]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/pagemap.h
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 16#include <linux/hugetlb_inline.h>
1da177e4
LT
17
18/*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
9a896c9a
LS
22enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
9a896c9a 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
9d1ba805 27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
371a096e
HY
28 /* writeback related tags are not used */
29 AS_NO_WRITEBACK_TAGS = __GFP_BITS_SHIFT + 5,
9a896c9a 30};
1da177e4 31
3e9f45bd
GC
32static inline void mapping_set_error(struct address_space *mapping, int error)
33{
2185e69f 34 if (unlikely(error)) {
3e9f45bd
GC
35 if (error == -ENOSPC)
36 set_bit(AS_ENOSPC, &mapping->flags);
37 else
38 set_bit(AS_EIO, &mapping->flags);
39 }
40}
41
ba9ddf49
LS
42static inline void mapping_set_unevictable(struct address_space *mapping)
43{
44 set_bit(AS_UNEVICTABLE, &mapping->flags);
45}
46
89e004ea
LS
47static inline void mapping_clear_unevictable(struct address_space *mapping)
48{
49 clear_bit(AS_UNEVICTABLE, &mapping->flags);
50}
51
ba9ddf49
LS
52static inline int mapping_unevictable(struct address_space *mapping)
53{
088e5465 54 if (mapping)
89e004ea
LS
55 return test_bit(AS_UNEVICTABLE, &mapping->flags);
56 return !!mapping;
ba9ddf49 57}
ba9ddf49 58
91b0abe3
JW
59static inline void mapping_set_exiting(struct address_space *mapping)
60{
61 set_bit(AS_EXITING, &mapping->flags);
62}
63
64static inline int mapping_exiting(struct address_space *mapping)
65{
66 return test_bit(AS_EXITING, &mapping->flags);
67}
68
371a096e
HY
69static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
70{
71 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
72}
73
74static inline int mapping_use_writeback_tags(struct address_space *mapping)
75{
76 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
77}
78
dd0fc66f 79static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 80{
260b2367 81 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
1da177e4
LT
82}
83
c62d2555
MH
84/* Restricts the given gfp_mask to what the mapping allows. */
85static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
86 gfp_t gfp_mask)
87{
88 return mapping_gfp_mask(mapping) & gfp_mask;
89}
90
1da177e4
LT
91/*
92 * This is non-atomic. Only to be used before the mapping is activated.
93 * Probably needs a barrier...
94 */
260b2367 95static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 96{
260b2367
AV
97 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
98 (__force unsigned long)mask;
1da177e4
LT
99}
100
b745bc85 101void release_pages(struct page **pages, int nr, bool cold);
1da177e4 102
e286781d
NP
103/*
104 * speculatively take a reference to a page.
0139aa7b
JK
105 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
106 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
e286781d
NP
107 *
108 * This function must be called inside the same rcu_read_lock() section as has
109 * been used to lookup the page in the pagecache radix-tree (or page table):
0139aa7b 110 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
e286781d
NP
111 *
112 * Unless an RCU grace period has passed, the count of all pages coming out
113 * of the allocator must be considered unstable. page_count may return higher
114 * than expected, and put_page must be able to do the right thing when the
115 * page has been finished with, no matter what it is subsequently allocated
116 * for (because put_page is what is used here to drop an invalid speculative
117 * reference).
118 *
119 * This is the interesting part of the lockless pagecache (and lockless
120 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
121 * has the following pattern:
122 * 1. find page in radix tree
123 * 2. conditionally increment refcount
124 * 3. check the page is still in pagecache (if no, goto 1)
125 *
0139aa7b 126 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
e286781d
NP
127 * following (with tree_lock held for write):
128 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
129 * B. remove page from pagecache
130 * C. free the page
131 *
132 * There are 2 critical interleavings that matter:
133 * - 2 runs before A: in this case, A sees elevated refcount and bails out
134 * - A runs before 2: in this case, 2 sees zero refcount and retries;
135 * subsequently, B will complete and 1 will find no page, causing the
136 * lookup to return NULL.
137 *
138 * It is possible that between 1 and 2, the page is removed then the exact same
139 * page is inserted into the same position in pagecache. That's OK: the
140 * old find_get_page using tree_lock could equally have run before or after
141 * such a re-insertion, depending on order that locks are granted.
142 *
143 * Lookups racing against pagecache insertion isn't a big problem: either 1
144 * will find the page or it will not. Likewise, the old find_get_page could run
145 * either before the insertion or afterwards, depending on timing.
146 */
147static inline int page_cache_get_speculative(struct page *page)
148{
149 VM_BUG_ON(in_interrupt());
150
8375ad98 151#ifdef CONFIG_TINY_RCU
bdd4e85d 152# ifdef CONFIG_PREEMPT_COUNT
e286781d
NP
153 VM_BUG_ON(!in_atomic());
154# endif
155 /*
156 * Preempt must be disabled here - we rely on rcu_read_lock doing
157 * this for us.
158 *
159 * Pagecache won't be truncated from interrupt context, so if we have
160 * found a page in the radix tree here, we have pinned its refcount by
161 * disabling preempt, and hence no need for the "speculative get" that
162 * SMP requires.
163 */
309381fe 164 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 165 page_ref_inc(page);
e286781d
NP
166
167#else
168 if (unlikely(!get_page_unless_zero(page))) {
169 /*
170 * Either the page has been freed, or will be freed.
171 * In either case, retry here and the caller should
172 * do the right thing (see comments above).
173 */
174 return 0;
175 }
176#endif
309381fe 177 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
178
179 return 1;
180}
181
ce0ad7f0
NP
182/*
183 * Same as above, but add instead of inc (could just be merged)
184 */
185static inline int page_cache_add_speculative(struct page *page, int count)
186{
187 VM_BUG_ON(in_interrupt());
188
b560d8ad 189#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
bdd4e85d 190# ifdef CONFIG_PREEMPT_COUNT
ce0ad7f0
NP
191 VM_BUG_ON(!in_atomic());
192# endif
309381fe 193 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 194 page_ref_add(page, count);
ce0ad7f0
NP
195
196#else
fe896d18 197 if (unlikely(!page_ref_add_unless(page, count, 0)))
ce0ad7f0
NP
198 return 0;
199#endif
309381fe 200 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
ce0ad7f0
NP
201
202 return 1;
203}
204
44110fe3 205#ifdef CONFIG_NUMA
2ae88149 206extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 207#else
2ae88149
NP
208static inline struct page *__page_cache_alloc(gfp_t gfp)
209{
210 return alloc_pages(gfp, 0);
211}
212#endif
213
1da177e4
LT
214static inline struct page *page_cache_alloc(struct address_space *x)
215{
2ae88149 216 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
217}
218
219static inline struct page *page_cache_alloc_cold(struct address_space *x)
220{
2ae88149 221 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
222}
223
8a5c743e 224static inline gfp_t readahead_gfp_mask(struct address_space *x)
7b1de586 225{
8a5c743e
MH
226 return mapping_gfp_mask(x) |
227 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
7b1de586
WF
228}
229
1da177e4
LT
230typedef int filler_t(void *, struct page *);
231
e7b563bb
JW
232pgoff_t page_cache_next_hole(struct address_space *mapping,
233 pgoff_t index, unsigned long max_scan);
234pgoff_t page_cache_prev_hole(struct address_space *mapping,
235 pgoff_t index, unsigned long max_scan);
236
2457aec6
MG
237#define FGP_ACCESSED 0x00000001
238#define FGP_LOCK 0x00000002
239#define FGP_CREAT 0x00000004
240#define FGP_WRITE 0x00000008
241#define FGP_NOFS 0x00000010
242#define FGP_NOWAIT 0x00000020
243
244struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 245 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
246
247/**
248 * find_get_page - find and get a page reference
249 * @mapping: the address_space to search
250 * @offset: the page index
251 *
252 * Looks up the page cache slot at @mapping & @offset. If there is a
253 * page cache page, it is returned with an increased refcount.
254 *
255 * Otherwise, %NULL is returned.
256 */
257static inline struct page *find_get_page(struct address_space *mapping,
258 pgoff_t offset)
259{
45f87de5 260 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
261}
262
263static inline struct page *find_get_page_flags(struct address_space *mapping,
264 pgoff_t offset, int fgp_flags)
265{
45f87de5 266 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
267}
268
269/**
270 * find_lock_page - locate, pin and lock a pagecache page
271 * pagecache_get_page - find and get a page reference
272 * @mapping: the address_space to search
273 * @offset: the page index
274 *
275 * Looks up the page cache slot at @mapping & @offset. If there is a
276 * page cache page, it is returned locked and with an increased
277 * refcount.
278 *
279 * Otherwise, %NULL is returned.
280 *
281 * find_lock_page() may sleep.
282 */
283static inline struct page *find_lock_page(struct address_space *mapping,
284 pgoff_t offset)
285{
45f87de5 286 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
2457aec6
MG
287}
288
289/**
290 * find_or_create_page - locate or add a pagecache page
291 * @mapping: the page's address_space
292 * @index: the page's index into the mapping
293 * @gfp_mask: page allocation mode
294 *
295 * Looks up the page cache slot at @mapping & @offset. If there is a
296 * page cache page, it is returned locked and with an increased
297 * refcount.
298 *
299 * If the page is not present, a new page is allocated using @gfp_mask
300 * and added to the page cache and the VM's LRU list. The page is
301 * returned locked and with an increased refcount.
302 *
303 * On memory exhaustion, %NULL is returned.
304 *
305 * find_or_create_page() may sleep, even if @gfp_flags specifies an
306 * atomic allocation!
307 */
308static inline struct page *find_or_create_page(struct address_space *mapping,
309 pgoff_t offset, gfp_t gfp_mask)
310{
311 return pagecache_get_page(mapping, offset,
312 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 313 gfp_mask);
2457aec6
MG
314}
315
316/**
317 * grab_cache_page_nowait - returns locked page at given index in given cache
318 * @mapping: target address_space
319 * @index: the page index
320 *
321 * Same as grab_cache_page(), but do not wait if the page is unavailable.
322 * This is intended for speculative data generators, where the data can
323 * be regenerated if the page couldn't be grabbed. This routine should
324 * be safe to call while holding the lock for another page.
325 *
326 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
327 * and deadlock against the caller's locked page.
328 */
329static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
330 pgoff_t index)
331{
332 return pagecache_get_page(mapping, index,
333 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 334 mapping_gfp_mask(mapping));
2457aec6
MG
335}
336
0cd6144a 337struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a 338struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a
JW
339unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
340 unsigned int nr_entries, struct page **entries,
341 pgoff_t *indices);
1da177e4
LT
342unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
343 unsigned int nr_pages, struct page **pages);
ebf43500
JA
344unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
345 unsigned int nr_pages, struct page **pages);
1da177e4
LT
346unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
347 int tag, unsigned int nr_pages, struct page **pages);
7e7f7749
RZ
348unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
349 int tag, unsigned int nr_entries,
350 struct page **entries, pgoff_t *indices);
1da177e4 351
54566b2c
NP
352struct page *grab_cache_page_write_begin(struct address_space *mapping,
353 pgoff_t index, unsigned flags);
afddba49 354
1da177e4
LT
355/*
356 * Returns locked page at given index in given cache, creating it if needed.
357 */
57f6b96c
FW
358static inline struct page *grab_cache_page(struct address_space *mapping,
359 pgoff_t index)
1da177e4
LT
360{
361 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
362}
363
1da177e4 364extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 365 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
366extern struct page * read_cache_page_gfp(struct address_space *mapping,
367 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
368extern int read_cache_pages(struct address_space *mapping,
369 struct list_head *pages, filler_t *filler, void *data);
370
090d2b18 371static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 372 pgoff_t index, void *data)
090d2b18
PE
373{
374 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
375 return read_cache_page(mapping, index, filler, data);
376}
377
a0f7a756
NH
378/*
379 * Get the offset in PAGE_SIZE.
380 * (TODO: hugepage should have ->index in PAGE_SIZE)
381 */
382static inline pgoff_t page_to_pgoff(struct page *page)
383{
e9b61f19
KS
384 pgoff_t pgoff;
385
a0f7a756
NH
386 if (unlikely(PageHeadHuge(page)))
387 return page->index << compound_order(page);
e9b61f19
KS
388
389 if (likely(!PageTransTail(page)))
09cbfeaf 390 return page->index;
e9b61f19
KS
391
392 /*
393 * We don't initialize ->index for tail pages: calculate based on
394 * head page
395 */
09cbfeaf 396 pgoff = compound_head(page)->index;
e9b61f19
KS
397 pgoff += page - compound_head(page);
398 return pgoff;
a0f7a756
NH
399}
400
1da177e4
LT
401/*
402 * Return byte-offset into filesystem object for page.
403 */
404static inline loff_t page_offset(struct page *page)
405{
09cbfeaf 406 return ((loff_t)page->index) << PAGE_SHIFT;
1da177e4
LT
407}
408
f981c595
MG
409static inline loff_t page_file_offset(struct page *page)
410{
8cd79788 411 return ((loff_t)page_index(page)) << PAGE_SHIFT;
f981c595
MG
412}
413
0fe6e20b
NH
414extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
415 unsigned long address);
416
1da177e4
LT
417static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
418 unsigned long address)
419{
0fe6e20b
NH
420 pgoff_t pgoff;
421 if (unlikely(is_vm_hugetlb_page(vma)))
422 return linear_hugepage_index(vma, address);
423 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4 424 pgoff += vma->vm_pgoff;
09cbfeaf 425 return pgoff;
1da177e4
LT
426}
427
b3c97528
HH
428extern void __lock_page(struct page *page);
429extern int __lock_page_killable(struct page *page);
d065bd81
ML
430extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
431 unsigned int flags);
b3c97528 432extern void unlock_page(struct page *page);
1da177e4 433
529ae9aa
NP
434static inline int trylock_page(struct page *page)
435{
48c935ad 436 page = compound_head(page);
8413ac9d 437 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
438}
439
db37648c
NP
440/*
441 * lock_page may only be called if we have the page's inode pinned.
442 */
1da177e4
LT
443static inline void lock_page(struct page *page)
444{
445 might_sleep();
529ae9aa 446 if (!trylock_page(page))
1da177e4
LT
447 __lock_page(page);
448}
db37648c 449
2687a356
MW
450/*
451 * lock_page_killable is like lock_page but can be interrupted by fatal
452 * signals. It returns 0 if it locked the page and -EINTR if it was
453 * killed while waiting.
454 */
455static inline int lock_page_killable(struct page *page)
456{
457 might_sleep();
529ae9aa 458 if (!trylock_page(page))
2687a356
MW
459 return __lock_page_killable(page);
460 return 0;
461}
462
d065bd81
ML
463/*
464 * lock_page_or_retry - Lock the page, unless this would block and the
465 * caller indicated that it can handle a retry.
9a95f3cf
PC
466 *
467 * Return value and mmap_sem implications depend on flags; see
468 * __lock_page_or_retry().
d065bd81
ML
469 */
470static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
471 unsigned int flags)
472{
473 might_sleep();
474 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
475}
476
1da177e4 477/*
a4796e37
N
478 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
479 * and for filesystems which need to wait on PG_private.
1da177e4 480 */
b3c97528 481extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4 482
f62e00cc 483extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
cbbce822
N
484extern int wait_on_page_bit_killable_timeout(struct page *page,
485 int bit_nr, unsigned long timeout);
f62e00cc
KM
486
487static inline int wait_on_page_locked_killable(struct page *page)
488{
48c935ad
KS
489 if (!PageLocked(page))
490 return 0;
491 return wait_on_page_bit_killable(compound_head(page), PG_locked);
f62e00cc
KM
492}
493
a4796e37
N
494extern wait_queue_head_t *page_waitqueue(struct page *page);
495static inline void wake_up_page(struct page *page, int bit)
496{
497 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
498}
499
1da177e4
LT
500/*
501 * Wait for a page to be unlocked.
502 *
503 * This must be called with the caller "holding" the page,
504 * ie with increased "page->count" so that the page won't
505 * go away during the wait..
506 */
507static inline void wait_on_page_locked(struct page *page)
508{
509 if (PageLocked(page))
48c935ad 510 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
511}
512
513/*
514 * Wait for a page to complete writeback
515 */
516static inline void wait_on_page_writeback(struct page *page)
517{
518 if (PageWriteback(page))
519 wait_on_page_bit(page, PG_writeback);
520}
521
522extern void end_page_writeback(struct page *page);
1d1d1a76 523void wait_for_stable_page(struct page *page);
1da177e4 524
c11f0c0b 525void page_endio(struct page *page, bool is_write, int err);
57d99845 526
385e1ca5
DH
527/*
528 * Add an arbitrary waiter to a page's wait queue
529 */
530extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
531
1da177e4 532/*
b8ca9e3a
ED
533 * Fault one or two userspace pages into pagetables.
534 * Return -EINVAL if more than two pages would be needed.
535 * Return non-zero on a fault.
1da177e4
LT
536 */
537static inline int fault_in_pages_writeable(char __user *uaddr, int size)
538{
b8ca9e3a 539 int span, ret;
1da177e4 540
08291429
NP
541 if (unlikely(size == 0))
542 return 0;
543
b8ca9e3a
ED
544 span = offset_in_page(uaddr) + size;
545 if (span > 2 * PAGE_SIZE)
546 return -EINVAL;
1da177e4
LT
547 /*
548 * Writing zeroes into userspace here is OK, because we know that if
549 * the zero gets there, we'll be overwriting it.
550 */
551 ret = __put_user(0, uaddr);
b8ca9e3a
ED
552 if (ret == 0 && span > PAGE_SIZE)
553 ret = __put_user(0, uaddr + size - 1);
1da177e4
LT
554 return ret;
555}
556
08291429 557static inline int fault_in_pages_readable(const char __user *uaddr, int size)
1da177e4
LT
558{
559 volatile char c;
560 int ret;
561
08291429
NP
562 if (unlikely(size == 0))
563 return 0;
564
1da177e4
LT
565 ret = __get_user(c, uaddr);
566 if (ret == 0) {
567 const char __user *end = uaddr + size - 1;
568
569 if (((unsigned long)uaddr & PAGE_MASK) !=
627295e4 570 ((unsigned long)end & PAGE_MASK)) {
f56f821f 571 ret = __get_user(c, end);
627295e4
AK
572 (void)c;
573 }
1da177e4 574 }
08291429 575 return ret;
1da177e4
LT
576}
577
f56f821f
DV
578/*
579 * Multipage variants of the above prefault helpers, useful if more than
580 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
581 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
582 * filemap.c hotpaths.
583 */
584static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
585{
9923777d 586 char __user *end = uaddr + size - 1;
f56f821f
DV
587
588 if (unlikely(size == 0))
e23d4159 589 return 0;
f56f821f 590
e23d4159
AV
591 if (unlikely(uaddr > end))
592 return -EFAULT;
f56f821f
DV
593 /*
594 * Writing zeroes into userspace here is OK, because we know that if
595 * the zero gets there, we'll be overwriting it.
596 */
e23d4159
AV
597 do {
598 if (unlikely(__put_user(0, uaddr) != 0))
599 return -EFAULT;
f56f821f 600 uaddr += PAGE_SIZE;
e23d4159 601 } while (uaddr <= end);
f56f821f
DV
602
603 /* Check whether the range spilled into the next page. */
604 if (((unsigned long)uaddr & PAGE_MASK) ==
605 ((unsigned long)end & PAGE_MASK))
e23d4159 606 return __put_user(0, end);
f56f821f 607
e23d4159 608 return 0;
f56f821f
DV
609}
610
611static inline int fault_in_multipages_readable(const char __user *uaddr,
612 int size)
613{
614 volatile char c;
f56f821f
DV
615 const char __user *end = uaddr + size - 1;
616
617 if (unlikely(size == 0))
e23d4159 618 return 0;
f56f821f 619
e23d4159
AV
620 if (unlikely(uaddr > end))
621 return -EFAULT;
622
623 do {
624 if (unlikely(__get_user(c, uaddr) != 0))
625 return -EFAULT;
f56f821f 626 uaddr += PAGE_SIZE;
e23d4159 627 } while (uaddr <= end);
f56f821f
DV
628
629 /* Check whether the range spilled into the next page. */
630 if (((unsigned long)uaddr & PAGE_MASK) ==
631 ((unsigned long)end & PAGE_MASK)) {
e23d4159 632 return __get_user(c, end);
f56f821f
DV
633 }
634
90b75db6 635 (void)c;
e23d4159 636 return 0;
f56f821f
DV
637}
638
529ae9aa
NP
639int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
640 pgoff_t index, gfp_t gfp_mask);
641int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
642 pgoff_t index, gfp_t gfp_mask);
97cecb5a 643extern void delete_from_page_cache(struct page *page);
62cccb8c 644extern void __delete_from_page_cache(struct page *page, void *shadow);
ef6a3c63 645int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
529ae9aa
NP
646
647/*
648 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 649 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
650 */
651static inline int add_to_page_cache(struct page *page,
652 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
653{
654 int error;
655
48c935ad 656 __SetPageLocked(page);
529ae9aa
NP
657 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
658 if (unlikely(error))
48c935ad 659 __ClearPageLocked(page);
529ae9aa
NP
660 return error;
661}
662
b57c2cb9
FF
663static inline unsigned long dir_pages(struct inode *inode)
664{
09cbfeaf
KS
665 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
666 PAGE_SHIFT;
b57c2cb9
FF
667}
668
1da177e4 669#endif /* _LINUX_PAGEMAP_H */