]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/pagemap.h
mm + fs: prepare for non-page entries in page cache radix trees
[mirror_ubuntu-zesty-kernel.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 16#include <linux/hugetlb_inline.h>
1da177e4
LT
17
18/*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
9a896c9a
LS
22enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
9a896c9a 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
18468d93 27 AS_BALLOON_MAP = __GFP_BITS_SHIFT + 4, /* balloon page special map */
9a896c9a 28};
1da177e4 29
3e9f45bd
GC
30static inline void mapping_set_error(struct address_space *mapping, int error)
31{
2185e69f 32 if (unlikely(error)) {
3e9f45bd
GC
33 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38}
39
ba9ddf49
LS
40static inline void mapping_set_unevictable(struct address_space *mapping)
41{
42 set_bit(AS_UNEVICTABLE, &mapping->flags);
43}
44
89e004ea
LS
45static inline void mapping_clear_unevictable(struct address_space *mapping)
46{
47 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48}
49
ba9ddf49
LS
50static inline int mapping_unevictable(struct address_space *mapping)
51{
088e5465 52 if (mapping)
89e004ea
LS
53 return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 return !!mapping;
ba9ddf49 55}
ba9ddf49 56
18468d93
RA
57static inline void mapping_set_balloon(struct address_space *mapping)
58{
59 set_bit(AS_BALLOON_MAP, &mapping->flags);
60}
61
62static inline void mapping_clear_balloon(struct address_space *mapping)
63{
64 clear_bit(AS_BALLOON_MAP, &mapping->flags);
65}
66
67static inline int mapping_balloon(struct address_space *mapping)
68{
69 return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
70}
71
dd0fc66f 72static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 73{
260b2367 74 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
1da177e4
LT
75}
76
77/*
78 * This is non-atomic. Only to be used before the mapping is activated.
79 * Probably needs a barrier...
80 */
260b2367 81static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 82{
260b2367
AV
83 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
84 (__force unsigned long)mask;
1da177e4
LT
85}
86
87/*
88 * The page cache can done in larger chunks than
89 * one page, because it allows for more efficient
90 * throughput (it can then be mapped into user
91 * space in smaller chunks for same flexibility).
92 *
93 * Or rather, it _will_ be done in larger chunks.
94 */
95#define PAGE_CACHE_SHIFT PAGE_SHIFT
96#define PAGE_CACHE_SIZE PAGE_SIZE
97#define PAGE_CACHE_MASK PAGE_MASK
98#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
99
100#define page_cache_get(page) get_page(page)
101#define page_cache_release(page) put_page(page)
102void release_pages(struct page **pages, int nr, int cold);
103
e286781d
NP
104/*
105 * speculatively take a reference to a page.
106 * If the page is free (_count == 0), then _count is untouched, and 0
107 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
108 *
109 * This function must be called inside the same rcu_read_lock() section as has
110 * been used to lookup the page in the pagecache radix-tree (or page table):
111 * this allows allocators to use a synchronize_rcu() to stabilize _count.
112 *
113 * Unless an RCU grace period has passed, the count of all pages coming out
114 * of the allocator must be considered unstable. page_count may return higher
115 * than expected, and put_page must be able to do the right thing when the
116 * page has been finished with, no matter what it is subsequently allocated
117 * for (because put_page is what is used here to drop an invalid speculative
118 * reference).
119 *
120 * This is the interesting part of the lockless pagecache (and lockless
121 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
122 * has the following pattern:
123 * 1. find page in radix tree
124 * 2. conditionally increment refcount
125 * 3. check the page is still in pagecache (if no, goto 1)
126 *
127 * Remove-side that cares about stability of _count (eg. reclaim) has the
128 * following (with tree_lock held for write):
129 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
130 * B. remove page from pagecache
131 * C. free the page
132 *
133 * There are 2 critical interleavings that matter:
134 * - 2 runs before A: in this case, A sees elevated refcount and bails out
135 * - A runs before 2: in this case, 2 sees zero refcount and retries;
136 * subsequently, B will complete and 1 will find no page, causing the
137 * lookup to return NULL.
138 *
139 * It is possible that between 1 and 2, the page is removed then the exact same
140 * page is inserted into the same position in pagecache. That's OK: the
141 * old find_get_page using tree_lock could equally have run before or after
142 * such a re-insertion, depending on order that locks are granted.
143 *
144 * Lookups racing against pagecache insertion isn't a big problem: either 1
145 * will find the page or it will not. Likewise, the old find_get_page could run
146 * either before the insertion or afterwards, depending on timing.
147 */
148static inline int page_cache_get_speculative(struct page *page)
149{
150 VM_BUG_ON(in_interrupt());
151
8375ad98 152#ifdef CONFIG_TINY_RCU
bdd4e85d 153# ifdef CONFIG_PREEMPT_COUNT
e286781d
NP
154 VM_BUG_ON(!in_atomic());
155# endif
156 /*
157 * Preempt must be disabled here - we rely on rcu_read_lock doing
158 * this for us.
159 *
160 * Pagecache won't be truncated from interrupt context, so if we have
161 * found a page in the radix tree here, we have pinned its refcount by
162 * disabling preempt, and hence no need for the "speculative get" that
163 * SMP requires.
164 */
309381fe 165 VM_BUG_ON_PAGE(page_count(page) == 0, page);
e286781d
NP
166 atomic_inc(&page->_count);
167
168#else
169 if (unlikely(!get_page_unless_zero(page))) {
170 /*
171 * Either the page has been freed, or will be freed.
172 * In either case, retry here and the caller should
173 * do the right thing (see comments above).
174 */
175 return 0;
176 }
177#endif
309381fe 178 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
179
180 return 1;
181}
182
ce0ad7f0
NP
183/*
184 * Same as above, but add instead of inc (could just be merged)
185 */
186static inline int page_cache_add_speculative(struct page *page, int count)
187{
188 VM_BUG_ON(in_interrupt());
189
b560d8ad 190#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
bdd4e85d 191# ifdef CONFIG_PREEMPT_COUNT
ce0ad7f0
NP
192 VM_BUG_ON(!in_atomic());
193# endif
309381fe 194 VM_BUG_ON_PAGE(page_count(page) == 0, page);
ce0ad7f0
NP
195 atomic_add(count, &page->_count);
196
197#else
198 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
199 return 0;
200#endif
309381fe 201 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
ce0ad7f0
NP
202
203 return 1;
204}
205
e286781d
NP
206static inline int page_freeze_refs(struct page *page, int count)
207{
208 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
209}
210
211static inline void page_unfreeze_refs(struct page *page, int count)
212{
309381fe 213 VM_BUG_ON_PAGE(page_count(page) != 0, page);
e286781d
NP
214 VM_BUG_ON(count == 0);
215
216 atomic_set(&page->_count, count);
217}
218
44110fe3 219#ifdef CONFIG_NUMA
2ae88149 220extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 221#else
2ae88149
NP
222static inline struct page *__page_cache_alloc(gfp_t gfp)
223{
224 return alloc_pages(gfp, 0);
225}
226#endif
227
1da177e4
LT
228static inline struct page *page_cache_alloc(struct address_space *x)
229{
2ae88149 230 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
231}
232
233static inline struct page *page_cache_alloc_cold(struct address_space *x)
234{
2ae88149 235 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
236}
237
7b1de586
WF
238static inline struct page *page_cache_alloc_readahead(struct address_space *x)
239{
240 return __page_cache_alloc(mapping_gfp_mask(x) |
241 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
242}
243
1da177e4
LT
244typedef int filler_t(void *, struct page *);
245
e7b563bb
JW
246pgoff_t page_cache_next_hole(struct address_space *mapping,
247 pgoff_t index, unsigned long max_scan);
248pgoff_t page_cache_prev_hole(struct address_space *mapping,
249 pgoff_t index, unsigned long max_scan);
250
0cd6144a
JW
251struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
252struct page *find_get_page(struct address_space *mapping, pgoff_t offset);
253struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
254struct page *find_lock_page(struct address_space *mapping, pgoff_t offset);
255struct page *find_or_create_page(struct address_space *mapping, pgoff_t index,
256 gfp_t gfp_mask);
257unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
258 unsigned int nr_entries, struct page **entries,
259 pgoff_t *indices);
1da177e4
LT
260unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
261 unsigned int nr_pages, struct page **pages);
ebf43500
JA
262unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
263 unsigned int nr_pages, struct page **pages);
1da177e4
LT
264unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
265 int tag, unsigned int nr_pages, struct page **pages);
266
54566b2c
NP
267struct page *grab_cache_page_write_begin(struct address_space *mapping,
268 pgoff_t index, unsigned flags);
afddba49 269
1da177e4
LT
270/*
271 * Returns locked page at given index in given cache, creating it if needed.
272 */
57f6b96c
FW
273static inline struct page *grab_cache_page(struct address_space *mapping,
274 pgoff_t index)
1da177e4
LT
275{
276 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
277}
278
279extern struct page * grab_cache_page_nowait(struct address_space *mapping,
57f6b96c 280 pgoff_t index);
6fe6900e 281extern struct page * read_cache_page_async(struct address_space *mapping,
5e5358e7 282 pgoff_t index, filler_t *filler, void *data);
1da177e4 283extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 284 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
285extern struct page * read_cache_page_gfp(struct address_space *mapping,
286 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
287extern int read_cache_pages(struct address_space *mapping,
288 struct list_head *pages, filler_t *filler, void *data);
289
6fe6900e 290static inline struct page *read_mapping_page_async(
5e5358e7
HD
291 struct address_space *mapping,
292 pgoff_t index, void *data)
6fe6900e
NP
293{
294 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
295 return read_cache_page_async(mapping, index, filler, data);
296}
297
090d2b18 298static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 299 pgoff_t index, void *data)
090d2b18
PE
300{
301 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
302 return read_cache_page(mapping, index, filler, data);
303}
304
1da177e4
LT
305/*
306 * Return byte-offset into filesystem object for page.
307 */
308static inline loff_t page_offset(struct page *page)
309{
310 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
311}
312
f981c595
MG
313static inline loff_t page_file_offset(struct page *page)
314{
315 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
316}
317
0fe6e20b
NH
318extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
319 unsigned long address);
320
1da177e4
LT
321static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
322 unsigned long address)
323{
0fe6e20b
NH
324 pgoff_t pgoff;
325 if (unlikely(is_vm_hugetlb_page(vma)))
326 return linear_hugepage_index(vma, address);
327 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4
LT
328 pgoff += vma->vm_pgoff;
329 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
330}
331
b3c97528
HH
332extern void __lock_page(struct page *page);
333extern int __lock_page_killable(struct page *page);
d065bd81
ML
334extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
335 unsigned int flags);
b3c97528 336extern void unlock_page(struct page *page);
1da177e4 337
f45840b5 338static inline void __set_page_locked(struct page *page)
529ae9aa 339{
f45840b5 340 __set_bit(PG_locked, &page->flags);
529ae9aa
NP
341}
342
f45840b5 343static inline void __clear_page_locked(struct page *page)
529ae9aa 344{
f45840b5 345 __clear_bit(PG_locked, &page->flags);
529ae9aa
NP
346}
347
348static inline int trylock_page(struct page *page)
349{
8413ac9d 350 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
351}
352
db37648c
NP
353/*
354 * lock_page may only be called if we have the page's inode pinned.
355 */
1da177e4
LT
356static inline void lock_page(struct page *page)
357{
358 might_sleep();
529ae9aa 359 if (!trylock_page(page))
1da177e4
LT
360 __lock_page(page);
361}
db37648c 362
2687a356
MW
363/*
364 * lock_page_killable is like lock_page but can be interrupted by fatal
365 * signals. It returns 0 if it locked the page and -EINTR if it was
366 * killed while waiting.
367 */
368static inline int lock_page_killable(struct page *page)
369{
370 might_sleep();
529ae9aa 371 if (!trylock_page(page))
2687a356
MW
372 return __lock_page_killable(page);
373 return 0;
374}
375
d065bd81
ML
376/*
377 * lock_page_or_retry - Lock the page, unless this would block and the
378 * caller indicated that it can handle a retry.
379 */
380static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
381 unsigned int flags)
382{
383 might_sleep();
384 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
385}
386
1da177e4
LT
387/*
388 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
389 * Never use this directly!
390 */
b3c97528 391extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4 392
f62e00cc
KM
393extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
394
395static inline int wait_on_page_locked_killable(struct page *page)
396{
397 if (PageLocked(page))
398 return wait_on_page_bit_killable(page, PG_locked);
399 return 0;
400}
401
1da177e4
LT
402/*
403 * Wait for a page to be unlocked.
404 *
405 * This must be called with the caller "holding" the page,
406 * ie with increased "page->count" so that the page won't
407 * go away during the wait..
408 */
409static inline void wait_on_page_locked(struct page *page)
410{
411 if (PageLocked(page))
412 wait_on_page_bit(page, PG_locked);
413}
414
415/*
416 * Wait for a page to complete writeback
417 */
418static inline void wait_on_page_writeback(struct page *page)
419{
420 if (PageWriteback(page))
421 wait_on_page_bit(page, PG_writeback);
422}
423
424extern void end_page_writeback(struct page *page);
1d1d1a76 425void wait_for_stable_page(struct page *page);
1da177e4 426
385e1ca5
DH
427/*
428 * Add an arbitrary waiter to a page's wait queue
429 */
430extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
431
1da177e4
LT
432/*
433 * Fault a userspace page into pagetables. Return non-zero on a fault.
434 *
435 * This assumes that two userspace pages are always sufficient. That's
436 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
437 */
438static inline int fault_in_pages_writeable(char __user *uaddr, int size)
439{
440 int ret;
441
08291429
NP
442 if (unlikely(size == 0))
443 return 0;
444
1da177e4
LT
445 /*
446 * Writing zeroes into userspace here is OK, because we know that if
447 * the zero gets there, we'll be overwriting it.
448 */
449 ret = __put_user(0, uaddr);
450 if (ret == 0) {
451 char __user *end = uaddr + size - 1;
452
453 /*
454 * If the page was already mapped, this will get a cache miss
455 * for sure, so try to avoid doing it.
456 */
457 if (((unsigned long)uaddr & PAGE_MASK) !=
458 ((unsigned long)end & PAGE_MASK))
f56f821f 459 ret = __put_user(0, end);
1da177e4
LT
460 }
461 return ret;
462}
463
08291429 464static inline int fault_in_pages_readable(const char __user *uaddr, int size)
1da177e4
LT
465{
466 volatile char c;
467 int ret;
468
08291429
NP
469 if (unlikely(size == 0))
470 return 0;
471
1da177e4
LT
472 ret = __get_user(c, uaddr);
473 if (ret == 0) {
474 const char __user *end = uaddr + size - 1;
475
476 if (((unsigned long)uaddr & PAGE_MASK) !=
627295e4 477 ((unsigned long)end & PAGE_MASK)) {
f56f821f 478 ret = __get_user(c, end);
627295e4
AK
479 (void)c;
480 }
1da177e4 481 }
08291429 482 return ret;
1da177e4
LT
483}
484
f56f821f
DV
485/*
486 * Multipage variants of the above prefault helpers, useful if more than
487 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
488 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
489 * filemap.c hotpaths.
490 */
491static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
492{
af2e8409 493 int ret = 0;
9923777d 494 char __user *end = uaddr + size - 1;
f56f821f
DV
495
496 if (unlikely(size == 0))
af2e8409 497 return ret;
f56f821f
DV
498
499 /*
500 * Writing zeroes into userspace here is OK, because we know that if
501 * the zero gets there, we'll be overwriting it.
502 */
503 while (uaddr <= end) {
504 ret = __put_user(0, uaddr);
505 if (ret != 0)
506 return ret;
507 uaddr += PAGE_SIZE;
508 }
509
510 /* Check whether the range spilled into the next page. */
511 if (((unsigned long)uaddr & PAGE_MASK) ==
512 ((unsigned long)end & PAGE_MASK))
513 ret = __put_user(0, end);
514
515 return ret;
516}
517
518static inline int fault_in_multipages_readable(const char __user *uaddr,
519 int size)
520{
521 volatile char c;
af2e8409 522 int ret = 0;
f56f821f
DV
523 const char __user *end = uaddr + size - 1;
524
525 if (unlikely(size == 0))
af2e8409 526 return ret;
f56f821f
DV
527
528 while (uaddr <= end) {
529 ret = __get_user(c, uaddr);
530 if (ret != 0)
531 return ret;
532 uaddr += PAGE_SIZE;
533 }
534
535 /* Check whether the range spilled into the next page. */
536 if (((unsigned long)uaddr & PAGE_MASK) ==
537 ((unsigned long)end & PAGE_MASK)) {
538 ret = __get_user(c, end);
539 (void)c;
540 }
541
542 return ret;
543}
544
529ae9aa
NP
545int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
546 pgoff_t index, gfp_t gfp_mask);
547int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
548 pgoff_t index, gfp_t gfp_mask);
97cecb5a 549extern void delete_from_page_cache(struct page *page);
e64a782f 550extern void __delete_from_page_cache(struct page *page);
ef6a3c63 551int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
529ae9aa
NP
552
553/*
554 * Like add_to_page_cache_locked, but used to add newly allocated pages:
f45840b5 555 * the page is new, so we can just run __set_page_locked() against it.
529ae9aa
NP
556 */
557static inline int add_to_page_cache(struct page *page,
558 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
559{
560 int error;
561
f45840b5 562 __set_page_locked(page);
529ae9aa
NP
563 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
564 if (unlikely(error))
f45840b5 565 __clear_page_locked(page);
529ae9aa
NP
566 return error;
567}
568
1da177e4 569#endif /* _LINUX_PAGEMAP_H */