]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/mmzone.h
Add a bitmap that is used to track flags affecting a block of pages
[mirror_ubuntu-hirsute-kernel.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
835c134e 16#include <linux/pageblock-flags.h>
1da177e4 17#include <asm/atomic.h>
93ff66bf 18#include <asm/page.h>
1da177e4
LT
19
20/* Free memory management - zoned buddy allocator. */
21#ifndef CONFIG_FORCE_MAX_ZONEORDER
22#define MAX_ORDER 11
23#else
24#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25#endif
e984bb43 26#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 27
5ad333eb
AW
28/*
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
33 */
34#define PAGE_ALLOC_COSTLY_ORDER 3
35
1da177e4
LT
36struct free_area {
37 struct list_head free_list;
38 unsigned long nr_free;
39};
40
41struct pglist_data;
42
43/*
44 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
45 * So add a wild amount of padding here to ensure that they fall into separate
46 * cachelines. There are very few zone structures in the machine, so space
47 * consumption is not a concern here.
48 */
49#if defined(CONFIG_SMP)
50struct zone_padding {
51 char x[0];
22fc6ecc 52} ____cacheline_internodealigned_in_smp;
1da177e4
LT
53#define ZONE_PADDING(name) struct zone_padding name;
54#else
55#define ZONE_PADDING(name)
56#endif
57
2244b95a 58enum zone_stat_item {
51ed4491 59 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 60 NR_FREE_PAGES,
c8785385
CL
61 NR_INACTIVE,
62 NR_ACTIVE,
f3dbd344
CL
63 NR_ANON_PAGES, /* Mapped anonymous pages */
64 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 65 only modified from process context */
347ce434 66 NR_FILE_PAGES,
b1e7a8fd 67 NR_FILE_DIRTY,
ce866b34 68 NR_WRITEBACK,
51ed4491
CL
69 /* Second 128 byte cacheline */
70 NR_SLAB_RECLAIMABLE,
71 NR_SLAB_UNRECLAIMABLE,
72 NR_PAGETABLE, /* used for pagetables */
fd39fc85 73 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 74 NR_BOUNCE,
e129b5c2 75 NR_VMSCAN_WRITE,
ca889e6c
CL
76#ifdef CONFIG_NUMA
77 NUMA_HIT, /* allocated in intended node */
78 NUMA_MISS, /* allocated in non intended node */
79 NUMA_FOREIGN, /* was intended here, hit elsewhere */
80 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
81 NUMA_LOCAL, /* allocation from local node */
82 NUMA_OTHER, /* allocation from other node */
83#endif
2244b95a
CL
84 NR_VM_ZONE_STAT_ITEMS };
85
1da177e4
LT
86struct per_cpu_pages {
87 int count; /* number of pages in the list */
1da177e4
LT
88 int high; /* high watermark, emptying needed */
89 int batch; /* chunk size for buddy add/remove */
90 struct list_head list; /* the list of pages */
91};
92
93struct per_cpu_pageset {
94 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
4037d452
CL
95#ifdef CONFIG_NUMA
96 s8 expire;
97#endif
2244b95a 98#ifdef CONFIG_SMP
df9ecaba 99 s8 stat_threshold;
2244b95a
CL
100 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
101#endif
1da177e4
LT
102} ____cacheline_aligned_in_smp;
103
e7c8d5c9
CL
104#ifdef CONFIG_NUMA
105#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
106#else
107#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
108#endif
109
2f1b6248 110enum zone_type {
4b51d669 111#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
112 /*
113 * ZONE_DMA is used when there are devices that are not able
114 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
115 * carve out the portion of memory that is needed for these devices.
116 * The range is arch specific.
117 *
118 * Some examples
119 *
120 * Architecture Limit
121 * ---------------------------
122 * parisc, ia64, sparc <4G
123 * s390 <2G
2f1b6248
CL
124 * arm Various
125 * alpha Unlimited or 0-16MB.
126 *
127 * i386, x86_64 and multiple other arches
128 * <16M.
129 */
130 ZONE_DMA,
4b51d669 131#endif
fb0e7942 132#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
133 /*
134 * x86_64 needs two ZONE_DMAs because it supports devices that are
135 * only able to do DMA to the lower 16M but also 32 bit devices that
136 * can only do DMA areas below 4G.
137 */
138 ZONE_DMA32,
fb0e7942 139#endif
2f1b6248
CL
140 /*
141 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
142 * performed on pages in ZONE_NORMAL if the DMA devices support
143 * transfers to all addressable memory.
144 */
145 ZONE_NORMAL,
e53ef38d 146#ifdef CONFIG_HIGHMEM
2f1b6248
CL
147 /*
148 * A memory area that is only addressable by the kernel through
149 * mapping portions into its own address space. This is for example
150 * used by i386 to allow the kernel to address the memory beyond
151 * 900MB. The kernel will set up special mappings (page
152 * table entries on i386) for each page that the kernel needs to
153 * access.
154 */
155 ZONE_HIGHMEM,
e53ef38d 156#endif
2a1e274a 157 ZONE_MOVABLE,
2f1b6248
CL
158 MAX_NR_ZONES
159};
1da177e4 160
1da177e4
LT
161/*
162 * When a memory allocation must conform to specific limitations (such
163 * as being suitable for DMA) the caller will pass in hints to the
164 * allocator in the gfp_mask, in the zone modifier bits. These bits
165 * are used to select a priority ordered list of memory zones which
19655d34 166 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 167 */
fb0e7942 168
4b51d669
CL
169/*
170 * Count the active zones. Note that the use of defined(X) outside
171 * #if and family is not necessarily defined so ensure we cannot use
172 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
173 */
174#define __ZONE_COUNT ( \
175 defined(CONFIG_ZONE_DMA) \
176 + defined(CONFIG_ZONE_DMA32) \
177 + 1 \
178 + defined(CONFIG_HIGHMEM) \
2a1e274a 179 + 1 \
4b51d669
CL
180)
181#if __ZONE_COUNT < 2
182#define ZONES_SHIFT 0
183#elif __ZONE_COUNT <= 2
19655d34 184#define ZONES_SHIFT 1
4b51d669 185#elif __ZONE_COUNT <= 4
19655d34 186#define ZONES_SHIFT 2
4b51d669
CL
187#else
188#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 189#endif
4b51d669 190#undef __ZONE_COUNT
1da177e4 191
1da177e4
LT
192struct zone {
193 /* Fields commonly accessed by the page allocator */
1da177e4
LT
194 unsigned long pages_min, pages_low, pages_high;
195 /*
196 * We don't know if the memory that we're going to allocate will be freeable
197 * or/and it will be released eventually, so to avoid totally wasting several
198 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
199 * to run OOM on the lower zones despite there's tons of freeable ram
200 * on the higher zones). This array is recalculated at runtime if the
201 * sysctl_lowmem_reserve_ratio sysctl changes.
202 */
203 unsigned long lowmem_reserve[MAX_NR_ZONES];
204
e7c8d5c9 205#ifdef CONFIG_NUMA
d5f541ed 206 int node;
9614634f
CL
207 /*
208 * zone reclaim becomes active if more unmapped pages exist.
209 */
8417bba4 210 unsigned long min_unmapped_pages;
0ff38490 211 unsigned long min_slab_pages;
e7c8d5c9
CL
212 struct per_cpu_pageset *pageset[NR_CPUS];
213#else
1da177e4 214 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 215#endif
1da177e4
LT
216 /*
217 * free areas of different sizes
218 */
219 spinlock_t lock;
bdc8cb98
DH
220#ifdef CONFIG_MEMORY_HOTPLUG
221 /* see spanned/present_pages for more description */
222 seqlock_t span_seqlock;
223#endif
1da177e4
LT
224 struct free_area free_area[MAX_ORDER];
225
835c134e
MG
226#ifndef CONFIG_SPARSEMEM
227 /*
228 * Flags for a MAX_ORDER_NR_PAGES block. See pageblock-flags.h.
229 * In SPARSEMEM, this map is stored in struct mem_section
230 */
231 unsigned long *pageblock_flags;
232#endif /* CONFIG_SPARSEMEM */
233
1da177e4
LT
234
235 ZONE_PADDING(_pad1_)
236
237 /* Fields commonly accessed by the page reclaim scanner */
238 spinlock_t lru_lock;
239 struct list_head active_list;
240 struct list_head inactive_list;
241 unsigned long nr_scan_active;
242 unsigned long nr_scan_inactive;
1da177e4
LT
243 unsigned long pages_scanned; /* since last reclaim */
244 int all_unreclaimable; /* All pages pinned */
245
1e7e5a90
MH
246 /* A count of how many reclaimers are scanning this zone */
247 atomic_t reclaim_in_progress;
753ee728 248
2244b95a
CL
249 /* Zone statistics */
250 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 251
1da177e4
LT
252 /*
253 * prev_priority holds the scanning priority for this zone. It is
254 * defined as the scanning priority at which we achieved our reclaim
255 * target at the previous try_to_free_pages() or balance_pgdat()
256 * invokation.
257 *
258 * We use prev_priority as a measure of how much stress page reclaim is
259 * under - it drives the swappiness decision: whether to unmap mapped
260 * pages.
261 *
3bb1a852 262 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
263 * it is expected to average out OK.
264 */
1da177e4
LT
265 int prev_priority;
266
267
268 ZONE_PADDING(_pad2_)
269 /* Rarely used or read-mostly fields */
270
271 /*
272 * wait_table -- the array holding the hash table
02b694de 273 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
274 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
275 *
276 * The purpose of all these is to keep track of the people
277 * waiting for a page to become available and make them
278 * runnable again when possible. The trouble is that this
279 * consumes a lot of space, especially when so few things
280 * wait on pages at a given time. So instead of using
281 * per-page waitqueues, we use a waitqueue hash table.
282 *
283 * The bucket discipline is to sleep on the same queue when
284 * colliding and wake all in that wait queue when removing.
285 * When something wakes, it must check to be sure its page is
286 * truly available, a la thundering herd. The cost of a
287 * collision is great, but given the expected load of the
288 * table, they should be so rare as to be outweighed by the
289 * benefits from the saved space.
290 *
291 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
292 * primary users of these fields, and in mm/page_alloc.c
293 * free_area_init_core() performs the initialization of them.
294 */
295 wait_queue_head_t * wait_table;
02b694de 296 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
297 unsigned long wait_table_bits;
298
299 /*
300 * Discontig memory support fields.
301 */
302 struct pglist_data *zone_pgdat;
1da177e4
LT
303 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
304 unsigned long zone_start_pfn;
305
bdc8cb98
DH
306 /*
307 * zone_start_pfn, spanned_pages and present_pages are all
308 * protected by span_seqlock. It is a seqlock because it has
309 * to be read outside of zone->lock, and it is done in the main
310 * allocator path. But, it is written quite infrequently.
311 *
312 * The lock is declared along with zone->lock because it is
313 * frequently read in proximity to zone->lock. It's good to
314 * give them a chance of being in the same cacheline.
315 */
1da177e4
LT
316 unsigned long spanned_pages; /* total size, including holes */
317 unsigned long present_pages; /* amount of memory (excluding holes) */
318
319 /*
320 * rarely used fields:
321 */
15ad7cdc 322 const char *name;
22fc6ecc 323} ____cacheline_internodealigned_in_smp;
1da177e4 324
1da177e4
LT
325/*
326 * The "priority" of VM scanning is how much of the queues we will scan in one
327 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
328 * queues ("queue_length >> 12") during an aging round.
329 */
330#define DEF_PRIORITY 12
331
9276b1bc
PJ
332/* Maximum number of zones on a zonelist */
333#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
334
335#ifdef CONFIG_NUMA
523b9458
CL
336
337/*
338 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
339 * allocations to a single node for GFP_THISNODE.
340 *
341 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
342 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
343 */
344#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
345
346
9276b1bc
PJ
347/*
348 * We cache key information from each zonelist for smaller cache
349 * footprint when scanning for free pages in get_page_from_freelist().
350 *
351 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
352 * up short of free memory since the last time (last_fullzone_zap)
353 * we zero'd fullzones.
354 * 2) The array z_to_n[] maps each zone in the zonelist to its node
355 * id, so that we can efficiently evaluate whether that node is
356 * set in the current tasks mems_allowed.
357 *
358 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
359 * indexed by a zones offset in the zonelist zones[] array.
360 *
361 * The get_page_from_freelist() routine does two scans. During the
362 * first scan, we skip zones whose corresponding bit in 'fullzones'
363 * is set or whose corresponding node in current->mems_allowed (which
364 * comes from cpusets) is not set. During the second scan, we bypass
365 * this zonelist_cache, to ensure we look methodically at each zone.
366 *
367 * Once per second, we zero out (zap) fullzones, forcing us to
368 * reconsider nodes that might have regained more free memory.
369 * The field last_full_zap is the time we last zapped fullzones.
370 *
371 * This mechanism reduces the amount of time we waste repeatedly
372 * reexaming zones for free memory when they just came up low on
373 * memory momentarilly ago.
374 *
375 * The zonelist_cache struct members logically belong in struct
376 * zonelist. However, the mempolicy zonelists constructed for
377 * MPOL_BIND are intentionally variable length (and usually much
378 * shorter). A general purpose mechanism for handling structs with
379 * multiple variable length members is more mechanism than we want
380 * here. We resort to some special case hackery instead.
381 *
382 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
383 * part because they are shorter), so we put the fixed length stuff
384 * at the front of the zonelist struct, ending in a variable length
385 * zones[], as is needed by MPOL_BIND.
386 *
387 * Then we put the optional zonelist cache on the end of the zonelist
388 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
389 * the fixed length portion at the front of the struct. This pointer
390 * both enables us to find the zonelist cache, and in the case of
391 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
392 * to know that the zonelist cache is not there.
393 *
394 * The end result is that struct zonelists come in two flavors:
395 * 1) The full, fixed length version, shown below, and
396 * 2) The custom zonelists for MPOL_BIND.
397 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
398 *
399 * Even though there may be multiple CPU cores on a node modifying
400 * fullzones or last_full_zap in the same zonelist_cache at the same
401 * time, we don't lock it. This is just hint data - if it is wrong now
402 * and then, the allocator will still function, perhaps a bit slower.
403 */
404
405
406struct zonelist_cache {
9276b1bc 407 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 408 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
409 unsigned long last_full_zap; /* when last zap'd (jiffies) */
410};
411#else
523b9458 412#define MAX_ZONELISTS MAX_NR_ZONES
9276b1bc
PJ
413struct zonelist_cache;
414#endif
415
1da177e4
LT
416/*
417 * One allocation request operates on a zonelist. A zonelist
418 * is a list of zones, the first one is the 'goal' of the
419 * allocation, the other zones are fallback zones, in decreasing
420 * priority.
421 *
9276b1bc
PJ
422 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
423 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 424 */
9276b1bc 425
1da177e4 426struct zonelist {
9276b1bc
PJ
427 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
428 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
429#ifdef CONFIG_NUMA
430 struct zonelist_cache zlcache; // optional ...
431#endif
1da177e4
LT
432};
433
b377fd39
MG
434#ifdef CONFIG_NUMA
435/*
436 * Only custom zonelists like MPOL_BIND need to be filtered as part of
437 * policies. As described in the comment for struct zonelist_cache, these
438 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
439 * that to determine if the zonelists needs to be filtered or not.
440 */
441static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
442{
443 return !zonelist->zlcache_ptr;
444}
445#else
446static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
447{
448 return 0;
449}
450#endif /* CONFIG_NUMA */
451
c713216d
MG
452#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
453struct node_active_region {
454 unsigned long start_pfn;
455 unsigned long end_pfn;
456 int nid;
457};
458#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 459
5b99cd0e
HC
460#ifndef CONFIG_DISCONTIGMEM
461/* The array of struct pages - for discontigmem use pgdat->lmem_map */
462extern struct page *mem_map;
463#endif
464
1da177e4
LT
465/*
466 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
467 * (mostly NUMA machines?) to denote a higher-level memory zone than the
468 * zone denotes.
469 *
470 * On NUMA machines, each NUMA node would have a pg_data_t to describe
471 * it's memory layout.
472 *
473 * Memory statistics and page replacement data structures are maintained on a
474 * per-zone basis.
475 */
476struct bootmem_data;
477typedef struct pglist_data {
478 struct zone node_zones[MAX_NR_ZONES];
523b9458 479 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 480 int nr_zones;
d41dee36 481#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 482 struct page *node_mem_map;
d41dee36 483#endif
1da177e4 484 struct bootmem_data *bdata;
208d54e5
DH
485#ifdef CONFIG_MEMORY_HOTPLUG
486 /*
487 * Must be held any time you expect node_start_pfn, node_present_pages
488 * or node_spanned_pages stay constant. Holding this will also
489 * guarantee that any pfn_valid() stays that way.
490 *
491 * Nests above zone->lock and zone->size_seqlock.
492 */
493 spinlock_t node_size_lock;
494#endif
1da177e4
LT
495 unsigned long node_start_pfn;
496 unsigned long node_present_pages; /* total number of physical pages */
497 unsigned long node_spanned_pages; /* total size of physical page
498 range, including holes */
499 int node_id;
1da177e4
LT
500 wait_queue_head_t kswapd_wait;
501 struct task_struct *kswapd;
502 int kswapd_max_order;
503} pg_data_t;
504
505#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
506#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 507#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 508#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
509#else
510#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
511#endif
408fde81 512#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 513
208d54e5
DH
514#include <linux/memory_hotplug.h>
515
1da177e4
LT
516void get_zone_counts(unsigned long *active, unsigned long *inactive,
517 unsigned long *free);
518void build_all_zonelists(void);
519void wakeup_kswapd(struct zone *zone, int order);
520int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 521 int classzone_idx, int alloc_flags);
a2f3aa02
DH
522enum memmap_context {
523 MEMMAP_EARLY,
524 MEMMAP_HOTPLUG,
525};
718127cc 526extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
527 unsigned long size,
528 enum memmap_context context);
718127cc 529
1da177e4
LT
530#ifdef CONFIG_HAVE_MEMORY_PRESENT
531void memory_present(int nid, unsigned long start, unsigned long end);
532#else
533static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
534#endif
535
536#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
537unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
538#endif
539
540/*
541 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
542 */
543#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
544
f3fe6512
CK
545static inline int populated_zone(struct zone *zone)
546{
547 return (!!zone->present_pages);
548}
549
2a1e274a
MG
550extern int movable_zone;
551
552static inline int zone_movable_is_highmem(void)
553{
554#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
555 return movable_zone == ZONE_HIGHMEM;
556#else
557 return 0;
558#endif
559}
560
2f1b6248 561static inline int is_highmem_idx(enum zone_type idx)
1da177e4 562{
e53ef38d 563#ifdef CONFIG_HIGHMEM
2a1e274a
MG
564 return (idx == ZONE_HIGHMEM ||
565 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
566#else
567 return 0;
568#endif
1da177e4
LT
569}
570
2f1b6248 571static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
572{
573 return (idx == ZONE_NORMAL);
574}
9328b8fa 575
1da177e4
LT
576/**
577 * is_highmem - helper function to quickly check if a struct zone is a
578 * highmem zone or not. This is an attempt to keep references
579 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
580 * @zone - pointer to struct zone variable
581 */
582static inline int is_highmem(struct zone *zone)
583{
e53ef38d 584#ifdef CONFIG_HIGHMEM
2a1e274a
MG
585 int zone_idx = zone - zone->zone_pgdat->node_zones;
586 return zone_idx == ZONE_HIGHMEM ||
587 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
e53ef38d
CL
588#else
589 return 0;
590#endif
1da177e4
LT
591}
592
593static inline int is_normal(struct zone *zone)
594{
595 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
596}
597
9328b8fa
NP
598static inline int is_dma32(struct zone *zone)
599{
fb0e7942 600#ifdef CONFIG_ZONE_DMA32
9328b8fa 601 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
602#else
603 return 0;
604#endif
9328b8fa
NP
605}
606
607static inline int is_dma(struct zone *zone)
608{
4b51d669 609#ifdef CONFIG_ZONE_DMA
9328b8fa 610 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
611#else
612 return 0;
613#endif
9328b8fa
NP
614}
615
1da177e4
LT
616/* These two functions are used to setup the per zone pages min values */
617struct ctl_table;
618struct file;
619int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
620 void __user *, size_t *, loff_t *);
621extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
622int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
623 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
624int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
625 void __user *, size_t *, loff_t *);
9614634f
CL
626int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
627 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
628int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
629 struct file *, void __user *, size_t *, loff_t *);
1da177e4 630
f0c0b2b8
KH
631extern int numa_zonelist_order_handler(struct ctl_table *, int,
632 struct file *, void __user *, size_t *, loff_t *);
633extern char numa_zonelist_order[];
634#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
635
1da177e4
LT
636#include <linux/topology.h>
637/* Returns the number of the current Node. */
69d81fcd 638#ifndef numa_node_id
39c715b7 639#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 640#endif
1da177e4 641
93b7504e 642#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
643
644extern struct pglist_data contig_page_data;
645#define NODE_DATA(nid) (&contig_page_data)
646#define NODE_MEM_MAP(nid) mem_map
647#define MAX_NODES_SHIFT 1
1da177e4 648
93b7504e 649#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
650
651#include <asm/mmzone.h>
652
93b7504e 653#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 654
95144c78
KH
655extern struct pglist_data *first_online_pgdat(void);
656extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
657extern struct zone *next_zone(struct zone *zone);
8357f869
KH
658
659/**
660 * for_each_pgdat - helper macro to iterate over all nodes
661 * @pgdat - pointer to a pg_data_t variable
662 */
663#define for_each_online_pgdat(pgdat) \
664 for (pgdat = first_online_pgdat(); \
665 pgdat; \
666 pgdat = next_online_pgdat(pgdat))
8357f869
KH
667/**
668 * for_each_zone - helper macro to iterate over all memory zones
669 * @zone - pointer to struct zone variable
670 *
671 * The user only needs to declare the zone variable, for_each_zone
672 * fills it in.
673 */
674#define for_each_zone(zone) \
675 for (zone = (first_online_pgdat())->node_zones; \
676 zone; \
677 zone = next_zone(zone))
678
d41dee36
AW
679#ifdef CONFIG_SPARSEMEM
680#include <asm/sparsemem.h>
681#endif
682
07808b74 683#if BITS_PER_LONG == 32
1da177e4 684/*
a2f1b424
AK
685 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
686 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 687 */
a2f1b424 688#define FLAGS_RESERVED 9
348f8b6c 689
1da177e4
LT
690#elif BITS_PER_LONG == 64
691/*
692 * with 64 bit flags field, there's plenty of room.
693 */
348f8b6c 694#define FLAGS_RESERVED 32
1da177e4 695
348f8b6c 696#else
1da177e4 697
348f8b6c 698#error BITS_PER_LONG not defined
1da177e4 699
1da177e4
LT
700#endif
701
c713216d
MG
702#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
703 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
704#define early_pfn_to_nid(nid) (0UL)
705#endif
706
2bdaf115
AW
707#ifdef CONFIG_FLATMEM
708#define pfn_to_nid(pfn) (0)
709#endif
710
d41dee36
AW
711#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
712#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
713
714#ifdef CONFIG_SPARSEMEM
715
716/*
717 * SECTION_SHIFT #bits space required to store a section #
718 *
719 * PA_SECTION_SHIFT physical address to/from section number
720 * PFN_SECTION_SHIFT pfn to/from section number
721 */
722#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
723
724#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
725#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
726
727#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
728
729#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
730#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
731
835c134e
MG
732#define SECTION_BLOCKFLAGS_BITS \
733 ((SECTION_SIZE_BITS - (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS)
734
d41dee36
AW
735#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
736#error Allocator MAX_ORDER exceeds SECTION_SIZE
737#endif
738
739struct page;
740struct mem_section {
29751f69
AW
741 /*
742 * This is, logically, a pointer to an array of struct
743 * pages. However, it is stored with some other magic.
744 * (see sparse.c::sparse_init_one_section())
745 *
30c253e6
AW
746 * Additionally during early boot we encode node id of
747 * the location of the section here to guide allocation.
748 * (see sparse.c::memory_present())
749 *
29751f69
AW
750 * Making it a UL at least makes someone do a cast
751 * before using it wrong.
752 */
753 unsigned long section_mem_map;
835c134e 754 DECLARE_BITMAP(pageblock_flags, SECTION_BLOCKFLAGS_BITS);
d41dee36
AW
755};
756
3e347261
BP
757#ifdef CONFIG_SPARSEMEM_EXTREME
758#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
759#else
760#define SECTIONS_PER_ROOT 1
761#endif
802f192e 762
3e347261
BP
763#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
764#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
765#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 766
3e347261
BP
767#ifdef CONFIG_SPARSEMEM_EXTREME
768extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 769#else
3e347261
BP
770extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
771#endif
d41dee36 772
29751f69
AW
773static inline struct mem_section *__nr_to_section(unsigned long nr)
774{
3e347261
BP
775 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
776 return NULL;
777 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 778}
4ca644d9 779extern int __section_nr(struct mem_section* ms);
29751f69
AW
780
781/*
782 * We use the lower bits of the mem_map pointer to store
783 * a little bit of information. There should be at least
784 * 3 bits here due to 32-bit alignment.
785 */
786#define SECTION_MARKED_PRESENT (1UL<<0)
787#define SECTION_HAS_MEM_MAP (1UL<<1)
788#define SECTION_MAP_LAST_BIT (1UL<<2)
789#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 790#define SECTION_NID_SHIFT 2
29751f69
AW
791
792static inline struct page *__section_mem_map_addr(struct mem_section *section)
793{
794 unsigned long map = section->section_mem_map;
795 map &= SECTION_MAP_MASK;
796 return (struct page *)map;
797}
798
540557b9 799static inline int present_section(struct mem_section *section)
29751f69 800{
802f192e 801 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
802}
803
540557b9
AW
804static inline int present_section_nr(unsigned long nr)
805{
806 return present_section(__nr_to_section(nr));
807}
808
809static inline int valid_section(struct mem_section *section)
29751f69 810{
802f192e 811 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
812}
813
814static inline int valid_section_nr(unsigned long nr)
815{
816 return valid_section(__nr_to_section(nr));
817}
818
d41dee36
AW
819static inline struct mem_section *__pfn_to_section(unsigned long pfn)
820{
29751f69 821 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
822}
823
d41dee36
AW
824static inline int pfn_valid(unsigned long pfn)
825{
826 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
827 return 0;
29751f69 828 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
829}
830
540557b9
AW
831static inline int pfn_present(unsigned long pfn)
832{
833 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
834 return 0;
835 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
836}
837
d41dee36
AW
838/*
839 * These are _only_ used during initialisation, therefore they
840 * can use __initdata ... They could have names to indicate
841 * this restriction.
842 */
843#ifdef CONFIG_NUMA
161599ff
AW
844#define pfn_to_nid(pfn) \
845({ \
846 unsigned long __pfn_to_nid_pfn = (pfn); \
847 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
848})
2bdaf115
AW
849#else
850#define pfn_to_nid(pfn) (0)
d41dee36
AW
851#endif
852
d41dee36
AW
853#define early_pfn_valid(pfn) pfn_valid(pfn)
854void sparse_init(void);
855#else
856#define sparse_init() do {} while (0)
28ae55c9 857#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
858#endif /* CONFIG_SPARSEMEM */
859
75167957
AW
860#ifdef CONFIG_NODES_SPAN_OTHER_NODES
861#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
862#else
863#define early_pfn_in_nid(pfn, nid) (1)
864#endif
865
d41dee36
AW
866#ifndef early_pfn_valid
867#define early_pfn_valid(pfn) (1)
868#endif
869
870void memory_present(int nid, unsigned long start, unsigned long end);
871unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
872
14e07298
AW
873/*
874 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
875 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
876 * pfn_valid_within() should be used in this case; we optimise this away
877 * when we have no holes within a MAX_ORDER_NR_PAGES block.
878 */
879#ifdef CONFIG_HOLES_IN_ZONE
880#define pfn_valid_within(pfn) pfn_valid(pfn)
881#else
882#define pfn_valid_within(pfn) (1)
883#endif
884
1da177e4
LT
885#endif /* !__ASSEMBLY__ */
886#endif /* __KERNEL__ */
887#endif /* _LINUX_MMZONE_H */