]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/mmzone.h
mm: workingset: eviction buckets for bigmem/lowbit machines
[mirror_ubuntu-jammy-kernel.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
bbeae5b0 18#include <linux/page-flags-layout.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
47118af0 40 MIGRATE_MOVABLE,
016c13da 41 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
194159fb 60#ifdef CONFIG_MEMORY_ISOLATION
47118af0 61 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 62#endif
47118af0
MN
63 MIGRATE_TYPES
64};
65
60f30350
VB
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
47118af0
MN
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71#else
72# define is_migrate_cma(migratetype) false
73#endif
b2a0ac88
MG
74
75#define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
467c996c
MG
79extern int page_group_by_mobility_disabled;
80
e58469ba
MG
81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
dc4b0caf
MG
84#define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
88static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
467c996c 89{
e58469ba 90 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
dc4b0caf
MG
91 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
92 MIGRATETYPE_MASK);
467c996c
MG
93}
94
1da177e4 95struct free_area {
b2a0ac88 96 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
97 unsigned long nr_free;
98};
99
100struct pglist_data;
101
102/*
103 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
104 * So add a wild amount of padding here to ensure that they fall into separate
105 * cachelines. There are very few zone structures in the machine, so space
106 * consumption is not a concern here.
107 */
108#if defined(CONFIG_SMP)
109struct zone_padding {
110 char x[0];
22fc6ecc 111} ____cacheline_internodealigned_in_smp;
1da177e4
LT
112#define ZONE_PADDING(name) struct zone_padding name;
113#else
114#define ZONE_PADDING(name)
115#endif
116
2244b95a 117enum zone_stat_item {
51ed4491 118 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 119 NR_FREE_PAGES,
81c0a2bb 120 NR_ALLOC_BATCH,
b69408e8 121 NR_LRU_BASE,
4f98a2fe
RR
122 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
123 NR_ACTIVE_ANON, /* " " " " " */
124 NR_INACTIVE_FILE, /* " " " " " */
125 NR_ACTIVE_FILE, /* " " " " " */
894bc310 126 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 127 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
128 NR_ANON_PAGES, /* Mapped anonymous pages */
129 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 130 only modified from process context */
347ce434 131 NR_FILE_PAGES,
b1e7a8fd 132 NR_FILE_DIRTY,
ce866b34 133 NR_WRITEBACK,
51ed4491
CL
134 NR_SLAB_RECLAIMABLE,
135 NR_SLAB_UNRECLAIMABLE,
136 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
137 NR_KERNEL_STACK,
138 /* Second 128 byte cacheline */
fd39fc85 139 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 140 NR_BOUNCE,
e129b5c2 141 NR_VMSCAN_WRITE,
49ea7eb6 142 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 143 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
144 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
145 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 146 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
147 NR_DIRTIED, /* page dirtyings since bootup */
148 NR_WRITTEN, /* page writings since bootup */
0d5d823a 149 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
ca889e6c
CL
150#ifdef CONFIG_NUMA
151 NUMA_HIT, /* allocated in intended node */
152 NUMA_MISS, /* allocated in non intended node */
153 NUMA_FOREIGN, /* was intended here, hit elsewhere */
154 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
155 NUMA_LOCAL, /* allocation from local node */
156 NUMA_OTHER, /* allocation from other node */
157#endif
a528910e
JW
158 WORKINGSET_REFAULT,
159 WORKINGSET_ACTIVATE,
449dd698 160 WORKINGSET_NODERECLAIM,
79134171 161 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 162 NR_FREE_CMA_PAGES,
2244b95a
CL
163 NR_VM_ZONE_STAT_ITEMS };
164
4f98a2fe
RR
165/*
166 * We do arithmetic on the LRU lists in various places in the code,
167 * so it is important to keep the active lists LRU_ACTIVE higher in
168 * the array than the corresponding inactive lists, and to keep
169 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
170 *
171 * This has to be kept in sync with the statistics in zone_stat_item
172 * above and the descriptions in vmstat_text in mm/vmstat.c
173 */
174#define LRU_BASE 0
175#define LRU_ACTIVE 1
176#define LRU_FILE 2
177
b69408e8 178enum lru_list {
4f98a2fe
RR
179 LRU_INACTIVE_ANON = LRU_BASE,
180 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
181 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
182 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 183 LRU_UNEVICTABLE,
894bc310
LS
184 NR_LRU_LISTS
185};
b69408e8 186
4111304d 187#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 188
4111304d 189#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 190
4111304d 191static inline int is_file_lru(enum lru_list lru)
4f98a2fe 192{
4111304d 193 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
194}
195
4111304d 196static inline int is_active_lru(enum lru_list lru)
b69408e8 197{
4111304d 198 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
199}
200
89abfab1
HD
201struct zone_reclaim_stat {
202 /*
203 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 204 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
205 * The higher the rotated/scanned ratio, the more valuable
206 * that cache is.
207 *
208 * The anon LRU stats live in [0], file LRU stats in [1]
209 */
210 unsigned long recent_rotated[2];
211 unsigned long recent_scanned[2];
212};
213
6290df54
JW
214struct lruvec {
215 struct list_head lists[NR_LRU_LISTS];
89abfab1 216 struct zone_reclaim_stat reclaim_stat;
c255a458 217#ifdef CONFIG_MEMCG
7f5e86c2
KK
218 struct zone *zone;
219#endif
6290df54
JW
220};
221
bb2a0de9
KH
222/* Mask used at gathering information at once (see memcontrol.c) */
223#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
224#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
225#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
226
39deaf85 227/* Isolate clean file */
f3fd4a61 228#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 229/* Isolate unmapped file */
f3fd4a61 230#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 231/* Isolate for asynchronous migration */
f3fd4a61 232#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
233/* Isolate unevictable pages */
234#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
235
236/* LRU Isolation modes. */
237typedef unsigned __bitwise__ isolate_mode_t;
238
41858966
MG
239enum zone_watermarks {
240 WMARK_MIN,
241 WMARK_LOW,
242 WMARK_HIGH,
243 NR_WMARK
244};
245
246#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
247#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
248#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
249
1da177e4
LT
250struct per_cpu_pages {
251 int count; /* number of pages in the list */
1da177e4
LT
252 int high; /* high watermark, emptying needed */
253 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
254
255 /* Lists of pages, one per migrate type stored on the pcp-lists */
256 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
257};
258
259struct per_cpu_pageset {
3dfa5721 260 struct per_cpu_pages pcp;
4037d452
CL
261#ifdef CONFIG_NUMA
262 s8 expire;
263#endif
2244b95a 264#ifdef CONFIG_SMP
df9ecaba 265 s8 stat_threshold;
2244b95a
CL
266 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
267#endif
99dcc3e5 268};
e7c8d5c9 269
97965478
CL
270#endif /* !__GENERATING_BOUNDS.H */
271
2f1b6248 272enum zone_type {
4b51d669 273#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
274 /*
275 * ZONE_DMA is used when there are devices that are not able
276 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
277 * carve out the portion of memory that is needed for these devices.
278 * The range is arch specific.
279 *
280 * Some examples
281 *
282 * Architecture Limit
283 * ---------------------------
284 * parisc, ia64, sparc <4G
285 * s390 <2G
2f1b6248
CL
286 * arm Various
287 * alpha Unlimited or 0-16MB.
288 *
289 * i386, x86_64 and multiple other arches
290 * <16M.
291 */
292 ZONE_DMA,
4b51d669 293#endif
fb0e7942 294#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
295 /*
296 * x86_64 needs two ZONE_DMAs because it supports devices that are
297 * only able to do DMA to the lower 16M but also 32 bit devices that
298 * can only do DMA areas below 4G.
299 */
300 ZONE_DMA32,
fb0e7942 301#endif
2f1b6248
CL
302 /*
303 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
304 * performed on pages in ZONE_NORMAL if the DMA devices support
305 * transfers to all addressable memory.
306 */
307 ZONE_NORMAL,
e53ef38d 308#ifdef CONFIG_HIGHMEM
2f1b6248
CL
309 /*
310 * A memory area that is only addressable by the kernel through
311 * mapping portions into its own address space. This is for example
312 * used by i386 to allow the kernel to address the memory beyond
313 * 900MB. The kernel will set up special mappings (page
314 * table entries on i386) for each page that the kernel needs to
315 * access.
316 */
317 ZONE_HIGHMEM,
e53ef38d 318#endif
2a1e274a 319 ZONE_MOVABLE,
033fbae9
DW
320#ifdef CONFIG_ZONE_DEVICE
321 ZONE_DEVICE,
322#endif
97965478 323 __MAX_NR_ZONES
033fbae9 324
2f1b6248 325};
1da177e4 326
97965478
CL
327#ifndef __GENERATING_BOUNDS_H
328
1da177e4 329struct zone {
3484b2de 330 /* Read-mostly fields */
41858966
MG
331
332 /* zone watermarks, access with *_wmark_pages(zone) macros */
333 unsigned long watermark[NR_WMARK];
334
0aaa29a5
MG
335 unsigned long nr_reserved_highatomic;
336
1da177e4 337 /*
89903327
AM
338 * We don't know if the memory that we're going to allocate will be
339 * freeable or/and it will be released eventually, so to avoid totally
340 * wasting several GB of ram we must reserve some of the lower zone
341 * memory (otherwise we risk to run OOM on the lower zones despite
342 * there being tons of freeable ram on the higher zones). This array is
343 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
344 * changes.
1da177e4 345 */
3484b2de 346 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 347
e7c8d5c9 348#ifdef CONFIG_NUMA
d5f541ed 349 int node;
3484b2de
MG
350#endif
351
9614634f 352 /*
3484b2de
MG
353 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
354 * this zone's LRU. Maintained by the pageout code.
9614634f 355 */
3484b2de
MG
356 unsigned int inactive_ratio;
357
358 struct pglist_data *zone_pgdat;
43cf38eb 359 struct per_cpu_pageset __percpu *pageset;
3484b2de 360
1da177e4 361 /*
a8d01437
JW
362 * This is a per-zone reserve of pages that are not available
363 * to userspace allocations.
1da177e4 364 */
a8d01437 365 unsigned long totalreserve_pages;
1da177e4 366
835c134e
MG
367#ifndef CONFIG_SPARSEMEM
368 /*
d9c23400 369 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
370 * In SPARSEMEM, this map is stored in struct mem_section
371 */
372 unsigned long *pageblock_flags;
373#endif /* CONFIG_SPARSEMEM */
374
3484b2de 375#ifdef CONFIG_NUMA
1da177e4 376 /*
3484b2de 377 * zone reclaim becomes active if more unmapped pages exist.
1da177e4 378 */
3484b2de
MG
379 unsigned long min_unmapped_pages;
380 unsigned long min_slab_pages;
381#endif /* CONFIG_NUMA */
1da177e4 382
1da177e4
LT
383 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
384 unsigned long zone_start_pfn;
385
bdc8cb98 386 /*
9feedc9d
JL
387 * spanned_pages is the total pages spanned by the zone, including
388 * holes, which is calculated as:
389 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 390 *
9feedc9d
JL
391 * present_pages is physical pages existing within the zone, which
392 * is calculated as:
8761e31c 393 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
394 *
395 * managed_pages is present pages managed by the buddy system, which
396 * is calculated as (reserved_pages includes pages allocated by the
397 * bootmem allocator):
398 * managed_pages = present_pages - reserved_pages;
399 *
400 * So present_pages may be used by memory hotplug or memory power
401 * management logic to figure out unmanaged pages by checking
402 * (present_pages - managed_pages). And managed_pages should be used
403 * by page allocator and vm scanner to calculate all kinds of watermarks
404 * and thresholds.
405 *
406 * Locking rules:
407 *
408 * zone_start_pfn and spanned_pages are protected by span_seqlock.
409 * It is a seqlock because it has to be read outside of zone->lock,
410 * and it is done in the main allocator path. But, it is written
411 * quite infrequently.
412 *
413 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
414 * frequently read in proximity to zone->lock. It's good to
415 * give them a chance of being in the same cacheline.
9feedc9d 416 *
c3d5f5f0 417 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
418 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
419 * present_pages should get_online_mems() to get a stable value.
c3d5f5f0
JL
420 *
421 * Read access to managed_pages should be safe because it's unsigned
422 * long. Write access to zone->managed_pages and totalram_pages are
423 * protected by managed_page_count_lock at runtime. Idealy only
424 * adjust_managed_page_count() should be used instead of directly
425 * touching zone->managed_pages and totalram_pages.
bdc8cb98 426 */
3484b2de 427 unsigned long managed_pages;
9feedc9d
JL
428 unsigned long spanned_pages;
429 unsigned long present_pages;
3484b2de
MG
430
431 const char *name;
1da177e4 432
ad53f92e
JK
433#ifdef CONFIG_MEMORY_ISOLATION
434 /*
435 * Number of isolated pageblock. It is used to solve incorrect
436 * freepage counting problem due to racy retrieving migratetype
437 * of pageblock. Protected by zone->lock.
438 */
439 unsigned long nr_isolate_pageblock;
440#endif
441
3484b2de
MG
442#ifdef CONFIG_MEMORY_HOTPLUG
443 /* see spanned/present_pages for more description */
444 seqlock_t span_seqlock;
445#endif
446
1da177e4 447 /*
3484b2de
MG
448 * wait_table -- the array holding the hash table
449 * wait_table_hash_nr_entries -- the size of the hash table array
450 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
451 *
452 * The purpose of all these is to keep track of the people
453 * waiting for a page to become available and make them
454 * runnable again when possible. The trouble is that this
455 * consumes a lot of space, especially when so few things
456 * wait on pages at a given time. So instead of using
457 * per-page waitqueues, we use a waitqueue hash table.
458 *
459 * The bucket discipline is to sleep on the same queue when
460 * colliding and wake all in that wait queue when removing.
461 * When something wakes, it must check to be sure its page is
462 * truly available, a la thundering herd. The cost of a
463 * collision is great, but given the expected load of the
464 * table, they should be so rare as to be outweighed by the
465 * benefits from the saved space.
466 *
467 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
468 * primary users of these fields, and in mm/page_alloc.c
469 * free_area_init_core() performs the initialization of them.
1da177e4 470 */
3484b2de
MG
471 wait_queue_head_t *wait_table;
472 unsigned long wait_table_hash_nr_entries;
473 unsigned long wait_table_bits;
474
475 ZONE_PADDING(_pad1_)
3484b2de
MG
476 /* free areas of different sizes */
477 struct free_area free_area[MAX_ORDER];
478
479 /* zone flags, see below */
480 unsigned long flags;
481
a368ab67
MG
482 /* Write-intensive fields used from the page allocator */
483 spinlock_t lock;
484
3484b2de
MG
485 ZONE_PADDING(_pad2_)
486
487 /* Write-intensive fields used by page reclaim */
488
489 /* Fields commonly accessed by the page reclaim scanner */
490 spinlock_t lru_lock;
3484b2de
MG
491 struct lruvec lruvec;
492
493 /* Evictions & activations on the inactive file list */
494 atomic_long_t inactive_age;
495
496 /*
497 * When free pages are below this point, additional steps are taken
498 * when reading the number of free pages to avoid per-cpu counter
499 * drift allowing watermarks to be breached
500 */
501 unsigned long percpu_drift_mark;
502
503#if defined CONFIG_COMPACTION || defined CONFIG_CMA
504 /* pfn where compaction free scanner should start */
505 unsigned long compact_cached_free_pfn;
506 /* pfn where async and sync compaction migration scanner should start */
507 unsigned long compact_cached_migrate_pfn[2];
508#endif
509
510#ifdef CONFIG_COMPACTION
511 /*
512 * On compaction failure, 1<<compact_defer_shift compactions
513 * are skipped before trying again. The number attempted since
514 * last failure is tracked with compact_considered.
515 */
516 unsigned int compact_considered;
517 unsigned int compact_defer_shift;
518 int compact_order_failed;
519#endif
520
521#if defined CONFIG_COMPACTION || defined CONFIG_CMA
522 /* Set to true when the PG_migrate_skip bits should be cleared */
523 bool compact_blockskip_flush;
524#endif
525
526 ZONE_PADDING(_pad3_)
527 /* Zone statistics */
528 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
22fc6ecc 529} ____cacheline_internodealigned_in_smp;
1da177e4 530
57054651 531enum zone_flags {
e815af95 532 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 533 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
534 ZONE_CONGESTED, /* zone has many dirty pages backed by
535 * a congested BDI
536 */
57054651 537 ZONE_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
538 * many dirty file pages at the tail
539 * of the LRU.
540 */
283aba9f
MG
541 ZONE_WRITEBACK, /* reclaim scanning has recently found
542 * many pages under writeback
543 */
4ffeaf35 544 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
57054651 545};
e815af95 546
f9228b20 547static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
548{
549 return zone->zone_start_pfn + zone->spanned_pages;
550}
551
552static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
553{
554 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
555}
556
2a6e3ebe
CS
557static inline bool zone_is_initialized(struct zone *zone)
558{
559 return !!zone->wait_table;
560}
561
562static inline bool zone_is_empty(struct zone *zone)
563{
564 return zone->spanned_pages == 0;
565}
566
1da177e4
LT
567/*
568 * The "priority" of VM scanning is how much of the queues we will scan in one
569 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
570 * queues ("queue_length >> 12") during an aging round.
571 */
572#define DEF_PRIORITY 12
573
9276b1bc
PJ
574/* Maximum number of zones on a zonelist */
575#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
576
c00eb15a
YB
577enum {
578 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 579#ifdef CONFIG_NUMA
c00eb15a
YB
580 /*
581 * The NUMA zonelists are doubled because we need zonelists that
582 * restrict the allocations to a single node for __GFP_THISNODE.
583 */
584 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 585#endif
c00eb15a
YB
586 MAX_ZONELISTS
587};
9276b1bc 588
dd1a239f
MG
589/*
590 * This struct contains information about a zone in a zonelist. It is stored
591 * here to avoid dereferences into large structures and lookups of tables
592 */
593struct zoneref {
594 struct zone *zone; /* Pointer to actual zone */
595 int zone_idx; /* zone_idx(zoneref->zone) */
596};
597
1da177e4
LT
598/*
599 * One allocation request operates on a zonelist. A zonelist
600 * is a list of zones, the first one is the 'goal' of the
601 * allocation, the other zones are fallback zones, in decreasing
602 * priority.
603 *
dd1a239f
MG
604 * To speed the reading of the zonelist, the zonerefs contain the zone index
605 * of the entry being read. Helper functions to access information given
606 * a struct zoneref are
607 *
608 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
609 * zonelist_zone_idx() - Return the index of the zone for an entry
610 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
611 */
612struct zonelist {
dd1a239f 613 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
614};
615
5b99cd0e
HC
616#ifndef CONFIG_DISCONTIGMEM
617/* The array of struct pages - for discontigmem use pgdat->lmem_map */
618extern struct page *mem_map;
619#endif
620
1da177e4
LT
621/*
622 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
623 * (mostly NUMA machines?) to denote a higher-level memory zone than the
624 * zone denotes.
625 *
626 * On NUMA machines, each NUMA node would have a pg_data_t to describe
627 * it's memory layout.
628 *
629 * Memory statistics and page replacement data structures are maintained on a
630 * per-zone basis.
631 */
632struct bootmem_data;
633typedef struct pglist_data {
634 struct zone node_zones[MAX_NR_ZONES];
523b9458 635 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 636 int nr_zones;
52d4b9ac 637#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 638 struct page *node_mem_map;
eefa864b
JK
639#ifdef CONFIG_PAGE_EXTENSION
640 struct page_ext *node_page_ext;
641#endif
d41dee36 642#endif
08677214 643#ifndef CONFIG_NO_BOOTMEM
1da177e4 644 struct bootmem_data *bdata;
08677214 645#endif
208d54e5
DH
646#ifdef CONFIG_MEMORY_HOTPLUG
647 /*
648 * Must be held any time you expect node_start_pfn, node_present_pages
649 * or node_spanned_pages stay constant. Holding this will also
650 * guarantee that any pfn_valid() stays that way.
651 *
114d4b79
CS
652 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
653 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
654 *
72c3b51b 655 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
656 */
657 spinlock_t node_size_lock;
658#endif
1da177e4
LT
659 unsigned long node_start_pfn;
660 unsigned long node_present_pages; /* total number of physical pages */
661 unsigned long node_spanned_pages; /* total size of physical page
662 range, including holes */
663 int node_id;
1da177e4 664 wait_queue_head_t kswapd_wait;
5515061d 665 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
666 struct task_struct *kswapd; /* Protected by
667 mem_hotplug_begin/end() */
1da177e4 668 int kswapd_max_order;
99504748 669 enum zone_type classzone_idx;
8177a420 670#ifdef CONFIG_NUMA_BALANCING
1c5e9c27 671 /* Lock serializing the migrate rate limiting window */
8177a420
AA
672 spinlock_t numabalancing_migrate_lock;
673
674 /* Rate limiting time interval */
675 unsigned long numabalancing_migrate_next_window;
676
677 /* Number of pages migrated during the rate limiting time interval */
678 unsigned long numabalancing_migrate_nr_pages;
679#endif
3a80a7fa
MG
680
681#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
682 /*
683 * If memory initialisation on large machines is deferred then this
684 * is the first PFN that needs to be initialised.
685 */
686 unsigned long first_deferred_pfn;
687#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
688
689#ifdef CONFIG_TRANSPARENT_HUGEPAGE
690 spinlock_t split_queue_lock;
691 struct list_head split_queue;
692 unsigned long split_queue_len;
693#endif
1da177e4
LT
694} pg_data_t;
695
696#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
697#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 698#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 699#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
700#else
701#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
702#endif
408fde81 703#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 704
c6830c22 705#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 706#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 707
da3649e1
CS
708static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
709{
710 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
711}
712
713static inline bool pgdat_is_empty(pg_data_t *pgdat)
714{
715 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
716}
c6830c22 717
033fbae9
DW
718static inline int zone_id(const struct zone *zone)
719{
720 struct pglist_data *pgdat = zone->zone_pgdat;
721
722 return zone - pgdat->node_zones;
723}
724
725#ifdef CONFIG_ZONE_DEVICE
726static inline bool is_dev_zone(const struct zone *zone)
727{
728 return zone_id(zone) == ZONE_DEVICE;
729}
730#else
731static inline bool is_dev_zone(const struct zone *zone)
732{
733 return false;
734}
735#endif
736
208d54e5
DH
737#include <linux/memory_hotplug.h>
738
4eaf3f64 739extern struct mutex zonelists_mutex;
9adb62a5 740void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 741void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
7aeb09f9
MG
742bool zone_watermark_ok(struct zone *z, unsigned int order,
743 unsigned long mark, int classzone_idx, int alloc_flags);
744bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 745 unsigned long mark, int classzone_idx);
a2f3aa02
DH
746enum memmap_context {
747 MEMMAP_EARLY,
748 MEMMAP_HOTPLUG,
749};
718127cc 750extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 751 unsigned long size);
718127cc 752
bea8c150 753extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
754
755static inline struct zone *lruvec_zone(struct lruvec *lruvec)
756{
c255a458 757#ifdef CONFIG_MEMCG
7f5e86c2
KK
758 return lruvec->zone;
759#else
760 return container_of(lruvec, struct zone, lruvec);
761#endif
762}
763
1da177e4
LT
764#ifdef CONFIG_HAVE_MEMORY_PRESENT
765void memory_present(int nid, unsigned long start, unsigned long end);
766#else
767static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
768#endif
769
7aac7898
LS
770#ifdef CONFIG_HAVE_MEMORYLESS_NODES
771int local_memory_node(int node_id);
772#else
773static inline int local_memory_node(int node_id) { return node_id; };
774#endif
775
1da177e4
LT
776#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
777unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
778#endif
779
780/*
781 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
782 */
783#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
784
f3fe6512
CK
785static inline int populated_zone(struct zone *zone)
786{
787 return (!!zone->present_pages);
788}
789
2a1e274a
MG
790extern int movable_zone;
791
d7e4a2ea 792#ifdef CONFIG_HIGHMEM
2a1e274a
MG
793static inline int zone_movable_is_highmem(void)
794{
d7e4a2ea 795#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2a1e274a
MG
796 return movable_zone == ZONE_HIGHMEM;
797#else
d7e4a2ea 798 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
799#endif
800}
d7e4a2ea 801#endif
2a1e274a 802
2f1b6248 803static inline int is_highmem_idx(enum zone_type idx)
1da177e4 804{
e53ef38d 805#ifdef CONFIG_HIGHMEM
2a1e274a
MG
806 return (idx == ZONE_HIGHMEM ||
807 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
808#else
809 return 0;
810#endif
1da177e4
LT
811}
812
1da177e4
LT
813/**
814 * is_highmem - helper function to quickly check if a struct zone is a
815 * highmem zone or not. This is an attempt to keep references
816 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
817 * @zone - pointer to struct zone variable
818 */
819static inline int is_highmem(struct zone *zone)
820{
e53ef38d 821#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
822 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
823 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
824 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
825 zone_movable_is_highmem());
e53ef38d
CL
826#else
827 return 0;
828#endif
1da177e4
LT
829}
830
1da177e4
LT
831/* These two functions are used to setup the per zone pages min values */
832struct ctl_table;
8d65af78 833int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
834 void __user *, size_t *, loff_t *);
835extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 836int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 837 void __user *, size_t *, loff_t *);
8d65af78 838int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 839 void __user *, size_t *, loff_t *);
9614634f 840int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 841 void __user *, size_t *, loff_t *);
0ff38490 842int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 843 void __user *, size_t *, loff_t *);
1da177e4 844
f0c0b2b8 845extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 846 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
847extern char numa_zonelist_order[];
848#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
849
93b7504e 850#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
851
852extern struct pglist_data contig_page_data;
853#define NODE_DATA(nid) (&contig_page_data)
854#define NODE_MEM_MAP(nid) mem_map
1da177e4 855
93b7504e 856#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
857
858#include <asm/mmzone.h>
859
93b7504e 860#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 861
95144c78
KH
862extern struct pglist_data *first_online_pgdat(void);
863extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
864extern struct zone *next_zone(struct zone *zone);
8357f869
KH
865
866/**
12d15f0d 867 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
868 * @pgdat - pointer to a pg_data_t variable
869 */
870#define for_each_online_pgdat(pgdat) \
871 for (pgdat = first_online_pgdat(); \
872 pgdat; \
873 pgdat = next_online_pgdat(pgdat))
8357f869
KH
874/**
875 * for_each_zone - helper macro to iterate over all memory zones
876 * @zone - pointer to struct zone variable
877 *
878 * The user only needs to declare the zone variable, for_each_zone
879 * fills it in.
880 */
881#define for_each_zone(zone) \
882 for (zone = (first_online_pgdat())->node_zones; \
883 zone; \
884 zone = next_zone(zone))
885
ee99c71c
KM
886#define for_each_populated_zone(zone) \
887 for (zone = (first_online_pgdat())->node_zones; \
888 zone; \
889 zone = next_zone(zone)) \
890 if (!populated_zone(zone)) \
891 ; /* do nothing */ \
892 else
893
dd1a239f
MG
894static inline struct zone *zonelist_zone(struct zoneref *zoneref)
895{
896 return zoneref->zone;
897}
898
899static inline int zonelist_zone_idx(struct zoneref *zoneref)
900{
901 return zoneref->zone_idx;
902}
903
904static inline int zonelist_node_idx(struct zoneref *zoneref)
905{
906#ifdef CONFIG_NUMA
907 /* zone_to_nid not available in this context */
908 return zoneref->zone->node;
909#else
910 return 0;
911#endif /* CONFIG_NUMA */
912}
913
19770b32
MG
914/**
915 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
916 * @z - The cursor used as a starting point for the search
917 * @highest_zoneidx - The zone index of the highest zone to return
918 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
919 *
920 * This function returns the next zone at or below a given zone index that is
921 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
922 * search. The zoneref returned is a cursor that represents the current zone
923 * being examined. It should be advanced by one before calling
924 * next_zones_zonelist again.
19770b32
MG
925 */
926struct zoneref *next_zones_zonelist(struct zoneref *z,
927 enum zone_type highest_zoneidx,
05891fb0 928 nodemask_t *nodes);
dd1a239f 929
19770b32
MG
930/**
931 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
932 * @zonelist - The zonelist to search for a suitable zone
933 * @highest_zoneidx - The zone index of the highest zone to return
934 * @nodes - An optional nodemask to filter the zonelist with
935 * @zone - The first suitable zone found is returned via this parameter
936 *
937 * This function returns the first zone at or below a given zone index that is
938 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
939 * used to iterate the zonelist with next_zones_zonelist by advancing it by
940 * one before calling.
19770b32 941 */
dd1a239f 942static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
943 enum zone_type highest_zoneidx,
944 nodemask_t *nodes,
945 struct zone **zone)
54a6eb5c 946{
05891fb0
VB
947 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
948 highest_zoneidx, nodes);
949 *zone = zonelist_zone(z);
950 return z;
54a6eb5c
MG
951}
952
19770b32
MG
953/**
954 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
955 * @zone - The current zone in the iterator
956 * @z - The current pointer within zonelist->zones being iterated
957 * @zlist - The zonelist being iterated
958 * @highidx - The zone index of the highest zone to return
959 * @nodemask - Nodemask allowed by the allocator
960 *
961 * This iterator iterates though all zones at or below a given zone index and
962 * within a given nodemask
963 */
964#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
965 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
966 zone; \
05891fb0
VB
967 z = next_zones_zonelist(++z, highidx, nodemask), \
968 zone = zonelist_zone(z)) \
54a6eb5c
MG
969
970/**
971 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
972 * @zone - The current zone in the iterator
973 * @z - The current pointer within zonelist->zones being iterated
974 * @zlist - The zonelist being iterated
975 * @highidx - The zone index of the highest zone to return
976 *
977 * This iterator iterates though all zones at or below a given zone index.
978 */
979#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 980 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 981
d41dee36
AW
982#ifdef CONFIG_SPARSEMEM
983#include <asm/sparsemem.h>
984#endif
985
c713216d 986#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 987 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
988static inline unsigned long early_pfn_to_nid(unsigned long pfn)
989{
990 return 0;
991}
b159d43f
AW
992#endif
993
2bdaf115
AW
994#ifdef CONFIG_FLATMEM
995#define pfn_to_nid(pfn) (0)
996#endif
997
d41dee36
AW
998#ifdef CONFIG_SPARSEMEM
999
1000/*
1001 * SECTION_SHIFT #bits space required to store a section #
1002 *
1003 * PA_SECTION_SHIFT physical address to/from section number
1004 * PFN_SECTION_SHIFT pfn to/from section number
1005 */
d41dee36
AW
1006#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1007#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1008
1009#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1010
1011#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1012#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1013
835c134e 1014#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1015 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1016
d41dee36
AW
1017#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1018#error Allocator MAX_ORDER exceeds SECTION_SIZE
1019#endif
1020
e3c40f37
DK
1021#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1022#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1023
a539f353
DK
1024#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1025#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1026
d41dee36 1027struct page;
eefa864b 1028struct page_ext;
d41dee36 1029struct mem_section {
29751f69
AW
1030 /*
1031 * This is, logically, a pointer to an array of struct
1032 * pages. However, it is stored with some other magic.
1033 * (see sparse.c::sparse_init_one_section())
1034 *
30c253e6
AW
1035 * Additionally during early boot we encode node id of
1036 * the location of the section here to guide allocation.
1037 * (see sparse.c::memory_present())
1038 *
29751f69
AW
1039 * Making it a UL at least makes someone do a cast
1040 * before using it wrong.
1041 */
1042 unsigned long section_mem_map;
5c0e3066
MG
1043
1044 /* See declaration of similar field in struct zone */
1045 unsigned long *pageblock_flags;
eefa864b
JK
1046#ifdef CONFIG_PAGE_EXTENSION
1047 /*
1048 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1049 * section. (see page_ext.h about this.)
1050 */
1051 struct page_ext *page_ext;
1052 unsigned long pad;
1053#endif
55878e88
CS
1054 /*
1055 * WARNING: mem_section must be a power-of-2 in size for the
1056 * calculation and use of SECTION_ROOT_MASK to make sense.
1057 */
d41dee36
AW
1058};
1059
3e347261
BP
1060#ifdef CONFIG_SPARSEMEM_EXTREME
1061#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1062#else
1063#define SECTIONS_PER_ROOT 1
1064#endif
802f192e 1065
3e347261 1066#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1067#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1068#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1069
3e347261
BP
1070#ifdef CONFIG_SPARSEMEM_EXTREME
1071extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1072#else
3e347261
BP
1073extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1074#endif
d41dee36 1075
29751f69
AW
1076static inline struct mem_section *__nr_to_section(unsigned long nr)
1077{
3e347261
BP
1078 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1079 return NULL;
1080 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1081}
4ca644d9 1082extern int __section_nr(struct mem_section* ms);
04753278 1083extern unsigned long usemap_size(void);
29751f69
AW
1084
1085/*
1086 * We use the lower bits of the mem_map pointer to store
1087 * a little bit of information. There should be at least
1088 * 3 bits here due to 32-bit alignment.
1089 */
1090#define SECTION_MARKED_PRESENT (1UL<<0)
1091#define SECTION_HAS_MEM_MAP (1UL<<1)
1092#define SECTION_MAP_LAST_BIT (1UL<<2)
1093#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1094#define SECTION_NID_SHIFT 2
29751f69
AW
1095
1096static inline struct page *__section_mem_map_addr(struct mem_section *section)
1097{
1098 unsigned long map = section->section_mem_map;
1099 map &= SECTION_MAP_MASK;
1100 return (struct page *)map;
1101}
1102
540557b9 1103static inline int present_section(struct mem_section *section)
29751f69 1104{
802f192e 1105 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1106}
1107
540557b9
AW
1108static inline int present_section_nr(unsigned long nr)
1109{
1110 return present_section(__nr_to_section(nr));
1111}
1112
1113static inline int valid_section(struct mem_section *section)
29751f69 1114{
802f192e 1115 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1116}
1117
1118static inline int valid_section_nr(unsigned long nr)
1119{
1120 return valid_section(__nr_to_section(nr));
1121}
1122
d41dee36
AW
1123static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1124{
29751f69 1125 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1126}
1127
7b7bf499 1128#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1129static inline int pfn_valid(unsigned long pfn)
1130{
1131 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1132 return 0;
29751f69 1133 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1134}
7b7bf499 1135#endif
d41dee36 1136
540557b9
AW
1137static inline int pfn_present(unsigned long pfn)
1138{
1139 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1140 return 0;
1141 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1142}
1143
d41dee36
AW
1144/*
1145 * These are _only_ used during initialisation, therefore they
1146 * can use __initdata ... They could have names to indicate
1147 * this restriction.
1148 */
1149#ifdef CONFIG_NUMA
161599ff
AW
1150#define pfn_to_nid(pfn) \
1151({ \
1152 unsigned long __pfn_to_nid_pfn = (pfn); \
1153 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1154})
2bdaf115
AW
1155#else
1156#define pfn_to_nid(pfn) (0)
d41dee36
AW
1157#endif
1158
d41dee36
AW
1159#define early_pfn_valid(pfn) pfn_valid(pfn)
1160void sparse_init(void);
1161#else
1162#define sparse_init() do {} while (0)
28ae55c9 1163#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1164#endif /* CONFIG_SPARSEMEM */
1165
8a942fde
MG
1166/*
1167 * During memory init memblocks map pfns to nids. The search is expensive and
1168 * this caches recent lookups. The implementation of __early_pfn_to_nid
1169 * may treat start/end as pfns or sections.
1170 */
1171struct mminit_pfnnid_cache {
1172 unsigned long last_start;
1173 unsigned long last_end;
1174 int last_nid;
1175};
1176
d41dee36
AW
1177#ifndef early_pfn_valid
1178#define early_pfn_valid(pfn) (1)
1179#endif
1180
1181void memory_present(int nid, unsigned long start, unsigned long end);
1182unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1183
14e07298
AW
1184/*
1185 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1186 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1187 * pfn_valid_within() should be used in this case; we optimise this away
1188 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1189 */
1190#ifdef CONFIG_HOLES_IN_ZONE
1191#define pfn_valid_within(pfn) pfn_valid(pfn)
1192#else
1193#define pfn_valid_within(pfn) (1)
1194#endif
1195
eb33575c
MG
1196#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1197/*
1198 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1199 * associated with it or not. In FLATMEM, it is expected that holes always
1200 * have valid memmap as long as there is valid PFNs either side of the hole.
1201 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1202 * entire section.
1203 *
1204 * However, an ARM, and maybe other embedded architectures in the future
1205 * free memmap backing holes to save memory on the assumption the memmap is
1206 * never used. The page_zone linkages are then broken even though pfn_valid()
1207 * returns true. A walker of the full memmap must then do this additional
1208 * check to ensure the memmap they are looking at is sane by making sure
1209 * the zone and PFN linkages are still valid. This is expensive, but walkers
1210 * of the full memmap are extremely rare.
1211 */
5b80287a 1212bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1213 struct page *page, struct zone *zone);
1214#else
5b80287a 1215static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1216 struct page *page, struct zone *zone)
1217{
5b80287a 1218 return true;
eb33575c
MG
1219}
1220#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1221
97965478 1222#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1223#endif /* !__ASSEMBLY__ */
1da177e4 1224#endif /* _LINUX_MMZONE_H */