
748#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
749
835c134e 750#define SECTION_BLOCKFLAGS_BITS \
5c0e3066 751 ((1 << (PFN_SECTION_SHIFT - (MAX_ORDER-1))) * NR_PAGEBLOCK_BITS)
835c134e 752
d41dee36
AW
753#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
754#error Allocator MAX_ORDER exceeds SECTION_SIZE
755#endif
756
757struct page;
758struct mem_section {
29751f69
AW
759 /*
760 * This is, logically, a pointer to an array of struct
761 * pages. However, it is stored with some other magic.
762 * (see sparse.c::sparse_init_one_section())
763 *
30c253e6
AW
764 * Additionally during early boot we encode node id of
765 * the location of the section here to guide allocation.
766 * (see sparse.c::memory_present())
767 *
29751f69
AW
768 * Making it a UL at least makes someone do a cast
769 * before using it wrong.
770 */
771 unsigned long section_mem_map;
5c0e3066
MG
772
773 /* See declaration of similar field in struct zone */
774 unsigned long *pageblock_flags;
d41dee36
AW
775};
776
3e347261
BP
777#ifdef CONFIG_SPARSEMEM_EXTREME
778#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
779#else
780#define SECTIONS_PER_ROOT 1
781#endif
802f192e 782
3e347261
BP
783#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
784#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
785#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 786
3e347261
BP
787#ifdef CONFIG_SPARSEMEM_EXTREME
788extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 789#else
3e347261
BP
790extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
791#endif
d41dee36 792
29751f69
AW
793static inline struct mem_section *__nr_to_section(unsigned long nr)
794{
3e347261
BP
795 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
796 return NULL;
797 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 798}
4ca644d9 799extern int __section_nr(struct mem_section* ms);
29751f69
AW
800
801/*
802 * We use the lower bits of the mem_map pointer to store
803 * a little bit of information. There should be at least
804 * 3 bits here due to 32-bit alignment.
805 */
806#define SECTION_MARKED_PRESENT (1UL<<0)
807#define SECTION_HAS_MEM_MAP (1UL<<1)
808#define SECTION_MAP_LAST_BIT (1UL<<2)
809#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 810#define SECTION_NID_SHIFT 2
29751f69
AW
811
812static inline struct page *__section_mem_map_addr(struct mem_section *section)
813{
814 unsigned long map = section->section_mem_map;
815 map &= SECTION_MAP_MASK;
816 return (struct page *)map;
817}
818
540557b9 819static inline int present_section(struct mem_section *section)
29751f69 820{
802f192e 821 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
822}
823
540557b9
AW
824static inline int present_section_nr(unsigned long nr)
825{
826 return present_section(__nr_to_section(nr));
827}
828
829static inline int valid_section(struct mem_section *section)
29751f69 830{
802f192e 831 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
832}
833
834static inline int valid_section_nr(unsigned long nr)
835{
836 return valid_section(__nr_to_section(nr));
837}
838
d41dee36
AW
839static inline struct mem_section *__pfn_to_section(unsigned long pfn)
840{
29751f69 841 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
842}
843
d41dee36
AW
844static inline int pfn_valid(unsigned long pfn)
845{
846 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
847 return 0;
29751f69 848 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
849}
850
540557b9
AW
851static inline int pfn_present(unsigned long pfn)
852{
853 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
854 return 0;
855 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
856}
857
d41dee36
AW
858/*
859 * These are _only_ used during initialisation, therefore they
860 * can use __initdata ... They could have names to indicate
861 * this restriction.
862 */
863#ifdef CONFIG_NUMA
161599ff
AW
864#define pfn_to_nid(pfn) \
865({ \
866 unsigned long __pfn_to_nid_pfn = (pfn); \
867 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
868})
2bdaf115
AW
869#else
870#define pfn_to_nid(pfn) (0)
d41dee36
AW
871#endif
872
d41dee36
AW
873#define early_pfn_valid(pfn) pfn_valid(pfn)
874void sparse_init(void);
875#else
876#define sparse_init() do {} while (0)
28ae55c9 877#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
878#endif /* CONFIG_SPARSEMEM */
879
75167957
AW
880#ifdef CONFIG_NODES_SPAN_OTHER_NODES
881#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
882#else
883#define early_pfn_in_nid(pfn, nid) (1)
884#endif
885
d41dee36
AW
886#ifndef early_pfn_valid
887#define early_pfn_valid(pfn) (1)
888#endif
889
890void memory_present(int nid, unsigned long start, unsigned long end);
891unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
892
14e07298
AW
893/*
894 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
895 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
896 * pfn_valid_within() should be used in this case; we optimise this away
897 * when we have no holes within a MAX_ORDER_NR_PAGES block.
898 */
899#ifdef CONFIG_HOLES_IN_ZONE
900#define pfn_valid_within(pfn) pfn_valid(pfn)
901#else
902#define pfn_valid_within(pfn) (1)
903#endif
904
1da177e4
LT
905#endif /* !__ASSEMBLY__ */
906#endif /* __KERNEL__ */
907#endif /* _LINUX_MMZONE_H */