]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/page-flags.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[mirror_ubuntu-eoan-kernel.git] / include / linux / page-flags.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
f886ed44 9#include <linux/types.h>
187f1882 10#include <linux/bug.h>
072bb0aa 11#include <linux/mmdebug.h>
9223b419 12#ifndef __GENERATING_BOUNDS_H
6d777953 13#include <linux/mm_types.h>
01fc0ac1 14#include <generated/bounds.h>
9223b419 15#endif /* !__GENERATING_BOUNDS_H */
f886ed44 16
1da177e4
LT
17/*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages, which can never be swapped out. Some
8745808f 21 * of them might not even exist...
1da177e4 22 *
da6052f7
NP
23 * The PG_private bitflag is set on pagecache pages if they contain filesystem
24 * specific data (which is normally at page->private). It can be used by
25 * private allocations for its own usage.
1da177e4 26 *
da6052f7
NP
27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
29 * is set before writeback starts and cleared when it finishes.
30 *
31 * PG_locked also pins a page in pagecache, and blocks truncation of the file
32 * while it is held.
33 *
34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
35 * to become unlocked.
1da177e4
LT
36 *
37 * PG_uptodate tells whether the page's contents is valid. When a read
38 * completes, the page becomes uptodate, unless a disk I/O error happened.
39 *
da6052f7
NP
40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
41 * file-backed pagecache (see mm/vmscan.c).
1da177e4
LT
42 *
43 * PG_error is set to indicate that an I/O error occurred on this page.
44 *
45 * PG_arch_1 is an architecture specific page state bit. The generic code
46 * guarantees that this bit is cleared for a page when it first is entered into
47 * the page cache.
48 *
d466f2fc
AK
49 * PG_hwpoison indicates that a page got corrupted in hardware and contains
50 * data with incorrect ECC bits that triggered a machine check. Accessing is
51 * not safe since it may cause another machine check. Don't touch!
1da177e4
LT
52 */
53
54/*
55 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
91fc8ab3
AW
56 * locked- and dirty-page accounting.
57 *
58 * The page flags field is split into two parts, the main flags area
59 * which extends from the low bits upwards, and the fields area which
60 * extends from the high bits downwards.
61 *
62 * | FIELD | ... | FLAGS |
9223b419
CL
63 * N-1 ^ 0
64 * (NR_PAGEFLAGS)
91fc8ab3 65 *
9223b419
CL
66 * The fields area is reserved for fields mapping zone, node (for NUMA) and
67 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
68 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
1da177e4 69 */
e2683181
CL
70enum pageflags {
71 PG_locked, /* Page is locked. Don't touch. */
e2683181
CL
72 PG_referenced,
73 PG_uptodate,
74 PG_dirty,
75 PG_lru,
76 PG_active,
1899ad18 77 PG_workingset,
b91e1302 78 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
1899ad18 79 PG_error,
e2683181
CL
80 PG_slab,
81 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
e2683181
CL
82 PG_arch_1,
83 PG_reserved,
84 PG_private, /* If pagecache, has fs-private data */
266cf658 85 PG_private_2, /* If pagecache, has fs aux data */
e2683181 86 PG_writeback, /* Page is under writeback */
e20b8cca 87 PG_head, /* A head page */
e2683181
CL
88 PG_mappedtodisk, /* Has blocks allocated on-disk */
89 PG_reclaim, /* To be reclaimed asap */
b2e18538 90 PG_swapbacked, /* Page is backed by RAM/swap */
894bc310 91 PG_unevictable, /* Page is "unevictable" */
af8e3354 92#ifdef CONFIG_MMU
b291f000 93 PG_mlocked, /* Page is vma mlocked */
894bc310 94#endif
46cf98cd 95#ifdef CONFIG_ARCH_USES_PG_UNCACHED
602c4d11 96 PG_uncached, /* Page has been mapped as uncached */
d466f2fc
AK
97#endif
98#ifdef CONFIG_MEMORY_FAILURE
99 PG_hwpoison, /* hardware poisoned page. Don't touch */
e9da73d6 100#endif
33c3fc71
VD
101#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
102 PG_young,
103 PG_idle,
f886ed44 104#endif
0cad47cf
AW
105 __NR_PAGEFLAGS,
106
107 /* Filesystems */
108 PG_checked = PG_owner_priv_1,
109
6326fec1
NP
110 /* SwapBacked */
111 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
112
266cf658
DH
113 /* Two page bits are conscripted by FS-Cache to maintain local caching
114 * state. These bits are set on pages belonging to the netfs's inodes
115 * when those inodes are being locally cached.
116 */
117 PG_fscache = PG_private_2, /* page backed by cache */
118
0cad47cf 119 /* XEN */
d8ac3dd4 120 /* Pinned in Xen as a read-only pagetable page. */
0cad47cf 121 PG_pinned = PG_owner_priv_1,
d8ac3dd4 122 /* Pinned as part of domain save (see xen_mm_pin_all()). */
0cad47cf 123 PG_savepinned = PG_dirty,
d8ac3dd4
JH
124 /* Has a grant mapping of another (foreign) domain's page. */
125 PG_foreign = PG_owner_priv_1,
8a38082d 126
9023cb7e 127 /* SLOB */
9023cb7e 128 PG_slob_free = PG_private,
53f9263b
KS
129
130 /* Compound pages. Stored in first tail page's flags */
131 PG_double_map = PG_private_2,
bda807d4
MK
132
133 /* non-lru isolated movable page */
134 PG_isolated = PG_reclaim,
e2683181 135};
1da177e4 136
9223b419
CL
137#ifndef __GENERATING_BOUNDS_H
138
0e6d31a7
KS
139struct page; /* forward declaration */
140
141static inline struct page *compound_head(struct page *page)
142{
143 unsigned long head = READ_ONCE(page->compound_head);
144
145 if (unlikely(head & 1))
146 return (struct page *) (head - 1);
147 return page;
148}
149
4b0f3261 150static __always_inline int PageTail(struct page *page)
0e6d31a7
KS
151{
152 return READ_ONCE(page->compound_head) & 1;
153}
154
4b0f3261 155static __always_inline int PageCompound(struct page *page)
0e6d31a7
KS
156{
157 return test_bit(PG_head, &page->flags) || PageTail(page);
158}
159
f165b378
PT
160#define PAGE_POISON_PATTERN -1l
161static inline int PagePoisoned(const struct page *page)
162{
163 return page->flags == PAGE_POISON_PATTERN;
164}
165
f682a97a
AD
166#ifdef CONFIG_DEBUG_VM
167void page_init_poison(struct page *page, size_t size);
168#else
169static inline void page_init_poison(struct page *page, size_t size)
170{
171}
172#endif
173
95ad9755
KS
174/*
175 * Page flags policies wrt compound pages
176 *
f165b378
PT
177 * PF_POISONED_CHECK
178 * check if this struct page poisoned/uninitialized
179 *
95ad9755
KS
180 * PF_ANY:
181 * the page flag is relevant for small, head and tail pages.
182 *
183 * PF_HEAD:
184 * for compound page all operations related to the page flag applied to
185 * head page.
186 *
62906027
NP
187 * PF_ONLY_HEAD:
188 * for compound page, callers only ever operate on the head page.
189 *
95ad9755
KS
190 * PF_NO_TAIL:
191 * modifications of the page flag must be done on small or head pages,
192 * checks can be done on tail pages too.
193 *
194 * PF_NO_COMPOUND:
195 * the page flag is not relevant for compound pages.
196 */
f165b378
PT
197#define PF_POISONED_CHECK(page) ({ \
198 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
199 page; })
200#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
201#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
62906027
NP
202#define PF_ONLY_HEAD(page, enforce) ({ \
203 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
f165b378 204 PF_POISONED_CHECK(page); })
95ad9755
KS
205#define PF_NO_TAIL(page, enforce) ({ \
206 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
f165b378 207 PF_POISONED_CHECK(compound_head(page)); })
822cdd11 208#define PF_NO_COMPOUND(page, enforce) ({ \
95ad9755 209 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
f165b378 210 PF_POISONED_CHECK(page); })
95ad9755 211
f94a62e9
CL
212/*
213 * Macros to create function definitions for page flags
214 */
95ad9755 215#define TESTPAGEFLAG(uname, lname, policy) \
4b0f3261 216static __always_inline int Page##uname(struct page *page) \
95ad9755 217 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
f94a62e9 218
95ad9755 219#define SETPAGEFLAG(uname, lname, policy) \
4b0f3261 220static __always_inline void SetPage##uname(struct page *page) \
95ad9755 221 { set_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 222
95ad9755 223#define CLEARPAGEFLAG(uname, lname, policy) \
4b0f3261 224static __always_inline void ClearPage##uname(struct page *page) \
95ad9755 225 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 226
95ad9755 227#define __SETPAGEFLAG(uname, lname, policy) \
4b0f3261 228static __always_inline void __SetPage##uname(struct page *page) \
95ad9755 229 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 230
95ad9755 231#define __CLEARPAGEFLAG(uname, lname, policy) \
4b0f3261 232static __always_inline void __ClearPage##uname(struct page *page) \
95ad9755 233 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 234
95ad9755 235#define TESTSETFLAG(uname, lname, policy) \
4b0f3261 236static __always_inline int TestSetPage##uname(struct page *page) \
95ad9755 237 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 238
95ad9755 239#define TESTCLEARFLAG(uname, lname, policy) \
4b0f3261 240static __always_inline int TestClearPage##uname(struct page *page) \
95ad9755 241 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
f94a62e9 242
95ad9755
KS
243#define PAGEFLAG(uname, lname, policy) \
244 TESTPAGEFLAG(uname, lname, policy) \
245 SETPAGEFLAG(uname, lname, policy) \
246 CLEARPAGEFLAG(uname, lname, policy)
f94a62e9 247
95ad9755
KS
248#define __PAGEFLAG(uname, lname, policy) \
249 TESTPAGEFLAG(uname, lname, policy) \
250 __SETPAGEFLAG(uname, lname, policy) \
251 __CLEARPAGEFLAG(uname, lname, policy)
f94a62e9 252
95ad9755
KS
253#define TESTSCFLAG(uname, lname, policy) \
254 TESTSETFLAG(uname, lname, policy) \
255 TESTCLEARFLAG(uname, lname, policy)
f94a62e9 256
2f3e442c
JW
257#define TESTPAGEFLAG_FALSE(uname) \
258static inline int Page##uname(const struct page *page) { return 0; }
259
8a7a8544
LS
260#define SETPAGEFLAG_NOOP(uname) \
261static inline void SetPage##uname(struct page *page) { }
262
263#define CLEARPAGEFLAG_NOOP(uname) \
264static inline void ClearPage##uname(struct page *page) { }
265
266#define __CLEARPAGEFLAG_NOOP(uname) \
267static inline void __ClearPage##uname(struct page *page) { }
268
2f3e442c
JW
269#define TESTSETFLAG_FALSE(uname) \
270static inline int TestSetPage##uname(struct page *page) { return 0; }
271
8a7a8544
LS
272#define TESTCLEARFLAG_FALSE(uname) \
273static inline int TestClearPage##uname(struct page *page) { return 0; }
274
2f3e442c
JW
275#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
276 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
277
278#define TESTSCFLAG_FALSE(uname) \
279 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
280
48c935ad 281__PAGEFLAG(Locked, locked, PF_NO_TAIL)
62906027 282PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
df8c94d1 283PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
8cb38fab
KS
284PAGEFLAG(Referenced, referenced, PF_HEAD)
285 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
286 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
df8c94d1
KS
287PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
288 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
8cb38fab
KS
289PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
290PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
291 TESTCLEARFLAG(Active, active, PF_HEAD)
1899ad18
JW
292PAGEFLAG(Workingset, workingset, PF_HEAD)
293 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
dcb351cd
KS
294__PAGEFLAG(Slab, slab, PF_NO_TAIL)
295__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
df8c94d1 296PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
c13985fa
KS
297
298/* Xen */
299PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
300 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
301PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
302PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
303
de09d31d
KS
304PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
305 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
d483da5b 306 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
da5efc40
KS
307PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
308 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
309 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
95ad9755 310
266cf658
DH
311/*
312 * Private page markings that may be used by the filesystem that owns the page
313 * for its own purposes.
314 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
315 */
95ad9755
KS
316PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
317 __CLEARPAGEFLAG(Private, private, PF_ANY)
318PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
319PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
320 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
266cf658 321
6a1e7f77
CL
322/*
323 * Only test-and-set exist for PG_writeback. The unconditional operators are
324 * risky: they bypass page accounting.
325 */
225311a4
HY
326TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
327 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
e2f0a0db 328PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
6a1e7f77 329
579f8290 330/* PG_readahead is only used for reads; PG_reclaim is only for writes */
e2f0a0db
KS
331PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
332 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
df8c94d1
KS
333PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
334 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
6a1e7f77
CL
335
336#ifdef CONFIG_HIGHMEM
1da177e4 337/*
6a1e7f77
CL
338 * Must use a macro here due to header dependency issues. page_zone() is not
339 * available at this point.
1da177e4 340 */
3ca65c19 341#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
6a1e7f77 342#else
ec7cade8 343PAGEFLAG_FALSE(HighMem)
6a1e7f77
CL
344#endif
345
346#ifdef CONFIG_SWAP
6326fec1
NP
347static __always_inline int PageSwapCache(struct page *page)
348{
38d8b4e6
HY
349#ifdef CONFIG_THP_SWAP
350 page = compound_head(page);
351#endif
6326fec1
NP
352 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
353
354}
38d8b4e6
HY
355SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
356CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
6a1e7f77 357#else
ec7cade8 358PAGEFLAG_FALSE(SwapCache)
6a1e7f77
CL
359#endif
360
8cb38fab
KS
361PAGEFLAG(Unevictable, unevictable, PF_HEAD)
362 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
363 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
b291f000 364
af8e3354 365#ifdef CONFIG_MMU
e4f87d5d
KS
366PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
367 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
368 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
894bc310 369#else
2f3e442c 370PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
685eaade 371 TESTSCFLAG_FALSE(Mlocked)
894bc310
LS
372#endif
373
46cf98cd 374#ifdef CONFIG_ARCH_USES_PG_UNCACHED
b9d41817 375PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
602c4d11 376#else
ec7cade8 377PAGEFLAG_FALSE(Uncached)
6a1e7f77 378#endif
1da177e4 379
d466f2fc 380#ifdef CONFIG_MEMORY_FAILURE
95ad9755
KS
381PAGEFLAG(HWPoison, hwpoison, PF_ANY)
382TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
d466f2fc 383#define __PG_HWPOISON (1UL << PG_hwpoison)
d4ae9916 384extern bool set_hwpoison_free_buddy_page(struct page *page);
d466f2fc
AK
385#else
386PAGEFLAG_FALSE(HWPoison)
d4ae9916
NH
387static inline bool set_hwpoison_free_buddy_page(struct page *page)
388{
389 return 0;
390}
d466f2fc
AK
391#define __PG_HWPOISON 0
392#endif
393
33c3fc71 394#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
95ad9755
KS
395TESTPAGEFLAG(Young, young, PF_ANY)
396SETPAGEFLAG(Young, young, PF_ANY)
397TESTCLEARFLAG(Young, young, PF_ANY)
398PAGEFLAG(Idle, idle, PF_ANY)
33c3fc71
VD
399#endif
400
e8c6158f
KS
401/*
402 * On an anonymous page mapped into a user virtual memory area,
403 * page->mapping points to its anon_vma, not to a struct address_space;
404 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
405 *
406 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
bda807d4
MK
407 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
408 * bit; and then page->mapping points, not to an anon_vma, but to a private
e8c6158f
KS
409 * structure which KSM associates with that merged page. See ksm.h.
410 *
bda807d4
MK
411 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
412 * page and then page->mapping points a struct address_space.
e8c6158f
KS
413 *
414 * Please note that, confusingly, "page_mapping" refers to the inode
415 * address_space which maps the page from disk; whereas "page_mapped"
416 * refers to user virtual address space into which the page is mapped.
417 */
bda807d4
MK
418#define PAGE_MAPPING_ANON 0x1
419#define PAGE_MAPPING_MOVABLE 0x2
420#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
421#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
e8c6158f 422
bda807d4 423static __always_inline int PageMappingFlags(struct page *page)
17514574 424{
bda807d4 425 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
17514574
MG
426}
427
4b0f3261 428static __always_inline int PageAnon(struct page *page)
e8c6158f 429{
822cdd11 430 page = compound_head(page);
bda807d4
MK
431 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
432}
433
434static __always_inline int __PageMovable(struct page *page)
435{
436 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
437 PAGE_MAPPING_MOVABLE;
e8c6158f
KS
438}
439
440#ifdef CONFIG_KSM
441/*
442 * A KSM page is one of those write-protected "shared pages" or "merged pages"
443 * which KSM maps into multiple mms, wherever identical anonymous page content
444 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
445 * anon_vma, but to that page's node of the stable tree.
446 */
4b0f3261 447static __always_inline int PageKsm(struct page *page)
e8c6158f 448{
822cdd11 449 page = compound_head(page);
e8c6158f 450 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
bda807d4 451 PAGE_MAPPING_KSM;
e8c6158f
KS
452}
453#else
454TESTPAGEFLAG_FALSE(Ksm)
455#endif
456
1a9b5b7f
WF
457u64 stable_page_flags(struct page *page);
458
0ed361de
NP
459static inline int PageUptodate(struct page *page)
460{
d2998c4d
KS
461 int ret;
462 page = compound_head(page);
463 ret = test_bit(PG_uptodate, &(page)->flags);
0ed361de
NP
464 /*
465 * Must ensure that the data we read out of the page is loaded
466 * _after_ we've loaded page->flags to check for PageUptodate.
467 * We can skip the barrier if the page is not uptodate, because
468 * we wouldn't be reading anything from it.
469 *
470 * See SetPageUptodate() for the other side of the story.
471 */
472 if (ret)
473 smp_rmb();
474
475 return ret;
476}
477
4b0f3261 478static __always_inline void __SetPageUptodate(struct page *page)
0ed361de 479{
d2998c4d 480 VM_BUG_ON_PAGE(PageTail(page), page);
0ed361de 481 smp_wmb();
df8c94d1 482 __set_bit(PG_uptodate, &page->flags);
0ed361de
NP
483}
484
4b0f3261 485static __always_inline void SetPageUptodate(struct page *page)
2dcea57a 486{
d2998c4d 487 VM_BUG_ON_PAGE(PageTail(page), page);
0ed361de
NP
488 /*
489 * Memory barrier must be issued before setting the PG_uptodate bit,
490 * so that all previous stores issued in order to bring the page
491 * uptodate are actually visible before PageUptodate becomes true.
0ed361de
NP
492 */
493 smp_wmb();
df8c94d1 494 set_bit(PG_uptodate, &page->flags);
0ed361de
NP
495}
496
d2998c4d 497CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
1da177e4 498
6a1e7f77 499int test_clear_page_writeback(struct page *page);
1c8349a1
NJ
500int __test_set_page_writeback(struct page *page, bool keep_write);
501
502#define test_set_page_writeback(page) \
503 __test_set_page_writeback(page, false)
504#define test_set_page_writeback_keepwrite(page) \
505 __test_set_page_writeback(page, true)
1da177e4 506
6a1e7f77
CL
507static inline void set_page_writeback(struct page *page)
508{
509 test_set_page_writeback(page);
510}
1da177e4 511
1c8349a1
NJ
512static inline void set_page_writeback_keepwrite(struct page *page)
513{
514 test_set_page_writeback_keepwrite(page);
515}
516
95ad9755 517__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
e20b8cca 518
4b0f3261 519static __always_inline void set_compound_head(struct page *page, struct page *head)
ad4b3fb7 520{
1d798ca3 521 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
ad4b3fb7
CD
522}
523
4b0f3261 524static __always_inline void clear_compound_head(struct page *page)
6a1e7f77 525{
1d798ca3 526 WRITE_ONCE(page->compound_head, 0);
6a1e7f77 527}
6d777953 528
4e6af67e
AA
529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
530static inline void ClearPageCompound(struct page *page)
531{
1d798ca3
KS
532 BUG_ON(!PageHead(page));
533 ClearPageHead(page);
4e6af67e
AA
534}
535#endif
536
d2a1a1f0 537#define PG_head_mask ((1UL << PG_head))
dfa7e20c 538
e8c6158f
KS
539#ifdef CONFIG_HUGETLB_PAGE
540int PageHuge(struct page *page);
541int PageHeadHuge(struct page *page);
7e1f049e 542bool page_huge_active(struct page *page);
e8c6158f
KS
543#else
544TESTPAGEFLAG_FALSE(Huge)
545TESTPAGEFLAG_FALSE(HeadHuge)
7e1f049e
NH
546
547static inline bool page_huge_active(struct page *page)
548{
549 return 0;
550}
e8c6158f
KS
551#endif
552
7e1f049e 553
936a5fe6 554#ifdef CONFIG_TRANSPARENT_HUGEPAGE
71e3aac0
AA
555/*
556 * PageHuge() only returns true for hugetlbfs pages, but not for
557 * normal or transparent huge pages.
558 *
559 * PageTransHuge() returns true for both transparent huge and
560 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
561 * called only in the core VM paths where hugetlbfs pages can't exist.
562 */
563static inline int PageTransHuge(struct page *page)
564{
309381fe 565 VM_BUG_ON_PAGE(PageTail(page), page);
71e3aac0
AA
566 return PageHead(page);
567}
568
385de357
DN
569/*
570 * PageTransCompound returns true for both transparent huge pages
571 * and hugetlbfs pages, so it should only be called when it's known
572 * that hugetlbfs pages aren't involved.
573 */
936a5fe6
AA
574static inline int PageTransCompound(struct page *page)
575{
576 return PageCompound(page);
577}
71e3aac0 578
127393fb
AA
579/*
580 * PageTransCompoundMap is the same as PageTransCompound, but it also
581 * guarantees the primary MMU has the entire compound page mapped
582 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
583 * can also map the entire compound page. This allows the secondary
584 * MMUs to call get_user_pages() only once for each compound page and
585 * to immediately map the entire compound page with a single secondary
586 * MMU fault. If there will be a pmd split later, the secondary MMUs
587 * will get an update through the MMU notifier invalidation through
588 * split_huge_pmd().
589 *
590 * Unlike PageTransCompound, this is safe to be called only while
591 * split_huge_pmd() cannot run from under us, like if protected by the
592 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
593 * positives.
594 */
595static inline int PageTransCompoundMap(struct page *page)
596{
597 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
598}
599
385de357
DN
600/*
601 * PageTransTail returns true for both transparent huge pages
602 * and hugetlbfs pages, so it should only be called when it's known
603 * that hugetlbfs pages aren't involved.
604 */
605static inline int PageTransTail(struct page *page)
606{
607 return PageTail(page);
608}
609
53f9263b
KS
610/*
611 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
612 * as PMDs.
613 *
614 * This is required for optimization of rmap operations for THP: we can postpone
615 * per small page mapcount accounting (and its overhead from atomic operations)
616 * until the first PMD split.
617 *
618 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
619 * by one. This reference will go away with last compound_mapcount.
620 *
621 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
622 */
623static inline int PageDoubleMap(struct page *page)
624{
625 return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
626}
627
9a73f61b
KS
628static inline void SetPageDoubleMap(struct page *page)
629{
630 VM_BUG_ON_PAGE(!PageHead(page), page);
631 set_bit(PG_double_map, &page[1].flags);
632}
633
634static inline void ClearPageDoubleMap(struct page *page)
635{
636 VM_BUG_ON_PAGE(!PageHead(page), page);
637 clear_bit(PG_double_map, &page[1].flags);
638}
53f9263b
KS
639static inline int TestSetPageDoubleMap(struct page *page)
640{
641 VM_BUG_ON_PAGE(!PageHead(page), page);
642 return test_and_set_bit(PG_double_map, &page[1].flags);
643}
644
645static inline int TestClearPageDoubleMap(struct page *page)
646{
647 VM_BUG_ON_PAGE(!PageHead(page), page);
648 return test_and_clear_bit(PG_double_map, &page[1].flags);
649}
650
936a5fe6 651#else
d8c1bdeb
KS
652TESTPAGEFLAG_FALSE(TransHuge)
653TESTPAGEFLAG_FALSE(TransCompound)
127393fb 654TESTPAGEFLAG_FALSE(TransCompoundMap)
d8c1bdeb 655TESTPAGEFLAG_FALSE(TransTail)
9a73f61b 656PAGEFLAG_FALSE(DoubleMap)
53f9263b
KS
657 TESTSETFLAG_FALSE(DoubleMap)
658 TESTCLEARFLAG_FALSE(DoubleMap)
936a5fe6
AA
659#endif
660
e8c6158f 661/*
6e292b9b
MW
662 * For pages that are never mapped to userspace (and aren't PageSlab),
663 * page_type may be used. Because it is initialised to -1, we invert the
664 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
665 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
666 * low bits so that an underflow or overflow of page_mapcount() won't be
667 * mistaken for a page type value.
e8c6158f 668 */
6e292b9b
MW
669
670#define PAGE_TYPE_BASE 0xf0000000
671/* Reserve 0x0000007f to catch underflows of page_mapcount */
672#define PG_buddy 0x00000080
673#define PG_balloon 0x00000100
674#define PG_kmemcg 0x00000200
1d40a5ea 675#define PG_table 0x00000400
6e292b9b
MW
676
677#define PageType(page, flag) \
678 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
679
680#define PAGE_TYPE_OPS(uname, lname) \
632c0a1a
VD
681static __always_inline int Page##uname(struct page *page) \
682{ \
6e292b9b 683 return PageType(page, PG_##lname); \
632c0a1a
VD
684} \
685static __always_inline void __SetPage##uname(struct page *page) \
686{ \
6e292b9b
MW
687 VM_BUG_ON_PAGE(!PageType(page, 0), page); \
688 page->page_type &= ~PG_##lname; \
632c0a1a
VD
689} \
690static __always_inline void __ClearPage##uname(struct page *page) \
691{ \
692 VM_BUG_ON_PAGE(!Page##uname(page), page); \
6e292b9b 693 page->page_type |= PG_##lname; \
e8c6158f
KS
694}
695
632c0a1a 696/*
6e292b9b 697 * PageBuddy() indicates that the page is free and in the buddy system
632c0a1a
VD
698 * (see mm/page_alloc.c).
699 */
6e292b9b 700PAGE_TYPE_OPS(Buddy, buddy)
e8c6158f 701
632c0a1a 702/*
6e292b9b 703 * PageBalloon() is true for pages that are on the balloon page list
632c0a1a
VD
704 * (see mm/balloon_compaction.c).
705 */
6e292b9b 706PAGE_TYPE_OPS(Balloon, balloon)
e8c6158f 707
4949148a
VD
708/*
709 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
710 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
711 */
6e292b9b 712PAGE_TYPE_OPS(Kmemcg, kmemcg)
4949148a 713
1d40a5ea
MW
714/*
715 * Marks pages in use as page tables.
716 */
717PAGE_TYPE_OPS(Table, table)
718
832fc1de
NH
719extern bool is_free_buddy_page(struct page *page);
720
bda807d4
MK
721__PAGEFLAG(Isolated, isolated, PF_ANY);
722
072bb0aa
MG
723/*
724 * If network-based swap is enabled, sl*b must keep track of whether pages
725 * were allocated from pfmemalloc reserves.
726 */
727static inline int PageSlabPfmemalloc(struct page *page)
728{
309381fe 729 VM_BUG_ON_PAGE(!PageSlab(page), page);
072bb0aa
MG
730 return PageActive(page);
731}
732
733static inline void SetPageSlabPfmemalloc(struct page *page)
734{
309381fe 735 VM_BUG_ON_PAGE(!PageSlab(page), page);
072bb0aa
MG
736 SetPageActive(page);
737}
738
739static inline void __ClearPageSlabPfmemalloc(struct page *page)
740{
309381fe 741 VM_BUG_ON_PAGE(!PageSlab(page), page);
072bb0aa
MG
742 __ClearPageActive(page);
743}
744
745static inline void ClearPageSlabPfmemalloc(struct page *page)
746{
309381fe 747 VM_BUG_ON_PAGE(!PageSlab(page), page);
072bb0aa
MG
748 ClearPageActive(page);
749}
750
af8e3354 751#ifdef CONFIG_MMU
d2a1a1f0 752#define __PG_MLOCKED (1UL << PG_mlocked)
33925b25 753#else
b291f000 754#define __PG_MLOCKED 0
894bc310
LS
755#endif
756
dfa7e20c
RA
757/*
758 * Flags checked when a page is freed. Pages being freed should not have
759 * these flags set. It they are, there is a problem.
760 */
6326fec1
NP
761#define PAGE_FLAGS_CHECK_AT_FREE \
762 (1UL << PG_lru | 1UL << PG_locked | \
763 1UL << PG_private | 1UL << PG_private_2 | \
764 1UL << PG_writeback | 1UL << PG_reserved | \
765 1UL << PG_slab | 1UL << PG_active | \
766 1UL << PG_unevictable | __PG_MLOCKED)
dfa7e20c
RA
767
768/*
769 * Flags checked when a page is prepped for return by the page allocator.
f4c18e6f 770 * Pages being prepped should not have these flags set. It they are set,
79f4b7bf 771 * there has been a kernel bug or struct page corruption.
f4c18e6f
NH
772 *
773 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
774 * alloc-free cycle to prevent from reusing the page.
dfa7e20c 775 */
f4c18e6f 776#define PAGE_FLAGS_CHECK_AT_PREP \
d2a1a1f0 777 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
dfa7e20c 778
edcf4748 779#define PAGE_FLAGS_PRIVATE \
d2a1a1f0 780 (1UL << PG_private | 1UL << PG_private_2)
266cf658
DH
781/**
782 * page_has_private - Determine if page has private stuff
783 * @page: The page to be checked
784 *
785 * Determine if a page has private stuff, indicating that release routines
786 * should be invoked upon it.
787 */
edcf4748
JW
788static inline int page_has_private(struct page *page)
789{
790 return !!(page->flags & PAGE_FLAGS_PRIVATE);
791}
792
95ad9755
KS
793#undef PF_ANY
794#undef PF_HEAD
62906027 795#undef PF_ONLY_HEAD
95ad9755
KS
796#undef PF_NO_TAIL
797#undef PF_NO_COMPOUND
edcf4748 798#endif /* !__GENERATING_BOUNDS_H */
266cf658 799
1da177e4 800#endif /* PAGE_FLAGS_H */