]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/mmzone.h
mm: consider compaction feedback also for costly allocation
[mirror_ubuntu-jammy-kernel.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
bbeae5b0 18#include <linux/page-flags-layout.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
47118af0 40 MIGRATE_MOVABLE,
016c13da 41 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
194159fb 60#ifdef CONFIG_MEMORY_ISOLATION
47118af0 61 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 62#endif
47118af0
MN
63 MIGRATE_TYPES
64};
65
60f30350
VB
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
47118af0
MN
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71#else
72# define is_migrate_cma(migratetype) false
73#endif
b2a0ac88
MG
74
75#define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
467c996c
MG
79extern int page_group_by_mobility_disabled;
80
e58469ba
MG
81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
dc4b0caf
MG
84#define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
1da177e4 88struct free_area {
b2a0ac88 89 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
90 unsigned long nr_free;
91};
92
93struct pglist_data;
94
95/*
96 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101#if defined(CONFIG_SMP)
102struct zone_padding {
103 char x[0];
22fc6ecc 104} ____cacheline_internodealigned_in_smp;
1da177e4
LT
105#define ZONE_PADDING(name) struct zone_padding name;
106#else
107#define ZONE_PADDING(name)
108#endif
109
2244b95a 110enum zone_stat_item {
51ed4491 111 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 112 NR_FREE_PAGES,
81c0a2bb 113 NR_ALLOC_BATCH,
b69408e8 114 NR_LRU_BASE,
4f98a2fe
RR
115 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
116 NR_ACTIVE_ANON, /* " " " " " */
117 NR_INACTIVE_FILE, /* " " " " " */
118 NR_ACTIVE_FILE, /* " " " " " */
894bc310 119 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
121 NR_ANON_PAGES, /* Mapped anonymous pages */
122 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 123 only modified from process context */
347ce434 124 NR_FILE_PAGES,
b1e7a8fd 125 NR_FILE_DIRTY,
ce866b34 126 NR_WRITEBACK,
51ed4491
CL
127 NR_SLAB_RECLAIMABLE,
128 NR_SLAB_UNRECLAIMABLE,
129 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
130 NR_KERNEL_STACK,
131 /* Second 128 byte cacheline */
fd39fc85 132 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 133 NR_BOUNCE,
e129b5c2 134 NR_VMSCAN_WRITE,
49ea7eb6 135 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 136 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
137 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
138 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 139 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
140 NR_DIRTIED, /* page dirtyings since bootup */
141 NR_WRITTEN, /* page writings since bootup */
0d5d823a 142 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
ca889e6c
CL
143#ifdef CONFIG_NUMA
144 NUMA_HIT, /* allocated in intended node */
145 NUMA_MISS, /* allocated in non intended node */
146 NUMA_FOREIGN, /* was intended here, hit elsewhere */
147 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
148 NUMA_LOCAL, /* allocation from local node */
149 NUMA_OTHER, /* allocation from other node */
150#endif
a528910e
JW
151 WORKINGSET_REFAULT,
152 WORKINGSET_ACTIVATE,
449dd698 153 WORKINGSET_NODERECLAIM,
79134171 154 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 155 NR_FREE_CMA_PAGES,
2244b95a
CL
156 NR_VM_ZONE_STAT_ITEMS };
157
4f98a2fe
RR
158/*
159 * We do arithmetic on the LRU lists in various places in the code,
160 * so it is important to keep the active lists LRU_ACTIVE higher in
161 * the array than the corresponding inactive lists, and to keep
162 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
163 *
164 * This has to be kept in sync with the statistics in zone_stat_item
165 * above and the descriptions in vmstat_text in mm/vmstat.c
166 */
167#define LRU_BASE 0
168#define LRU_ACTIVE 1
169#define LRU_FILE 2
170
b69408e8 171enum lru_list {
4f98a2fe
RR
172 LRU_INACTIVE_ANON = LRU_BASE,
173 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
174 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
175 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 176 LRU_UNEVICTABLE,
894bc310
LS
177 NR_LRU_LISTS
178};
b69408e8 179
4111304d 180#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 181
4111304d 182#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 183
4111304d 184static inline int is_file_lru(enum lru_list lru)
4f98a2fe 185{
4111304d 186 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
187}
188
4111304d 189static inline int is_active_lru(enum lru_list lru)
b69408e8 190{
4111304d 191 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
192}
193
89abfab1
HD
194struct zone_reclaim_stat {
195 /*
196 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 197 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
198 * The higher the rotated/scanned ratio, the more valuable
199 * that cache is.
200 *
201 * The anon LRU stats live in [0], file LRU stats in [1]
202 */
203 unsigned long recent_rotated[2];
204 unsigned long recent_scanned[2];
205};
206
6290df54 207struct lruvec {
23047a96
JW
208 struct list_head lists[NR_LRU_LISTS];
209 struct zone_reclaim_stat reclaim_stat;
210 /* Evictions & activations on the inactive file list */
211 atomic_long_t inactive_age;
c255a458 212#ifdef CONFIG_MEMCG
23047a96 213 struct zone *zone;
7f5e86c2 214#endif
6290df54
JW
215};
216
bb2a0de9
KH
217/* Mask used at gathering information at once (see memcontrol.c) */
218#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
219#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
220#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
221
39deaf85 222/* Isolate clean file */
f3fd4a61 223#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 224/* Isolate unmapped file */
f3fd4a61 225#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 226/* Isolate for asynchronous migration */
f3fd4a61 227#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
228/* Isolate unevictable pages */
229#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
230
231/* LRU Isolation modes. */
232typedef unsigned __bitwise__ isolate_mode_t;
233
41858966
MG
234enum zone_watermarks {
235 WMARK_MIN,
236 WMARK_LOW,
237 WMARK_HIGH,
238 NR_WMARK
239};
240
241#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
242#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
243#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
244
1da177e4
LT
245struct per_cpu_pages {
246 int count; /* number of pages in the list */
1da177e4
LT
247 int high; /* high watermark, emptying needed */
248 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
249
250 /* Lists of pages, one per migrate type stored on the pcp-lists */
251 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
252};
253
254struct per_cpu_pageset {
3dfa5721 255 struct per_cpu_pages pcp;
4037d452
CL
256#ifdef CONFIG_NUMA
257 s8 expire;
258#endif
2244b95a 259#ifdef CONFIG_SMP
df9ecaba 260 s8 stat_threshold;
2244b95a
CL
261 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
262#endif
99dcc3e5 263};
e7c8d5c9 264
97965478
CL
265#endif /* !__GENERATING_BOUNDS.H */
266
2f1b6248 267enum zone_type {
4b51d669 268#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
269 /*
270 * ZONE_DMA is used when there are devices that are not able
271 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
272 * carve out the portion of memory that is needed for these devices.
273 * The range is arch specific.
274 *
275 * Some examples
276 *
277 * Architecture Limit
278 * ---------------------------
279 * parisc, ia64, sparc <4G
280 * s390 <2G
2f1b6248
CL
281 * arm Various
282 * alpha Unlimited or 0-16MB.
283 *
284 * i386, x86_64 and multiple other arches
285 * <16M.
286 */
287 ZONE_DMA,
4b51d669 288#endif
fb0e7942 289#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
290 /*
291 * x86_64 needs two ZONE_DMAs because it supports devices that are
292 * only able to do DMA to the lower 16M but also 32 bit devices that
293 * can only do DMA areas below 4G.
294 */
295 ZONE_DMA32,
fb0e7942 296#endif
2f1b6248
CL
297 /*
298 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
299 * performed on pages in ZONE_NORMAL if the DMA devices support
300 * transfers to all addressable memory.
301 */
302 ZONE_NORMAL,
e53ef38d 303#ifdef CONFIG_HIGHMEM
2f1b6248
CL
304 /*
305 * A memory area that is only addressable by the kernel through
306 * mapping portions into its own address space. This is for example
307 * used by i386 to allow the kernel to address the memory beyond
308 * 900MB. The kernel will set up special mappings (page
309 * table entries on i386) for each page that the kernel needs to
310 * access.
311 */
312 ZONE_HIGHMEM,
e53ef38d 313#endif
2a1e274a 314 ZONE_MOVABLE,
033fbae9
DW
315#ifdef CONFIG_ZONE_DEVICE
316 ZONE_DEVICE,
317#endif
97965478 318 __MAX_NR_ZONES
033fbae9 319
2f1b6248 320};
1da177e4 321
97965478
CL
322#ifndef __GENERATING_BOUNDS_H
323
1da177e4 324struct zone {
3484b2de 325 /* Read-mostly fields */
41858966
MG
326
327 /* zone watermarks, access with *_wmark_pages(zone) macros */
328 unsigned long watermark[NR_WMARK];
329
0aaa29a5
MG
330 unsigned long nr_reserved_highatomic;
331
1da177e4 332 /*
89903327
AM
333 * We don't know if the memory that we're going to allocate will be
334 * freeable or/and it will be released eventually, so to avoid totally
335 * wasting several GB of ram we must reserve some of the lower zone
336 * memory (otherwise we risk to run OOM on the lower zones despite
337 * there being tons of freeable ram on the higher zones). This array is
338 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
339 * changes.
1da177e4 340 */
3484b2de 341 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 342
e7c8d5c9 343#ifdef CONFIG_NUMA
d5f541ed 344 int node;
3484b2de
MG
345#endif
346
9614634f 347 /*
3484b2de
MG
348 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
349 * this zone's LRU. Maintained by the pageout code.
9614634f 350 */
3484b2de
MG
351 unsigned int inactive_ratio;
352
353 struct pglist_data *zone_pgdat;
43cf38eb 354 struct per_cpu_pageset __percpu *pageset;
3484b2de 355
1da177e4 356 /*
a8d01437
JW
357 * This is a per-zone reserve of pages that are not available
358 * to userspace allocations.
1da177e4 359 */
a8d01437 360 unsigned long totalreserve_pages;
1da177e4 361
835c134e
MG
362#ifndef CONFIG_SPARSEMEM
363 /*
d9c23400 364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
365 * In SPARSEMEM, this map is stored in struct mem_section
366 */
367 unsigned long *pageblock_flags;
368#endif /* CONFIG_SPARSEMEM */
369
3484b2de 370#ifdef CONFIG_NUMA
1da177e4 371 /*
3484b2de 372 * zone reclaim becomes active if more unmapped pages exist.
1da177e4 373 */
3484b2de
MG
374 unsigned long min_unmapped_pages;
375 unsigned long min_slab_pages;
376#endif /* CONFIG_NUMA */
1da177e4 377
1da177e4
LT
378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
379 unsigned long zone_start_pfn;
380
bdc8cb98 381 /*
9feedc9d
JL
382 * spanned_pages is the total pages spanned by the zone, including
383 * holes, which is calculated as:
384 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 385 *
9feedc9d
JL
386 * present_pages is physical pages existing within the zone, which
387 * is calculated as:
8761e31c 388 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
389 *
390 * managed_pages is present pages managed by the buddy system, which
391 * is calculated as (reserved_pages includes pages allocated by the
392 * bootmem allocator):
393 * managed_pages = present_pages - reserved_pages;
394 *
395 * So present_pages may be used by memory hotplug or memory power
396 * management logic to figure out unmanaged pages by checking
397 * (present_pages - managed_pages). And managed_pages should be used
398 * by page allocator and vm scanner to calculate all kinds of watermarks
399 * and thresholds.
400 *
401 * Locking rules:
402 *
403 * zone_start_pfn and spanned_pages are protected by span_seqlock.
404 * It is a seqlock because it has to be read outside of zone->lock,
405 * and it is done in the main allocator path. But, it is written
406 * quite infrequently.
407 *
408 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
409 * frequently read in proximity to zone->lock. It's good to
410 * give them a chance of being in the same cacheline.
9feedc9d 411 *
c3d5f5f0 412 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
414 * present_pages should get_online_mems() to get a stable value.
c3d5f5f0
JL
415 *
416 * Read access to managed_pages should be safe because it's unsigned
417 * long. Write access to zone->managed_pages and totalram_pages are
418 * protected by managed_page_count_lock at runtime. Idealy only
419 * adjust_managed_page_count() should be used instead of directly
420 * touching zone->managed_pages and totalram_pages.
bdc8cb98 421 */
3484b2de 422 unsigned long managed_pages;
9feedc9d
JL
423 unsigned long spanned_pages;
424 unsigned long present_pages;
3484b2de
MG
425
426 const char *name;
1da177e4 427
ad53f92e
JK
428#ifdef CONFIG_MEMORY_ISOLATION
429 /*
430 * Number of isolated pageblock. It is used to solve incorrect
431 * freepage counting problem due to racy retrieving migratetype
432 * of pageblock. Protected by zone->lock.
433 */
434 unsigned long nr_isolate_pageblock;
435#endif
436
3484b2de
MG
437#ifdef CONFIG_MEMORY_HOTPLUG
438 /* see spanned/present_pages for more description */
439 seqlock_t span_seqlock;
440#endif
441
1da177e4 442 /*
3484b2de
MG
443 * wait_table -- the array holding the hash table
444 * wait_table_hash_nr_entries -- the size of the hash table array
445 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
446 *
447 * The purpose of all these is to keep track of the people
448 * waiting for a page to become available and make them
449 * runnable again when possible. The trouble is that this
450 * consumes a lot of space, especially when so few things
451 * wait on pages at a given time. So instead of using
452 * per-page waitqueues, we use a waitqueue hash table.
453 *
454 * The bucket discipline is to sleep on the same queue when
455 * colliding and wake all in that wait queue when removing.
456 * When something wakes, it must check to be sure its page is
457 * truly available, a la thundering herd. The cost of a
458 * collision is great, but given the expected load of the
459 * table, they should be so rare as to be outweighed by the
460 * benefits from the saved space.
461 *
462 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
463 * primary users of these fields, and in mm/page_alloc.c
464 * free_area_init_core() performs the initialization of them.
1da177e4 465 */
3484b2de
MG
466 wait_queue_head_t *wait_table;
467 unsigned long wait_table_hash_nr_entries;
468 unsigned long wait_table_bits;
469
470 ZONE_PADDING(_pad1_)
3484b2de
MG
471 /* free areas of different sizes */
472 struct free_area free_area[MAX_ORDER];
473
474 /* zone flags, see below */
475 unsigned long flags;
476
a368ab67
MG
477 /* Write-intensive fields used from the page allocator */
478 spinlock_t lock;
479
3484b2de
MG
480 ZONE_PADDING(_pad2_)
481
482 /* Write-intensive fields used by page reclaim */
483
484 /* Fields commonly accessed by the page reclaim scanner */
485 spinlock_t lru_lock;
3484b2de
MG
486 struct lruvec lruvec;
487
3484b2de
MG
488 /*
489 * When free pages are below this point, additional steps are taken
490 * when reading the number of free pages to avoid per-cpu counter
491 * drift allowing watermarks to be breached
492 */
493 unsigned long percpu_drift_mark;
494
495#if defined CONFIG_COMPACTION || defined CONFIG_CMA
496 /* pfn where compaction free scanner should start */
497 unsigned long compact_cached_free_pfn;
498 /* pfn where async and sync compaction migration scanner should start */
499 unsigned long compact_cached_migrate_pfn[2];
500#endif
501
502#ifdef CONFIG_COMPACTION
503 /*
504 * On compaction failure, 1<<compact_defer_shift compactions
505 * are skipped before trying again. The number attempted since
506 * last failure is tracked with compact_considered.
507 */
508 unsigned int compact_considered;
509 unsigned int compact_defer_shift;
510 int compact_order_failed;
511#endif
512
513#if defined CONFIG_COMPACTION || defined CONFIG_CMA
514 /* Set to true when the PG_migrate_skip bits should be cleared */
515 bool compact_blockskip_flush;
516#endif
517
7cf91a98
JK
518 bool contiguous;
519
3484b2de
MG
520 ZONE_PADDING(_pad3_)
521 /* Zone statistics */
522 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
22fc6ecc 523} ____cacheline_internodealigned_in_smp;
1da177e4 524
57054651 525enum zone_flags {
e815af95 526 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 527 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
528 ZONE_CONGESTED, /* zone has many dirty pages backed by
529 * a congested BDI
530 */
57054651 531 ZONE_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
532 * many dirty file pages at the tail
533 * of the LRU.
534 */
283aba9f
MG
535 ZONE_WRITEBACK, /* reclaim scanning has recently found
536 * many pages under writeback
537 */
4ffeaf35 538 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
57054651 539};
e815af95 540
f9228b20 541static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
542{
543 return zone->zone_start_pfn + zone->spanned_pages;
544}
545
546static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
547{
548 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
549}
550
2a6e3ebe
CS
551static inline bool zone_is_initialized(struct zone *zone)
552{
553 return !!zone->wait_table;
554}
555
556static inline bool zone_is_empty(struct zone *zone)
557{
558 return zone->spanned_pages == 0;
559}
560
1da177e4
LT
561/*
562 * The "priority" of VM scanning is how much of the queues we will scan in one
563 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
564 * queues ("queue_length >> 12") during an aging round.
565 */
566#define DEF_PRIORITY 12
567
9276b1bc
PJ
568/* Maximum number of zones on a zonelist */
569#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
570
c00eb15a
YB
571enum {
572 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 573#ifdef CONFIG_NUMA
c00eb15a
YB
574 /*
575 * The NUMA zonelists are doubled because we need zonelists that
576 * restrict the allocations to a single node for __GFP_THISNODE.
577 */
578 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 579#endif
c00eb15a
YB
580 MAX_ZONELISTS
581};
9276b1bc 582
dd1a239f
MG
583/*
584 * This struct contains information about a zone in a zonelist. It is stored
585 * here to avoid dereferences into large structures and lookups of tables
586 */
587struct zoneref {
588 struct zone *zone; /* Pointer to actual zone */
589 int zone_idx; /* zone_idx(zoneref->zone) */
590};
591
1da177e4
LT
592/*
593 * One allocation request operates on a zonelist. A zonelist
594 * is a list of zones, the first one is the 'goal' of the
595 * allocation, the other zones are fallback zones, in decreasing
596 * priority.
597 *
dd1a239f
MG
598 * To speed the reading of the zonelist, the zonerefs contain the zone index
599 * of the entry being read. Helper functions to access information given
600 * a struct zoneref are
601 *
602 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
603 * zonelist_zone_idx() - Return the index of the zone for an entry
604 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
605 */
606struct zonelist {
dd1a239f 607 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
608};
609
5b99cd0e
HC
610#ifndef CONFIG_DISCONTIGMEM
611/* The array of struct pages - for discontigmem use pgdat->lmem_map */
612extern struct page *mem_map;
613#endif
614
1da177e4
LT
615/*
616 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
617 * (mostly NUMA machines?) to denote a higher-level memory zone than the
618 * zone denotes.
619 *
620 * On NUMA machines, each NUMA node would have a pg_data_t to describe
621 * it's memory layout.
622 *
623 * Memory statistics and page replacement data structures are maintained on a
624 * per-zone basis.
625 */
626struct bootmem_data;
627typedef struct pglist_data {
628 struct zone node_zones[MAX_NR_ZONES];
523b9458 629 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 630 int nr_zones;
52d4b9ac 631#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 632 struct page *node_mem_map;
eefa864b
JK
633#ifdef CONFIG_PAGE_EXTENSION
634 struct page_ext *node_page_ext;
635#endif
d41dee36 636#endif
08677214 637#ifndef CONFIG_NO_BOOTMEM
1da177e4 638 struct bootmem_data *bdata;
08677214 639#endif
208d54e5
DH
640#ifdef CONFIG_MEMORY_HOTPLUG
641 /*
642 * Must be held any time you expect node_start_pfn, node_present_pages
643 * or node_spanned_pages stay constant. Holding this will also
644 * guarantee that any pfn_valid() stays that way.
645 *
114d4b79
CS
646 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
647 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
648 *
72c3b51b 649 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
650 */
651 spinlock_t node_size_lock;
652#endif
1da177e4
LT
653 unsigned long node_start_pfn;
654 unsigned long node_present_pages; /* total number of physical pages */
655 unsigned long node_spanned_pages; /* total size of physical page
656 range, including holes */
657 int node_id;
1da177e4 658 wait_queue_head_t kswapd_wait;
5515061d 659 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
660 struct task_struct *kswapd; /* Protected by
661 mem_hotplug_begin/end() */
1da177e4 662 int kswapd_max_order;
99504748 663 enum zone_type classzone_idx;
698b1b30
VB
664#ifdef CONFIG_COMPACTION
665 int kcompactd_max_order;
666 enum zone_type kcompactd_classzone_idx;
667 wait_queue_head_t kcompactd_wait;
668 struct task_struct *kcompactd;
669#endif
8177a420 670#ifdef CONFIG_NUMA_BALANCING
1c5e9c27 671 /* Lock serializing the migrate rate limiting window */
8177a420
AA
672 spinlock_t numabalancing_migrate_lock;
673
674 /* Rate limiting time interval */
675 unsigned long numabalancing_migrate_next_window;
676
677 /* Number of pages migrated during the rate limiting time interval */
678 unsigned long numabalancing_migrate_nr_pages;
679#endif
3a80a7fa
MG
680
681#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
682 /*
683 * If memory initialisation on large machines is deferred then this
684 * is the first PFN that needs to be initialised.
685 */
686 unsigned long first_deferred_pfn;
687#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
688
689#ifdef CONFIG_TRANSPARENT_HUGEPAGE
690 spinlock_t split_queue_lock;
691 struct list_head split_queue;
692 unsigned long split_queue_len;
693#endif
1da177e4
LT
694} pg_data_t;
695
696#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
697#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 698#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 699#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
700#else
701#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
702#endif
408fde81 703#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 704
c6830c22 705#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 706#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 707
da3649e1
CS
708static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
709{
710 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
711}
712
713static inline bool pgdat_is_empty(pg_data_t *pgdat)
714{
715 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
716}
c6830c22 717
033fbae9
DW
718static inline int zone_id(const struct zone *zone)
719{
720 struct pglist_data *pgdat = zone->zone_pgdat;
721
722 return zone - pgdat->node_zones;
723}
724
725#ifdef CONFIG_ZONE_DEVICE
726static inline bool is_dev_zone(const struct zone *zone)
727{
728 return zone_id(zone) == ZONE_DEVICE;
729}
730#else
731static inline bool is_dev_zone(const struct zone *zone)
732{
733 return false;
734}
735#endif
736
208d54e5
DH
737#include <linux/memory_hotplug.h>
738
4eaf3f64 739extern struct mutex zonelists_mutex;
9adb62a5 740void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 741void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
7aeb09f9 742bool zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
743 unsigned long mark, int classzone_idx,
744 unsigned int alloc_flags);
7aeb09f9 745bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 746 unsigned long mark, int classzone_idx);
a2f3aa02
DH
747enum memmap_context {
748 MEMMAP_EARLY,
749 MEMMAP_HOTPLUG,
750};
718127cc 751extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 752 unsigned long size);
718127cc 753
bea8c150 754extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
755
756static inline struct zone *lruvec_zone(struct lruvec *lruvec)
757{
c255a458 758#ifdef CONFIG_MEMCG
7f5e86c2
KK
759 return lruvec->zone;
760#else
761 return container_of(lruvec, struct zone, lruvec);
762#endif
763}
764
23047a96
JW
765extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
766
1da177e4
LT
767#ifdef CONFIG_HAVE_MEMORY_PRESENT
768void memory_present(int nid, unsigned long start, unsigned long end);
769#else
770static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
771#endif
772
7aac7898
LS
773#ifdef CONFIG_HAVE_MEMORYLESS_NODES
774int local_memory_node(int node_id);
775#else
776static inline int local_memory_node(int node_id) { return node_id; };
777#endif
778
1da177e4
LT
779#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
780unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
781#endif
782
783/*
784 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
785 */
786#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
787
f3fe6512
CK
788static inline int populated_zone(struct zone *zone)
789{
790 return (!!zone->present_pages);
791}
792
2a1e274a
MG
793extern int movable_zone;
794
d7e4a2ea 795#ifdef CONFIG_HIGHMEM
2a1e274a
MG
796static inline int zone_movable_is_highmem(void)
797{
d7e4a2ea 798#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2a1e274a
MG
799 return movable_zone == ZONE_HIGHMEM;
800#else
d7e4a2ea 801 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
802#endif
803}
d7e4a2ea 804#endif
2a1e274a 805
2f1b6248 806static inline int is_highmem_idx(enum zone_type idx)
1da177e4 807{
e53ef38d 808#ifdef CONFIG_HIGHMEM
2a1e274a
MG
809 return (idx == ZONE_HIGHMEM ||
810 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
811#else
812 return 0;
813#endif
1da177e4
LT
814}
815
1da177e4
LT
816/**
817 * is_highmem - helper function to quickly check if a struct zone is a
818 * highmem zone or not. This is an attempt to keep references
819 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
820 * @zone - pointer to struct zone variable
821 */
822static inline int is_highmem(struct zone *zone)
823{
e53ef38d 824#ifdef CONFIG_HIGHMEM
29f9cb53 825 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
826#else
827 return 0;
828#endif
1da177e4
LT
829}
830
1da177e4
LT
831/* These two functions are used to setup the per zone pages min values */
832struct ctl_table;
8d65af78 833int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4 834 void __user *, size_t *, loff_t *);
795ae7a0
JW
835int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
836 void __user *, size_t *, loff_t *);
1da177e4 837extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 838int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 839 void __user *, size_t *, loff_t *);
8d65af78 840int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 841 void __user *, size_t *, loff_t *);
9614634f 842int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 843 void __user *, size_t *, loff_t *);
0ff38490 844int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 845 void __user *, size_t *, loff_t *);
1da177e4 846
f0c0b2b8 847extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 848 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
849extern char numa_zonelist_order[];
850#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
851
93b7504e 852#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
853
854extern struct pglist_data contig_page_data;
855#define NODE_DATA(nid) (&contig_page_data)
856#define NODE_MEM_MAP(nid) mem_map
1da177e4 857
93b7504e 858#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
859
860#include <asm/mmzone.h>
861
93b7504e 862#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 863
95144c78
KH
864extern struct pglist_data *first_online_pgdat(void);
865extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
866extern struct zone *next_zone(struct zone *zone);
8357f869
KH
867
868/**
12d15f0d 869 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
870 * @pgdat - pointer to a pg_data_t variable
871 */
872#define for_each_online_pgdat(pgdat) \
873 for (pgdat = first_online_pgdat(); \
874 pgdat; \
875 pgdat = next_online_pgdat(pgdat))
8357f869
KH
876/**
877 * for_each_zone - helper macro to iterate over all memory zones
878 * @zone - pointer to struct zone variable
879 *
880 * The user only needs to declare the zone variable, for_each_zone
881 * fills it in.
882 */
883#define for_each_zone(zone) \
884 for (zone = (first_online_pgdat())->node_zones; \
885 zone; \
886 zone = next_zone(zone))
887
ee99c71c
KM
888#define for_each_populated_zone(zone) \
889 for (zone = (first_online_pgdat())->node_zones; \
890 zone; \
891 zone = next_zone(zone)) \
892 if (!populated_zone(zone)) \
893 ; /* do nothing */ \
894 else
895
dd1a239f
MG
896static inline struct zone *zonelist_zone(struct zoneref *zoneref)
897{
898 return zoneref->zone;
899}
900
901static inline int zonelist_zone_idx(struct zoneref *zoneref)
902{
903 return zoneref->zone_idx;
904}
905
906static inline int zonelist_node_idx(struct zoneref *zoneref)
907{
908#ifdef CONFIG_NUMA
909 /* zone_to_nid not available in this context */
910 return zoneref->zone->node;
911#else
912 return 0;
913#endif /* CONFIG_NUMA */
914}
915
682a3385
MG
916struct zoneref *__next_zones_zonelist(struct zoneref *z,
917 enum zone_type highest_zoneidx,
918 nodemask_t *nodes);
919
19770b32
MG
920/**
921 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
922 * @z - The cursor used as a starting point for the search
923 * @highest_zoneidx - The zone index of the highest zone to return
924 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
925 *
926 * This function returns the next zone at or below a given zone index that is
927 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
928 * search. The zoneref returned is a cursor that represents the current zone
929 * being examined. It should be advanced by one before calling
930 * next_zones_zonelist again.
19770b32 931 */
682a3385 932static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 933 enum zone_type highest_zoneidx,
682a3385
MG
934 nodemask_t *nodes)
935{
936 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
937 return z;
938 return __next_zones_zonelist(z, highest_zoneidx, nodes);
939}
dd1a239f 940
19770b32
MG
941/**
942 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
943 * @zonelist - The zonelist to search for a suitable zone
944 * @highest_zoneidx - The zone index of the highest zone to return
945 * @nodes - An optional nodemask to filter the zonelist with
946 * @zone - The first suitable zone found is returned via this parameter
947 *
948 * This function returns the first zone at or below a given zone index that is
949 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
950 * used to iterate the zonelist with next_zones_zonelist by advancing it by
951 * one before calling.
19770b32 952 */
dd1a239f 953static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 954 enum zone_type highest_zoneidx,
c33d6c06 955 nodemask_t *nodes)
54a6eb5c 956{
c33d6c06 957 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 958 highest_zoneidx, nodes);
54a6eb5c
MG
959}
960
19770b32
MG
961/**
962 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
963 * @zone - The current zone in the iterator
964 * @z - The current pointer within zonelist->zones being iterated
965 * @zlist - The zonelist being iterated
966 * @highidx - The zone index of the highest zone to return
967 * @nodemask - Nodemask allowed by the allocator
968 *
969 * This iterator iterates though all zones at or below a given zone index and
970 * within a given nodemask
971 */
972#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 973 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 974 zone; \
05891fb0 975 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
976 zone = zonelist_zone(z))
977
978#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
979 for (zone = z->zone; \
980 zone; \
981 z = next_zones_zonelist(++z, highidx, nodemask), \
982 zone = zonelist_zone(z))
983
54a6eb5c
MG
984
985/**
986 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
987 * @zone - The current zone in the iterator
988 * @z - The current pointer within zonelist->zones being iterated
989 * @zlist - The zonelist being iterated
990 * @highidx - The zone index of the highest zone to return
991 *
992 * This iterator iterates though all zones at or below a given zone index.
993 */
994#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 995 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 996
d41dee36
AW
997#ifdef CONFIG_SPARSEMEM
998#include <asm/sparsemem.h>
999#endif
1000
c713216d 1001#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1002 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1003static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1004{
1005 return 0;
1006}
b159d43f
AW
1007#endif
1008
2bdaf115
AW
1009#ifdef CONFIG_FLATMEM
1010#define pfn_to_nid(pfn) (0)
1011#endif
1012
d41dee36
AW
1013#ifdef CONFIG_SPARSEMEM
1014
1015/*
1016 * SECTION_SHIFT #bits space required to store a section #
1017 *
1018 * PA_SECTION_SHIFT physical address to/from section number
1019 * PFN_SECTION_SHIFT pfn to/from section number
1020 */
d41dee36
AW
1021#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1022#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1023
1024#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1025
1026#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1027#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1028
835c134e 1029#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1030 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1031
d41dee36
AW
1032#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1033#error Allocator MAX_ORDER exceeds SECTION_SIZE
1034#endif
1035
e3c40f37
DK
1036#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1037#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1038
a539f353
DK
1039#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1040#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1041
d41dee36 1042struct page;
eefa864b 1043struct page_ext;
d41dee36 1044struct mem_section {
29751f69
AW
1045 /*
1046 * This is, logically, a pointer to an array of struct
1047 * pages. However, it is stored with some other magic.
1048 * (see sparse.c::sparse_init_one_section())
1049 *
30c253e6
AW
1050 * Additionally during early boot we encode node id of
1051 * the location of the section here to guide allocation.
1052 * (see sparse.c::memory_present())
1053 *
29751f69
AW
1054 * Making it a UL at least makes someone do a cast
1055 * before using it wrong.
1056 */
1057 unsigned long section_mem_map;
5c0e3066
MG
1058
1059 /* See declaration of similar field in struct zone */
1060 unsigned long *pageblock_flags;
eefa864b
JK
1061#ifdef CONFIG_PAGE_EXTENSION
1062 /*
1063 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1064 * section. (see page_ext.h about this.)
1065 */
1066 struct page_ext *page_ext;
1067 unsigned long pad;
1068#endif
55878e88
CS
1069 /*
1070 * WARNING: mem_section must be a power-of-2 in size for the
1071 * calculation and use of SECTION_ROOT_MASK to make sense.
1072 */
d41dee36
AW
1073};
1074
3e347261
BP
1075#ifdef CONFIG_SPARSEMEM_EXTREME
1076#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1077#else
1078#define SECTIONS_PER_ROOT 1
1079#endif
802f192e 1080
3e347261 1081#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1082#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1083#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1084
3e347261
BP
1085#ifdef CONFIG_SPARSEMEM_EXTREME
1086extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1087#else
3e347261
BP
1088extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1089#endif
d41dee36 1090
29751f69
AW
1091static inline struct mem_section *__nr_to_section(unsigned long nr)
1092{
3e347261
BP
1093 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1094 return NULL;
1095 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1096}
4ca644d9 1097extern int __section_nr(struct mem_section* ms);
04753278 1098extern unsigned long usemap_size(void);
29751f69
AW
1099
1100/*
1101 * We use the lower bits of the mem_map pointer to store
1102 * a little bit of information. There should be at least
1103 * 3 bits here due to 32-bit alignment.
1104 */
1105#define SECTION_MARKED_PRESENT (1UL<<0)
1106#define SECTION_HAS_MEM_MAP (1UL<<1)
1107#define SECTION_MAP_LAST_BIT (1UL<<2)
1108#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1109#define SECTION_NID_SHIFT 2
29751f69
AW
1110
1111static inline struct page *__section_mem_map_addr(struct mem_section *section)
1112{
1113 unsigned long map = section->section_mem_map;
1114 map &= SECTION_MAP_MASK;
1115 return (struct page *)map;
1116}
1117
540557b9 1118static inline int present_section(struct mem_section *section)
29751f69 1119{
802f192e 1120 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1121}
1122
540557b9
AW
1123static inline int present_section_nr(unsigned long nr)
1124{
1125 return present_section(__nr_to_section(nr));
1126}
1127
1128static inline int valid_section(struct mem_section *section)
29751f69 1129{
802f192e 1130 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1131}
1132
1133static inline int valid_section_nr(unsigned long nr)
1134{
1135 return valid_section(__nr_to_section(nr));
1136}
1137
d41dee36
AW
1138static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1139{
29751f69 1140 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1141}
1142
7b7bf499 1143#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1144static inline int pfn_valid(unsigned long pfn)
1145{
1146 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1147 return 0;
29751f69 1148 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1149}
7b7bf499 1150#endif
d41dee36 1151
540557b9
AW
1152static inline int pfn_present(unsigned long pfn)
1153{
1154 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1155 return 0;
1156 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1157}
1158
d41dee36
AW
1159/*
1160 * These are _only_ used during initialisation, therefore they
1161 * can use __initdata ... They could have names to indicate
1162 * this restriction.
1163 */
1164#ifdef CONFIG_NUMA
161599ff
AW
1165#define pfn_to_nid(pfn) \
1166({ \
1167 unsigned long __pfn_to_nid_pfn = (pfn); \
1168 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1169})
2bdaf115
AW
1170#else
1171#define pfn_to_nid(pfn) (0)
d41dee36
AW
1172#endif
1173
d41dee36
AW
1174#define early_pfn_valid(pfn) pfn_valid(pfn)
1175void sparse_init(void);
1176#else
1177#define sparse_init() do {} while (0)
28ae55c9 1178#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1179#endif /* CONFIG_SPARSEMEM */
1180
8a942fde
MG
1181/*
1182 * During memory init memblocks map pfns to nids. The search is expensive and
1183 * this caches recent lookups. The implementation of __early_pfn_to_nid
1184 * may treat start/end as pfns or sections.
1185 */
1186struct mminit_pfnnid_cache {
1187 unsigned long last_start;
1188 unsigned long last_end;
1189 int last_nid;
1190};
1191
d41dee36
AW
1192#ifndef early_pfn_valid
1193#define early_pfn_valid(pfn) (1)
1194#endif
1195
1196void memory_present(int nid, unsigned long start, unsigned long end);
1197unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1198
14e07298
AW
1199/*
1200 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1201 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1202 * pfn_valid_within() should be used in this case; we optimise this away
1203 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1204 */
1205#ifdef CONFIG_HOLES_IN_ZONE
1206#define pfn_valid_within(pfn) pfn_valid(pfn)
1207#else
1208#define pfn_valid_within(pfn) (1)
1209#endif
1210
eb33575c
MG
1211#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1212/*
1213 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1214 * associated with it or not. In FLATMEM, it is expected that holes always
1215 * have valid memmap as long as there is valid PFNs either side of the hole.
1216 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1217 * entire section.
1218 *
1219 * However, an ARM, and maybe other embedded architectures in the future
1220 * free memmap backing holes to save memory on the assumption the memmap is
1221 * never used. The page_zone linkages are then broken even though pfn_valid()
1222 * returns true. A walker of the full memmap must then do this additional
1223 * check to ensure the memmap they are looking at is sane by making sure
1224 * the zone and PFN linkages are still valid. This is expensive, but walkers
1225 * of the full memmap are extremely rare.
1226 */
5b80287a 1227bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1228 struct page *page, struct zone *zone);
1229#else
5b80287a 1230static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1231 struct page *page, struct zone *zone)
1232{
5b80287a 1233 return true;
eb33575c
MG
1234}
1235#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1236
97965478 1237#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1238#endif /* !__ASSEMBLY__ */
1da177e4 1239#endif /* _LINUX_MMZONE_H */