]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/mmzone.h
page allocator: do not check for compound pages during the page allocator sanity...
[mirror_ubuntu-jammy-kernel.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
97965478 18#include <linux/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
64c5e135 41#define MIGRATE_RESERVE 3
a5d76b54
KH
42#define MIGRATE_ISOLATE 4 /* can't allocate from here */
43#define MIGRATE_TYPES 5
b2a0ac88
MG
44
45#define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
467c996c
MG
49extern int page_group_by_mobility_disabled;
50
51static inline int get_pageblock_migratetype(struct page *page)
52{
467c996c
MG
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54}
55
1da177e4 56struct free_area {
b2a0ac88 57 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
58 unsigned long nr_free;
59};
60
61struct pglist_data;
62
63/*
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
68 */
69#if defined(CONFIG_SMP)
70struct zone_padding {
71 char x[0];
22fc6ecc 72} ____cacheline_internodealigned_in_smp;
1da177e4
LT
73#define ZONE_PADDING(name) struct zone_padding name;
74#else
75#define ZONE_PADDING(name)
76#endif
77
2244b95a 78enum zone_stat_item {
51ed4491 79 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 80 NR_FREE_PAGES,
b69408e8 81 NR_LRU_BASE,
4f98a2fe
RR
82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 NR_ACTIVE_ANON, /* " " " " " */
84 NR_INACTIVE_FILE, /* " " " " " */
85 NR_ACTIVE_FILE, /* " " " " " */
894bc310
LS
86#ifdef CONFIG_UNEVICTABLE_LRU
87 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
894bc310
LS
89#else
90 NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */
5344b7e6 91 NR_MLOCK = NR_ACTIVE_FILE,
894bc310 92#endif
f3dbd344
CL
93 NR_ANON_PAGES, /* Mapped anonymous pages */
94 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 95 only modified from process context */
347ce434 96 NR_FILE_PAGES,
b1e7a8fd 97 NR_FILE_DIRTY,
ce866b34 98 NR_WRITEBACK,
51ed4491
CL
99 NR_SLAB_RECLAIMABLE,
100 NR_SLAB_UNRECLAIMABLE,
101 NR_PAGETABLE, /* used for pagetables */
fd39fc85 102 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 103 NR_BOUNCE,
e129b5c2 104 NR_VMSCAN_WRITE,
4f98a2fe 105 /* Second 128 byte cacheline */
fc3ba692 106 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
ca889e6c
CL
107#ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114#endif
2244b95a
CL
115 NR_VM_ZONE_STAT_ITEMS };
116
4f98a2fe
RR
117/*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126#define LRU_BASE 0
127#define LRU_ACTIVE 1
128#define LRU_FILE 2
129
b69408e8 130enum lru_list {
4f98a2fe
RR
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310
LS
135#ifdef CONFIG_UNEVICTABLE_LRU
136 LRU_UNEVICTABLE,
137#else
138 LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */
139#endif
140 NR_LRU_LISTS
141};
b69408e8
CL
142
143#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
144
894bc310
LS
145#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
146
4f98a2fe
RR
147static inline int is_file_lru(enum lru_list l)
148{
149 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
150}
151
b69408e8
CL
152static inline int is_active_lru(enum lru_list l)
153{
4f98a2fe 154 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
155}
156
894bc310
LS
157static inline int is_unevictable_lru(enum lru_list l)
158{
159#ifdef CONFIG_UNEVICTABLE_LRU
160 return (l == LRU_UNEVICTABLE);
161#else
162 return 0;
163#endif
164}
165
1da177e4
LT
166struct per_cpu_pages {
167 int count; /* number of pages in the list */
1da177e4
LT
168 int high; /* high watermark, emptying needed */
169 int batch; /* chunk size for buddy add/remove */
170 struct list_head list; /* the list of pages */
171};
172
173struct per_cpu_pageset {
3dfa5721 174 struct per_cpu_pages pcp;
4037d452
CL
175#ifdef CONFIG_NUMA
176 s8 expire;
177#endif
2244b95a 178#ifdef CONFIG_SMP
df9ecaba 179 s8 stat_threshold;
2244b95a
CL
180 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
181#endif
1da177e4
LT
182} ____cacheline_aligned_in_smp;
183
e7c8d5c9
CL
184#ifdef CONFIG_NUMA
185#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
186#else
187#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
188#endif
189
97965478
CL
190#endif /* !__GENERATING_BOUNDS.H */
191
2f1b6248 192enum zone_type {
4b51d669 193#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
194 /*
195 * ZONE_DMA is used when there are devices that are not able
196 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
197 * carve out the portion of memory that is needed for these devices.
198 * The range is arch specific.
199 *
200 * Some examples
201 *
202 * Architecture Limit
203 * ---------------------------
204 * parisc, ia64, sparc <4G
205 * s390 <2G
2f1b6248
CL
206 * arm Various
207 * alpha Unlimited or 0-16MB.
208 *
209 * i386, x86_64 and multiple other arches
210 * <16M.
211 */
212 ZONE_DMA,
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
215 /*
216 * x86_64 needs two ZONE_DMAs because it supports devices that are
217 * only able to do DMA to the lower 16M but also 32 bit devices that
218 * can only do DMA areas below 4G.
219 */
220 ZONE_DMA32,
fb0e7942 221#endif
2f1b6248
CL
222 /*
223 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
224 * performed on pages in ZONE_NORMAL if the DMA devices support
225 * transfers to all addressable memory.
226 */
227 ZONE_NORMAL,
e53ef38d 228#ifdef CONFIG_HIGHMEM
2f1b6248
CL
229 /*
230 * A memory area that is only addressable by the kernel through
231 * mapping portions into its own address space. This is for example
232 * used by i386 to allow the kernel to address the memory beyond
233 * 900MB. The kernel will set up special mappings (page
234 * table entries on i386) for each page that the kernel needs to
235 * access.
236 */
237 ZONE_HIGHMEM,
e53ef38d 238#endif
2a1e274a 239 ZONE_MOVABLE,
97965478 240 __MAX_NR_ZONES
2f1b6248 241};
1da177e4 242
97965478
CL
243#ifndef __GENERATING_BOUNDS_H
244
1da177e4
LT
245/*
246 * When a memory allocation must conform to specific limitations (such
247 * as being suitable for DMA) the caller will pass in hints to the
248 * allocator in the gfp_mask, in the zone modifier bits. These bits
249 * are used to select a priority ordered list of memory zones which
19655d34 250 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 251 */
fb0e7942 252
97965478 253#if MAX_NR_ZONES < 2
4b51d669 254#define ZONES_SHIFT 0
97965478 255#elif MAX_NR_ZONES <= 2
19655d34 256#define ZONES_SHIFT 1
97965478 257#elif MAX_NR_ZONES <= 4
19655d34 258#define ZONES_SHIFT 2
4b51d669
CL
259#else
260#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 261#endif
1da177e4 262
6e901571
KM
263struct zone_reclaim_stat {
264 /*
265 * The pageout code in vmscan.c keeps track of how many of the
266 * mem/swap backed and file backed pages are refeferenced.
267 * The higher the rotated/scanned ratio, the more valuable
268 * that cache is.
269 *
270 * The anon LRU stats live in [0], file LRU stats in [1]
271 */
272 unsigned long recent_rotated[2];
273 unsigned long recent_scanned[2];
274};
275
1da177e4
LT
276struct zone {
277 /* Fields commonly accessed by the page allocator */
1da177e4
LT
278 unsigned long pages_min, pages_low, pages_high;
279 /*
280 * We don't know if the memory that we're going to allocate will be freeable
281 * or/and it will be released eventually, so to avoid totally wasting several
282 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
283 * to run OOM on the lower zones despite there's tons of freeable ram
284 * on the higher zones). This array is recalculated at runtime if the
285 * sysctl_lowmem_reserve_ratio sysctl changes.
286 */
287 unsigned long lowmem_reserve[MAX_NR_ZONES];
288
e7c8d5c9 289#ifdef CONFIG_NUMA
d5f541ed 290 int node;
9614634f
CL
291 /*
292 * zone reclaim becomes active if more unmapped pages exist.
293 */
8417bba4 294 unsigned long min_unmapped_pages;
0ff38490 295 unsigned long min_slab_pages;
e7c8d5c9
CL
296 struct per_cpu_pageset *pageset[NR_CPUS];
297#else
1da177e4 298 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 299#endif
1da177e4
LT
300 /*
301 * free areas of different sizes
302 */
303 spinlock_t lock;
bdc8cb98
DH
304#ifdef CONFIG_MEMORY_HOTPLUG
305 /* see spanned/present_pages for more description */
306 seqlock_t span_seqlock;
307#endif
1da177e4
LT
308 struct free_area free_area[MAX_ORDER];
309
835c134e
MG
310#ifndef CONFIG_SPARSEMEM
311 /*
d9c23400 312 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
313 * In SPARSEMEM, this map is stored in struct mem_section
314 */
315 unsigned long *pageblock_flags;
316#endif /* CONFIG_SPARSEMEM */
317
1da177e4
LT
318
319 ZONE_PADDING(_pad1_)
320
321 /* Fields commonly accessed by the page reclaim scanner */
322 spinlock_t lru_lock;
b69408e8
CL
323 struct {
324 struct list_head list;
325 unsigned long nr_scan;
326 } lru[NR_LRU_LISTS];
4f98a2fe 327
6e901571 328 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 329
1da177e4 330 unsigned long pages_scanned; /* since last reclaim */
e815af95 331 unsigned long flags; /* zone flags, see below */
753ee728 332
2244b95a
CL
333 /* Zone statistics */
334 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 335
1da177e4
LT
336 /*
337 * prev_priority holds the scanning priority for this zone. It is
338 * defined as the scanning priority at which we achieved our reclaim
339 * target at the previous try_to_free_pages() or balance_pgdat()
340 * invokation.
341 *
342 * We use prev_priority as a measure of how much stress page reclaim is
343 * under - it drives the swappiness decision: whether to unmap mapped
344 * pages.
345 *
3bb1a852 346 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
347 * it is expected to average out OK.
348 */
1da177e4
LT
349 int prev_priority;
350
556adecb
RR
351 /*
352 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
353 * this zone's LRU. Maintained by the pageout code.
354 */
355 unsigned int inactive_ratio;
356
1da177e4
LT
357
358 ZONE_PADDING(_pad2_)
359 /* Rarely used or read-mostly fields */
360
361 /*
362 * wait_table -- the array holding the hash table
02b694de 363 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
364 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
365 *
366 * The purpose of all these is to keep track of the people
367 * waiting for a page to become available and make them
368 * runnable again when possible. The trouble is that this
369 * consumes a lot of space, especially when so few things
370 * wait on pages at a given time. So instead of using
371 * per-page waitqueues, we use a waitqueue hash table.
372 *
373 * The bucket discipline is to sleep on the same queue when
374 * colliding and wake all in that wait queue when removing.
375 * When something wakes, it must check to be sure its page is
376 * truly available, a la thundering herd. The cost of a
377 * collision is great, but given the expected load of the
378 * table, they should be so rare as to be outweighed by the
379 * benefits from the saved space.
380 *
381 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
382 * primary users of these fields, and in mm/page_alloc.c
383 * free_area_init_core() performs the initialization of them.
384 */
385 wait_queue_head_t * wait_table;
02b694de 386 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
387 unsigned long wait_table_bits;
388
389 /*
390 * Discontig memory support fields.
391 */
392 struct pglist_data *zone_pgdat;
1da177e4
LT
393 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
394 unsigned long zone_start_pfn;
395
bdc8cb98
DH
396 /*
397 * zone_start_pfn, spanned_pages and present_pages are all
398 * protected by span_seqlock. It is a seqlock because it has
399 * to be read outside of zone->lock, and it is done in the main
400 * allocator path. But, it is written quite infrequently.
401 *
402 * The lock is declared along with zone->lock because it is
403 * frequently read in proximity to zone->lock. It's good to
404 * give them a chance of being in the same cacheline.
405 */
1da177e4
LT
406 unsigned long spanned_pages; /* total size, including holes */
407 unsigned long present_pages; /* amount of memory (excluding holes) */
408
409 /*
410 * rarely used fields:
411 */
15ad7cdc 412 const char *name;
22fc6ecc 413} ____cacheline_internodealigned_in_smp;
1da177e4 414
e815af95
DR
415typedef enum {
416 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
417 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 418 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
419} zone_flags_t;
420
421static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
422{
423 set_bit(flag, &zone->flags);
424}
d773ed6b
DR
425
426static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
427{
428 return test_and_set_bit(flag, &zone->flags);
429}
430
e815af95
DR
431static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
432{
433 clear_bit(flag, &zone->flags);
434}
435
436static inline int zone_is_all_unreclaimable(const struct zone *zone)
437{
438 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
439}
d773ed6b 440
e815af95
DR
441static inline int zone_is_reclaim_locked(const struct zone *zone)
442{
443 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
444}
d773ed6b 445
098d7f12
DR
446static inline int zone_is_oom_locked(const struct zone *zone)
447{
448 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
449}
e815af95 450
1da177e4
LT
451/*
452 * The "priority" of VM scanning is how much of the queues we will scan in one
453 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
454 * queues ("queue_length >> 12") during an aging round.
455 */
456#define DEF_PRIORITY 12
457
9276b1bc
PJ
458/* Maximum number of zones on a zonelist */
459#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
460
461#ifdef CONFIG_NUMA
523b9458
CL
462
463/*
464 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
465 * allocations to a single node for GFP_THISNODE.
466 *
54a6eb5c
MG
467 * [0] : Zonelist with fallback
468 * [1] : No fallback (GFP_THISNODE)
523b9458 469 */
54a6eb5c 470#define MAX_ZONELISTS 2
523b9458
CL
471
472
9276b1bc
PJ
473/*
474 * We cache key information from each zonelist for smaller cache
475 * footprint when scanning for free pages in get_page_from_freelist().
476 *
477 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
478 * up short of free memory since the last time (last_fullzone_zap)
479 * we zero'd fullzones.
480 * 2) The array z_to_n[] maps each zone in the zonelist to its node
481 * id, so that we can efficiently evaluate whether that node is
482 * set in the current tasks mems_allowed.
483 *
484 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
485 * indexed by a zones offset in the zonelist zones[] array.
486 *
487 * The get_page_from_freelist() routine does two scans. During the
488 * first scan, we skip zones whose corresponding bit in 'fullzones'
489 * is set or whose corresponding node in current->mems_allowed (which
490 * comes from cpusets) is not set. During the second scan, we bypass
491 * this zonelist_cache, to ensure we look methodically at each zone.
492 *
493 * Once per second, we zero out (zap) fullzones, forcing us to
494 * reconsider nodes that might have regained more free memory.
495 * The field last_full_zap is the time we last zapped fullzones.
496 *
497 * This mechanism reduces the amount of time we waste repeatedly
498 * reexaming zones for free memory when they just came up low on
499 * memory momentarilly ago.
500 *
501 * The zonelist_cache struct members logically belong in struct
502 * zonelist. However, the mempolicy zonelists constructed for
503 * MPOL_BIND are intentionally variable length (and usually much
504 * shorter). A general purpose mechanism for handling structs with
505 * multiple variable length members is more mechanism than we want
506 * here. We resort to some special case hackery instead.
507 *
508 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
509 * part because they are shorter), so we put the fixed length stuff
510 * at the front of the zonelist struct, ending in a variable length
511 * zones[], as is needed by MPOL_BIND.
512 *
513 * Then we put the optional zonelist cache on the end of the zonelist
514 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
515 * the fixed length portion at the front of the struct. This pointer
516 * both enables us to find the zonelist cache, and in the case of
517 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
518 * to know that the zonelist cache is not there.
519 *
520 * The end result is that struct zonelists come in two flavors:
521 * 1) The full, fixed length version, shown below, and
522 * 2) The custom zonelists for MPOL_BIND.
523 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
524 *
525 * Even though there may be multiple CPU cores on a node modifying
526 * fullzones or last_full_zap in the same zonelist_cache at the same
527 * time, we don't lock it. This is just hint data - if it is wrong now
528 * and then, the allocator will still function, perhaps a bit slower.
529 */
530
531
532struct zonelist_cache {
9276b1bc 533 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 534 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
535 unsigned long last_full_zap; /* when last zap'd (jiffies) */
536};
537#else
54a6eb5c 538#define MAX_ZONELISTS 1
9276b1bc
PJ
539struct zonelist_cache;
540#endif
541
dd1a239f
MG
542/*
543 * This struct contains information about a zone in a zonelist. It is stored
544 * here to avoid dereferences into large structures and lookups of tables
545 */
546struct zoneref {
547 struct zone *zone; /* Pointer to actual zone */
548 int zone_idx; /* zone_idx(zoneref->zone) */
549};
550
1da177e4
LT
551/*
552 * One allocation request operates on a zonelist. A zonelist
553 * is a list of zones, the first one is the 'goal' of the
554 * allocation, the other zones are fallback zones, in decreasing
555 * priority.
556 *
9276b1bc
PJ
557 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
558 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
559 * *
560 * To speed the reading of the zonelist, the zonerefs contain the zone index
561 * of the entry being read. Helper functions to access information given
562 * a struct zoneref are
563 *
564 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
565 * zonelist_zone_idx() - Return the index of the zone for an entry
566 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
567 */
568struct zonelist {
9276b1bc 569 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 570 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
571#ifdef CONFIG_NUMA
572 struct zonelist_cache zlcache; // optional ...
573#endif
1da177e4
LT
574};
575
c713216d
MG
576#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
577struct node_active_region {
578 unsigned long start_pfn;
579 unsigned long end_pfn;
580 int nid;
581};
582#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 583
5b99cd0e
HC
584#ifndef CONFIG_DISCONTIGMEM
585/* The array of struct pages - for discontigmem use pgdat->lmem_map */
586extern struct page *mem_map;
587#endif
588
1da177e4
LT
589/*
590 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
591 * (mostly NUMA machines?) to denote a higher-level memory zone than the
592 * zone denotes.
593 *
594 * On NUMA machines, each NUMA node would have a pg_data_t to describe
595 * it's memory layout.
596 *
597 * Memory statistics and page replacement data structures are maintained on a
598 * per-zone basis.
599 */
600struct bootmem_data;
601typedef struct pglist_data {
602 struct zone node_zones[MAX_NR_ZONES];
523b9458 603 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 604 int nr_zones;
52d4b9ac 605#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 606 struct page *node_mem_map;
52d4b9ac
KH
607#ifdef CONFIG_CGROUP_MEM_RES_CTLR
608 struct page_cgroup *node_page_cgroup;
609#endif
d41dee36 610#endif
1da177e4 611 struct bootmem_data *bdata;
208d54e5
DH
612#ifdef CONFIG_MEMORY_HOTPLUG
613 /*
614 * Must be held any time you expect node_start_pfn, node_present_pages
615 * or node_spanned_pages stay constant. Holding this will also
616 * guarantee that any pfn_valid() stays that way.
617 *
618 * Nests above zone->lock and zone->size_seqlock.
619 */
620 spinlock_t node_size_lock;
621#endif
1da177e4
LT
622 unsigned long node_start_pfn;
623 unsigned long node_present_pages; /* total number of physical pages */
624 unsigned long node_spanned_pages; /* total size of physical page
625 range, including holes */
626 int node_id;
1da177e4
LT
627 wait_queue_head_t kswapd_wait;
628 struct task_struct *kswapd;
629 int kswapd_max_order;
630} pg_data_t;
631
632#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
633#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 634#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 635#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
636#else
637#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
638#endif
408fde81 639#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 640
208d54e5
DH
641#include <linux/memory_hotplug.h>
642
1da177e4
LT
643void get_zone_counts(unsigned long *active, unsigned long *inactive,
644 unsigned long *free);
645void build_all_zonelists(void);
646void wakeup_kswapd(struct zone *zone, int order);
647int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 648 int classzone_idx, int alloc_flags);
a2f3aa02
DH
649enum memmap_context {
650 MEMMAP_EARLY,
651 MEMMAP_HOTPLUG,
652};
718127cc 653extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
654 unsigned long size,
655 enum memmap_context context);
718127cc 656
1da177e4
LT
657#ifdef CONFIG_HAVE_MEMORY_PRESENT
658void memory_present(int nid, unsigned long start, unsigned long end);
659#else
660static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
661#endif
662
663#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
664unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
665#endif
666
667/*
668 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
669 */
670#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
671
f3fe6512
CK
672static inline int populated_zone(struct zone *zone)
673{
674 return (!!zone->present_pages);
675}
676
2a1e274a
MG
677extern int movable_zone;
678
679static inline int zone_movable_is_highmem(void)
680{
681#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
682 return movable_zone == ZONE_HIGHMEM;
683#else
684 return 0;
685#endif
686}
687
2f1b6248 688static inline int is_highmem_idx(enum zone_type idx)
1da177e4 689{
e53ef38d 690#ifdef CONFIG_HIGHMEM
2a1e274a
MG
691 return (idx == ZONE_HIGHMEM ||
692 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
693#else
694 return 0;
695#endif
1da177e4
LT
696}
697
2f1b6248 698static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
699{
700 return (idx == ZONE_NORMAL);
701}
9328b8fa 702
1da177e4
LT
703/**
704 * is_highmem - helper function to quickly check if a struct zone is a
705 * highmem zone or not. This is an attempt to keep references
706 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
707 * @zone - pointer to struct zone variable
708 */
709static inline int is_highmem(struct zone *zone)
710{
e53ef38d 711#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
712 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
713 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
714 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
715 zone_movable_is_highmem());
e53ef38d
CL
716#else
717 return 0;
718#endif
1da177e4
LT
719}
720
721static inline int is_normal(struct zone *zone)
722{
723 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
724}
725
9328b8fa
NP
726static inline int is_dma32(struct zone *zone)
727{
fb0e7942 728#ifdef CONFIG_ZONE_DMA32
9328b8fa 729 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
730#else
731 return 0;
732#endif
9328b8fa
NP
733}
734
735static inline int is_dma(struct zone *zone)
736{
4b51d669 737#ifdef CONFIG_ZONE_DMA
9328b8fa 738 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
739#else
740 return 0;
741#endif
9328b8fa
NP
742}
743
1da177e4
LT
744/* These two functions are used to setup the per zone pages min values */
745struct ctl_table;
746struct file;
747int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
748 void __user *, size_t *, loff_t *);
749extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
750int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
751 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
752int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
753 void __user *, size_t *, loff_t *);
9614634f
CL
754int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
755 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
756int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
757 struct file *, void __user *, size_t *, loff_t *);
1da177e4 758
f0c0b2b8
KH
759extern int numa_zonelist_order_handler(struct ctl_table *, int,
760 struct file *, void __user *, size_t *, loff_t *);
761extern char numa_zonelist_order[];
762#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
763
93b7504e 764#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
765
766extern struct pglist_data contig_page_data;
767#define NODE_DATA(nid) (&contig_page_data)
768#define NODE_MEM_MAP(nid) mem_map
1da177e4 769
93b7504e 770#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
771
772#include <asm/mmzone.h>
773
93b7504e 774#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 775
95144c78
KH
776extern struct pglist_data *first_online_pgdat(void);
777extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
778extern struct zone *next_zone(struct zone *zone);
8357f869
KH
779
780/**
12d15f0d 781 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
782 * @pgdat - pointer to a pg_data_t variable
783 */
784#define for_each_online_pgdat(pgdat) \
785 for (pgdat = first_online_pgdat(); \
786 pgdat; \
787 pgdat = next_online_pgdat(pgdat))
8357f869
KH
788/**
789 * for_each_zone - helper macro to iterate over all memory zones
790 * @zone - pointer to struct zone variable
791 *
792 * The user only needs to declare the zone variable, for_each_zone
793 * fills it in.
794 */
795#define for_each_zone(zone) \
796 for (zone = (first_online_pgdat())->node_zones; \
797 zone; \
798 zone = next_zone(zone))
799
ee99c71c
KM
800#define for_each_populated_zone(zone) \
801 for (zone = (first_online_pgdat())->node_zones; \
802 zone; \
803 zone = next_zone(zone)) \
804 if (!populated_zone(zone)) \
805 ; /* do nothing */ \
806 else
807
dd1a239f
MG
808static inline struct zone *zonelist_zone(struct zoneref *zoneref)
809{
810 return zoneref->zone;
811}
812
813static inline int zonelist_zone_idx(struct zoneref *zoneref)
814{
815 return zoneref->zone_idx;
816}
817
818static inline int zonelist_node_idx(struct zoneref *zoneref)
819{
820#ifdef CONFIG_NUMA
821 /* zone_to_nid not available in this context */
822 return zoneref->zone->node;
823#else
824 return 0;
825#endif /* CONFIG_NUMA */
826}
827
19770b32
MG
828/**
829 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
830 * @z - The cursor used as a starting point for the search
831 * @highest_zoneidx - The zone index of the highest zone to return
832 * @nodes - An optional nodemask to filter the zonelist with
833 * @zone - The first suitable zone found is returned via this parameter
834 *
835 * This function returns the next zone at or below a given zone index that is
836 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
837 * search. The zoneref returned is a cursor that represents the current zone
838 * being examined. It should be advanced by one before calling
839 * next_zones_zonelist again.
19770b32
MG
840 */
841struct zoneref *next_zones_zonelist(struct zoneref *z,
842 enum zone_type highest_zoneidx,
843 nodemask_t *nodes,
844 struct zone **zone);
dd1a239f 845
19770b32
MG
846/**
847 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
848 * @zonelist - The zonelist to search for a suitable zone
849 * @highest_zoneidx - The zone index of the highest zone to return
850 * @nodes - An optional nodemask to filter the zonelist with
851 * @zone - The first suitable zone found is returned via this parameter
852 *
853 * This function returns the first zone at or below a given zone index that is
854 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
855 * used to iterate the zonelist with next_zones_zonelist by advancing it by
856 * one before calling.
19770b32 857 */
dd1a239f 858static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
859 enum zone_type highest_zoneidx,
860 nodemask_t *nodes,
861 struct zone **zone)
54a6eb5c 862{
19770b32
MG
863 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
864 zone);
54a6eb5c
MG
865}
866
19770b32
MG
867/**
868 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
869 * @zone - The current zone in the iterator
870 * @z - The current pointer within zonelist->zones being iterated
871 * @zlist - The zonelist being iterated
872 * @highidx - The zone index of the highest zone to return
873 * @nodemask - Nodemask allowed by the allocator
874 *
875 * This iterator iterates though all zones at or below a given zone index and
876 * within a given nodemask
877 */
878#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
879 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
880 zone; \
5bead2a0 881 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
882
883/**
884 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
885 * @zone - The current zone in the iterator
886 * @z - The current pointer within zonelist->zones being iterated
887 * @zlist - The zonelist being iterated
888 * @highidx - The zone index of the highest zone to return
889 *
890 * This iterator iterates though all zones at or below a given zone index.
891 */
892#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 893 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 894
d41dee36
AW
895#ifdef CONFIG_SPARSEMEM
896#include <asm/sparsemem.h>
897#endif
898
c713216d
MG
899#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
900 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
901static inline unsigned long early_pfn_to_nid(unsigned long pfn)
902{
903 return 0;
904}
b159d43f
AW
905#endif
906
2bdaf115
AW
907#ifdef CONFIG_FLATMEM
908#define pfn_to_nid(pfn) (0)
909#endif
910
d41dee36
AW
911#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
912#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
913
914#ifdef CONFIG_SPARSEMEM
915
916/*
917 * SECTION_SHIFT #bits space required to store a section #
918 *
919 * PA_SECTION_SHIFT physical address to/from section number
920 * PFN_SECTION_SHIFT pfn to/from section number
921 */
922#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
923
924#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
925#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
926
927#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
928
929#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
930#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
931
835c134e 932#define SECTION_BLOCKFLAGS_BITS \
d9c23400 933 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 934
d41dee36
AW
935#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
936#error Allocator MAX_ORDER exceeds SECTION_SIZE
937#endif
938
939struct page;
52d4b9ac 940struct page_cgroup;
d41dee36 941struct mem_section {
29751f69
AW
942 /*
943 * This is, logically, a pointer to an array of struct
944 * pages. However, it is stored with some other magic.
945 * (see sparse.c::sparse_init_one_section())
946 *
30c253e6
AW
947 * Additionally during early boot we encode node id of
948 * the location of the section here to guide allocation.
949 * (see sparse.c::memory_present())
950 *
29751f69
AW
951 * Making it a UL at least makes someone do a cast
952 * before using it wrong.
953 */
954 unsigned long section_mem_map;
5c0e3066
MG
955
956 /* See declaration of similar field in struct zone */
957 unsigned long *pageblock_flags;
52d4b9ac
KH
958#ifdef CONFIG_CGROUP_MEM_RES_CTLR
959 /*
960 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
961 * section. (see memcontrol.h/page_cgroup.h about this.)
962 */
963 struct page_cgroup *page_cgroup;
964 unsigned long pad;
965#endif
d41dee36
AW
966};
967
3e347261
BP
968#ifdef CONFIG_SPARSEMEM_EXTREME
969#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
970#else
971#define SECTIONS_PER_ROOT 1
972#endif
802f192e 973
3e347261
BP
974#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
975#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
976#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 977
3e347261
BP
978#ifdef CONFIG_SPARSEMEM_EXTREME
979extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 980#else
3e347261
BP
981extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
982#endif
d41dee36 983
29751f69
AW
984static inline struct mem_section *__nr_to_section(unsigned long nr)
985{
3e347261
BP
986 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
987 return NULL;
988 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 989}
4ca644d9 990extern int __section_nr(struct mem_section* ms);
04753278 991extern unsigned long usemap_size(void);
29751f69
AW
992
993/*
994 * We use the lower bits of the mem_map pointer to store
995 * a little bit of information. There should be at least
996 * 3 bits here due to 32-bit alignment.
997 */
998#define SECTION_MARKED_PRESENT (1UL<<0)
999#define SECTION_HAS_MEM_MAP (1UL<<1)
1000#define SECTION_MAP_LAST_BIT (1UL<<2)
1001#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1002#define SECTION_NID_SHIFT 2
29751f69
AW
1003
1004static inline struct page *__section_mem_map_addr(struct mem_section *section)
1005{
1006 unsigned long map = section->section_mem_map;
1007 map &= SECTION_MAP_MASK;
1008 return (struct page *)map;
1009}
1010
540557b9 1011static inline int present_section(struct mem_section *section)
29751f69 1012{
802f192e 1013 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1014}
1015
540557b9
AW
1016static inline int present_section_nr(unsigned long nr)
1017{
1018 return present_section(__nr_to_section(nr));
1019}
1020
1021static inline int valid_section(struct mem_section *section)
29751f69 1022{
802f192e 1023 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1024}
1025
1026static inline int valid_section_nr(unsigned long nr)
1027{
1028 return valid_section(__nr_to_section(nr));
1029}
1030
d41dee36
AW
1031static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1032{
29751f69 1033 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1034}
1035
d41dee36
AW
1036static inline int pfn_valid(unsigned long pfn)
1037{
1038 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1039 return 0;
29751f69 1040 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1041}
1042
540557b9
AW
1043static inline int pfn_present(unsigned long pfn)
1044{
1045 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1046 return 0;
1047 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1048}
1049
d41dee36
AW
1050/*
1051 * These are _only_ used during initialisation, therefore they
1052 * can use __initdata ... They could have names to indicate
1053 * this restriction.
1054 */
1055#ifdef CONFIG_NUMA
161599ff
AW
1056#define pfn_to_nid(pfn) \
1057({ \
1058 unsigned long __pfn_to_nid_pfn = (pfn); \
1059 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1060})
2bdaf115
AW
1061#else
1062#define pfn_to_nid(pfn) (0)
d41dee36
AW
1063#endif
1064
d41dee36
AW
1065#define early_pfn_valid(pfn) pfn_valid(pfn)
1066void sparse_init(void);
1067#else
1068#define sparse_init() do {} while (0)
28ae55c9 1069#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1070#endif /* CONFIG_SPARSEMEM */
1071
75167957 1072#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1073bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1074#else
1075#define early_pfn_in_nid(pfn, nid) (1)
1076#endif
1077
d41dee36
AW
1078#ifndef early_pfn_valid
1079#define early_pfn_valid(pfn) (1)
1080#endif
1081
1082void memory_present(int nid, unsigned long start, unsigned long end);
1083unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1084
14e07298
AW
1085/*
1086 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1087 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1088 * pfn_valid_within() should be used in this case; we optimise this away
1089 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1090 */
1091#ifdef CONFIG_HOLES_IN_ZONE
1092#define pfn_valid_within(pfn) pfn_valid(pfn)
1093#else
1094#define pfn_valid_within(pfn) (1)
1095#endif
1096
eb33575c
MG
1097#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1098/*
1099 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1100 * associated with it or not. In FLATMEM, it is expected that holes always
1101 * have valid memmap as long as there is valid PFNs either side of the hole.
1102 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1103 * entire section.
1104 *
1105 * However, an ARM, and maybe other embedded architectures in the future
1106 * free memmap backing holes to save memory on the assumption the memmap is
1107 * never used. The page_zone linkages are then broken even though pfn_valid()
1108 * returns true. A walker of the full memmap must then do this additional
1109 * check to ensure the memmap they are looking at is sane by making sure
1110 * the zone and PFN linkages are still valid. This is expensive, but walkers
1111 * of the full memmap are extremely rare.
1112 */
1113int memmap_valid_within(unsigned long pfn,
1114 struct page *page, struct zone *zone);
1115#else
1116static inline int memmap_valid_within(unsigned long pfn,
1117 struct page *page, struct zone *zone)
1118{
1119 return 1;
1120}
1121#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1122
97965478 1123#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1124#endif /* !__ASSEMBLY__ */
1da177e4 1125#endif /* _LINUX_MMZONE_H */