]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/pagemap.h
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 16#include <linux/hugetlb_inline.h>
1da177e4
LT
17
18/*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
9a896c9a
LS
22enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
9a896c9a 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
9d1ba805 27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
9a896c9a 28};
1da177e4 29
3e9f45bd
GC
30static inline void mapping_set_error(struct address_space *mapping, int error)
31{
2185e69f 32 if (unlikely(error)) {
3e9f45bd
GC
33 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38}
39
ba9ddf49
LS
40static inline void mapping_set_unevictable(struct address_space *mapping)
41{
42 set_bit(AS_UNEVICTABLE, &mapping->flags);
43}
44
89e004ea
LS
45static inline void mapping_clear_unevictable(struct address_space *mapping)
46{
47 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48}
49
ba9ddf49
LS
50static inline int mapping_unevictable(struct address_space *mapping)
51{
088e5465 52 if (mapping)
89e004ea
LS
53 return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 return !!mapping;
ba9ddf49 55}
ba9ddf49 56
91b0abe3
JW
57static inline void mapping_set_exiting(struct address_space *mapping)
58{
59 set_bit(AS_EXITING, &mapping->flags);
60}
61
62static inline int mapping_exiting(struct address_space *mapping)
63{
64 return test_bit(AS_EXITING, &mapping->flags);
65}
66
dd0fc66f 67static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 68{
260b2367 69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
1da177e4
LT
70}
71
c62d2555
MH
72/* Restricts the given gfp_mask to what the mapping allows. */
73static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
74 gfp_t gfp_mask)
75{
76 return mapping_gfp_mask(mapping) & gfp_mask;
77}
78
1da177e4
LT
79/*
80 * This is non-atomic. Only to be used before the mapping is activated.
81 * Probably needs a barrier...
82 */
260b2367 83static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 84{
260b2367
AV
85 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
86 (__force unsigned long)mask;
1da177e4
LT
87}
88
b745bc85 89void release_pages(struct page **pages, int nr, bool cold);
1da177e4 90
e286781d
NP
91/*
92 * speculatively take a reference to a page.
0139aa7b
JK
93 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
94 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
e286781d
NP
95 *
96 * This function must be called inside the same rcu_read_lock() section as has
97 * been used to lookup the page in the pagecache radix-tree (or page table):
0139aa7b 98 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
e286781d
NP
99 *
100 * Unless an RCU grace period has passed, the count of all pages coming out
101 * of the allocator must be considered unstable. page_count may return higher
102 * than expected, and put_page must be able to do the right thing when the
103 * page has been finished with, no matter what it is subsequently allocated
104 * for (because put_page is what is used here to drop an invalid speculative
105 * reference).
106 *
107 * This is the interesting part of the lockless pagecache (and lockless
108 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
109 * has the following pattern:
110 * 1. find page in radix tree
111 * 2. conditionally increment refcount
112 * 3. check the page is still in pagecache (if no, goto 1)
113 *
0139aa7b 114 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
e286781d
NP
115 * following (with tree_lock held for write):
116 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
117 * B. remove page from pagecache
118 * C. free the page
119 *
120 * There are 2 critical interleavings that matter:
121 * - 2 runs before A: in this case, A sees elevated refcount and bails out
122 * - A runs before 2: in this case, 2 sees zero refcount and retries;
123 * subsequently, B will complete and 1 will find no page, causing the
124 * lookup to return NULL.
125 *
126 * It is possible that between 1 and 2, the page is removed then the exact same
127 * page is inserted into the same position in pagecache. That's OK: the
128 * old find_get_page using tree_lock could equally have run before or after
129 * such a re-insertion, depending on order that locks are granted.
130 *
131 * Lookups racing against pagecache insertion isn't a big problem: either 1
132 * will find the page or it will not. Likewise, the old find_get_page could run
133 * either before the insertion or afterwards, depending on timing.
134 */
135static inline int page_cache_get_speculative(struct page *page)
136{
137 VM_BUG_ON(in_interrupt());
138
8375ad98 139#ifdef CONFIG_TINY_RCU
bdd4e85d 140# ifdef CONFIG_PREEMPT_COUNT
e286781d
NP
141 VM_BUG_ON(!in_atomic());
142# endif
143 /*
144 * Preempt must be disabled here - we rely on rcu_read_lock doing
145 * this for us.
146 *
147 * Pagecache won't be truncated from interrupt context, so if we have
148 * found a page in the radix tree here, we have pinned its refcount by
149 * disabling preempt, and hence no need for the "speculative get" that
150 * SMP requires.
151 */
309381fe 152 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 153 page_ref_inc(page);
e286781d
NP
154
155#else
156 if (unlikely(!get_page_unless_zero(page))) {
157 /*
158 * Either the page has been freed, or will be freed.
159 * In either case, retry here and the caller should
160 * do the right thing (see comments above).
161 */
162 return 0;
163 }
164#endif
309381fe 165 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
166
167 return 1;
168}
169
ce0ad7f0
NP
170/*
171 * Same as above, but add instead of inc (could just be merged)
172 */
173static inline int page_cache_add_speculative(struct page *page, int count)
174{
175 VM_BUG_ON(in_interrupt());
176
b560d8ad 177#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
bdd4e85d 178# ifdef CONFIG_PREEMPT_COUNT
ce0ad7f0
NP
179 VM_BUG_ON(!in_atomic());
180# endif
309381fe 181 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 182 page_ref_add(page, count);
ce0ad7f0
NP
183
184#else
fe896d18 185 if (unlikely(!page_ref_add_unless(page, count, 0)))
ce0ad7f0
NP
186 return 0;
187#endif
309381fe 188 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
ce0ad7f0
NP
189
190 return 1;
191}
192
44110fe3 193#ifdef CONFIG_NUMA
2ae88149 194extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 195#else
2ae88149
NP
196static inline struct page *__page_cache_alloc(gfp_t gfp)
197{
198 return alloc_pages(gfp, 0);
199}
200#endif
201
1da177e4
LT
202static inline struct page *page_cache_alloc(struct address_space *x)
203{
2ae88149 204 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
205}
206
207static inline struct page *page_cache_alloc_cold(struct address_space *x)
208{
2ae88149 209 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
210}
211
8a5c743e 212static inline gfp_t readahead_gfp_mask(struct address_space *x)
7b1de586 213{
8a5c743e
MH
214 return mapping_gfp_mask(x) |
215 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
7b1de586
WF
216}
217
1da177e4
LT
218typedef int filler_t(void *, struct page *);
219
e7b563bb
JW
220pgoff_t page_cache_next_hole(struct address_space *mapping,
221 pgoff_t index, unsigned long max_scan);
222pgoff_t page_cache_prev_hole(struct address_space *mapping,
223 pgoff_t index, unsigned long max_scan);
224
2457aec6
MG
225#define FGP_ACCESSED 0x00000001
226#define FGP_LOCK 0x00000002
227#define FGP_CREAT 0x00000004
228#define FGP_WRITE 0x00000008
229#define FGP_NOFS 0x00000010
230#define FGP_NOWAIT 0x00000020
231
232struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 233 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
234
235/**
236 * find_get_page - find and get a page reference
237 * @mapping: the address_space to search
238 * @offset: the page index
239 *
240 * Looks up the page cache slot at @mapping & @offset. If there is a
241 * page cache page, it is returned with an increased refcount.
242 *
243 * Otherwise, %NULL is returned.
244 */
245static inline struct page *find_get_page(struct address_space *mapping,
246 pgoff_t offset)
247{
45f87de5 248 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
249}
250
251static inline struct page *find_get_page_flags(struct address_space *mapping,
252 pgoff_t offset, int fgp_flags)
253{
45f87de5 254 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
255}
256
257/**
258 * find_lock_page - locate, pin and lock a pagecache page
259 * pagecache_get_page - find and get a page reference
260 * @mapping: the address_space to search
261 * @offset: the page index
262 *
263 * Looks up the page cache slot at @mapping & @offset. If there is a
264 * page cache page, it is returned locked and with an increased
265 * refcount.
266 *
267 * Otherwise, %NULL is returned.
268 *
269 * find_lock_page() may sleep.
270 */
271static inline struct page *find_lock_page(struct address_space *mapping,
272 pgoff_t offset)
273{
45f87de5 274 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
2457aec6
MG
275}
276
277/**
278 * find_or_create_page - locate or add a pagecache page
279 * @mapping: the page's address_space
280 * @index: the page's index into the mapping
281 * @gfp_mask: page allocation mode
282 *
283 * Looks up the page cache slot at @mapping & @offset. If there is a
284 * page cache page, it is returned locked and with an increased
285 * refcount.
286 *
287 * If the page is not present, a new page is allocated using @gfp_mask
288 * and added to the page cache and the VM's LRU list. The page is
289 * returned locked and with an increased refcount.
290 *
291 * On memory exhaustion, %NULL is returned.
292 *
293 * find_or_create_page() may sleep, even if @gfp_flags specifies an
294 * atomic allocation!
295 */
296static inline struct page *find_or_create_page(struct address_space *mapping,
297 pgoff_t offset, gfp_t gfp_mask)
298{
299 return pagecache_get_page(mapping, offset,
300 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 301 gfp_mask);
2457aec6
MG
302}
303
304/**
305 * grab_cache_page_nowait - returns locked page at given index in given cache
306 * @mapping: target address_space
307 * @index: the page index
308 *
309 * Same as grab_cache_page(), but do not wait if the page is unavailable.
310 * This is intended for speculative data generators, where the data can
311 * be regenerated if the page couldn't be grabbed. This routine should
312 * be safe to call while holding the lock for another page.
313 *
314 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
315 * and deadlock against the caller's locked page.
316 */
317static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
318 pgoff_t index)
319{
320 return pagecache_get_page(mapping, index,
321 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 322 mapping_gfp_mask(mapping));
2457aec6
MG
323}
324
0cd6144a 325struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a 326struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a
JW
327unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
328 unsigned int nr_entries, struct page **entries,
329 pgoff_t *indices);
1da177e4
LT
330unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
331 unsigned int nr_pages, struct page **pages);
ebf43500
JA
332unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
333 unsigned int nr_pages, struct page **pages);
1da177e4
LT
334unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
335 int tag, unsigned int nr_pages, struct page **pages);
7e7f7749
RZ
336unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
337 int tag, unsigned int nr_entries,
338 struct page **entries, pgoff_t *indices);
1da177e4 339
54566b2c
NP
340struct page *grab_cache_page_write_begin(struct address_space *mapping,
341 pgoff_t index, unsigned flags);
afddba49 342
1da177e4
LT
343/*
344 * Returns locked page at given index in given cache, creating it if needed.
345 */
57f6b96c
FW
346static inline struct page *grab_cache_page(struct address_space *mapping,
347 pgoff_t index)
1da177e4
LT
348{
349 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
350}
351
1da177e4 352extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 353 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
354extern struct page * read_cache_page_gfp(struct address_space *mapping,
355 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
356extern int read_cache_pages(struct address_space *mapping,
357 struct list_head *pages, filler_t *filler, void *data);
358
090d2b18 359static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 360 pgoff_t index, void *data)
090d2b18
PE
361{
362 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
363 return read_cache_page(mapping, index, filler, data);
364}
365
a0f7a756
NH
366/*
367 * Get the offset in PAGE_SIZE.
368 * (TODO: hugepage should have ->index in PAGE_SIZE)
369 */
370static inline pgoff_t page_to_pgoff(struct page *page)
371{
e9b61f19
KS
372 pgoff_t pgoff;
373
a0f7a756
NH
374 if (unlikely(PageHeadHuge(page)))
375 return page->index << compound_order(page);
e9b61f19
KS
376
377 if (likely(!PageTransTail(page)))
09cbfeaf 378 return page->index;
e9b61f19
KS
379
380 /*
381 * We don't initialize ->index for tail pages: calculate based on
382 * head page
383 */
09cbfeaf 384 pgoff = compound_head(page)->index;
e9b61f19
KS
385 pgoff += page - compound_head(page);
386 return pgoff;
a0f7a756
NH
387}
388
1da177e4
LT
389/*
390 * Return byte-offset into filesystem object for page.
391 */
392static inline loff_t page_offset(struct page *page)
393{
09cbfeaf 394 return ((loff_t)page->index) << PAGE_SHIFT;
1da177e4
LT
395}
396
f981c595
MG
397static inline loff_t page_file_offset(struct page *page)
398{
09cbfeaf 399 return ((loff_t)page_file_index(page)) << PAGE_SHIFT;
f981c595
MG
400}
401
0fe6e20b
NH
402extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
403 unsigned long address);
404
1da177e4
LT
405static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
406 unsigned long address)
407{
0fe6e20b
NH
408 pgoff_t pgoff;
409 if (unlikely(is_vm_hugetlb_page(vma)))
410 return linear_hugepage_index(vma, address);
411 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4 412 pgoff += vma->vm_pgoff;
09cbfeaf 413 return pgoff;
1da177e4
LT
414}
415
b3c97528
HH
416extern void __lock_page(struct page *page);
417extern int __lock_page_killable(struct page *page);
d065bd81
ML
418extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
419 unsigned int flags);
b3c97528 420extern void unlock_page(struct page *page);
1da177e4 421
529ae9aa
NP
422static inline int trylock_page(struct page *page)
423{
48c935ad 424 page = compound_head(page);
8413ac9d 425 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
426}
427
db37648c
NP
428/*
429 * lock_page may only be called if we have the page's inode pinned.
430 */
1da177e4
LT
431static inline void lock_page(struct page *page)
432{
433 might_sleep();
529ae9aa 434 if (!trylock_page(page))
1da177e4
LT
435 __lock_page(page);
436}
db37648c 437
2687a356
MW
438/*
439 * lock_page_killable is like lock_page but can be interrupted by fatal
440 * signals. It returns 0 if it locked the page and -EINTR if it was
441 * killed while waiting.
442 */
443static inline int lock_page_killable(struct page *page)
444{
445 might_sleep();
529ae9aa 446 if (!trylock_page(page))
2687a356
MW
447 return __lock_page_killable(page);
448 return 0;
449}
450
d065bd81
ML
451/*
452 * lock_page_or_retry - Lock the page, unless this would block and the
453 * caller indicated that it can handle a retry.
9a95f3cf
PC
454 *
455 * Return value and mmap_sem implications depend on flags; see
456 * __lock_page_or_retry().
d065bd81
ML
457 */
458static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
459 unsigned int flags)
460{
461 might_sleep();
462 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
463}
464
1da177e4 465/*
a4796e37
N
466 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
467 * and for filesystems which need to wait on PG_private.
1da177e4 468 */
b3c97528 469extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4 470
f62e00cc 471extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
cbbce822
N
472extern int wait_on_page_bit_killable_timeout(struct page *page,
473 int bit_nr, unsigned long timeout);
f62e00cc
KM
474
475static inline int wait_on_page_locked_killable(struct page *page)
476{
48c935ad
KS
477 if (!PageLocked(page))
478 return 0;
479 return wait_on_page_bit_killable(compound_head(page), PG_locked);
f62e00cc
KM
480}
481
a4796e37
N
482extern wait_queue_head_t *page_waitqueue(struct page *page);
483static inline void wake_up_page(struct page *page, int bit)
484{
485 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
486}
487
1da177e4
LT
488/*
489 * Wait for a page to be unlocked.
490 *
491 * This must be called with the caller "holding" the page,
492 * ie with increased "page->count" so that the page won't
493 * go away during the wait..
494 */
495static inline void wait_on_page_locked(struct page *page)
496{
497 if (PageLocked(page))
48c935ad 498 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
499}
500
501/*
502 * Wait for a page to complete writeback
503 */
504static inline void wait_on_page_writeback(struct page *page)
505{
506 if (PageWriteback(page))
507 wait_on_page_bit(page, PG_writeback);
508}
509
510extern void end_page_writeback(struct page *page);
1d1d1a76 511void wait_for_stable_page(struct page *page);
1da177e4 512
c11f0c0b 513void page_endio(struct page *page, bool is_write, int err);
57d99845 514
385e1ca5
DH
515/*
516 * Add an arbitrary waiter to a page's wait queue
517 */
518extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
519
1da177e4 520/*
b8ca9e3a
ED
521 * Fault one or two userspace pages into pagetables.
522 * Return -EINVAL if more than two pages would be needed.
523 * Return non-zero on a fault.
1da177e4
LT
524 */
525static inline int fault_in_pages_writeable(char __user *uaddr, int size)
526{
b8ca9e3a 527 int span, ret;
1da177e4 528
08291429
NP
529 if (unlikely(size == 0))
530 return 0;
531
b8ca9e3a
ED
532 span = offset_in_page(uaddr) + size;
533 if (span > 2 * PAGE_SIZE)
534 return -EINVAL;
1da177e4
LT
535 /*
536 * Writing zeroes into userspace here is OK, because we know that if
537 * the zero gets there, we'll be overwriting it.
538 */
539 ret = __put_user(0, uaddr);
b8ca9e3a
ED
540 if (ret == 0 && span > PAGE_SIZE)
541 ret = __put_user(0, uaddr + size - 1);
1da177e4
LT
542 return ret;
543}
544
08291429 545static inline int fault_in_pages_readable(const char __user *uaddr, int size)
1da177e4
LT
546{
547 volatile char c;
548 int ret;
549
08291429
NP
550 if (unlikely(size == 0))
551 return 0;
552
1da177e4
LT
553 ret = __get_user(c, uaddr);
554 if (ret == 0) {
555 const char __user *end = uaddr + size - 1;
556
557 if (((unsigned long)uaddr & PAGE_MASK) !=
627295e4 558 ((unsigned long)end & PAGE_MASK)) {
f56f821f 559 ret = __get_user(c, end);
627295e4
AK
560 (void)c;
561 }
1da177e4 562 }
08291429 563 return ret;
1da177e4
LT
564}
565
f56f821f
DV
566/*
567 * Multipage variants of the above prefault helpers, useful if more than
568 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
569 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
570 * filemap.c hotpaths.
571 */
572static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
573{
9923777d 574 char __user *end = uaddr + size - 1;
f56f821f
DV
575
576 if (unlikely(size == 0))
e23d4159 577 return 0;
f56f821f 578
e23d4159
AV
579 if (unlikely(uaddr > end))
580 return -EFAULT;
f56f821f
DV
581 /*
582 * Writing zeroes into userspace here is OK, because we know that if
583 * the zero gets there, we'll be overwriting it.
584 */
e23d4159
AV
585 do {
586 if (unlikely(__put_user(0, uaddr) != 0))
587 return -EFAULT;
f56f821f 588 uaddr += PAGE_SIZE;
e23d4159 589 } while (uaddr <= end);
f56f821f
DV
590
591 /* Check whether the range spilled into the next page. */
592 if (((unsigned long)uaddr & PAGE_MASK) ==
593 ((unsigned long)end & PAGE_MASK))
e23d4159 594 return __put_user(0, end);
f56f821f 595
e23d4159 596 return 0;
f56f821f
DV
597}
598
599static inline int fault_in_multipages_readable(const char __user *uaddr,
600 int size)
601{
602 volatile char c;
f56f821f
DV
603 const char __user *end = uaddr + size - 1;
604
605 if (unlikely(size == 0))
e23d4159 606 return 0;
f56f821f 607
e23d4159
AV
608 if (unlikely(uaddr > end))
609 return -EFAULT;
610
611 do {
612 if (unlikely(__get_user(c, uaddr) != 0))
613 return -EFAULT;
f56f821f 614 uaddr += PAGE_SIZE;
e23d4159 615 } while (uaddr <= end);
f56f821f
DV
616
617 /* Check whether the range spilled into the next page. */
618 if (((unsigned long)uaddr & PAGE_MASK) ==
619 ((unsigned long)end & PAGE_MASK)) {
e23d4159 620 return __get_user(c, end);
f56f821f
DV
621 }
622
90b75db6 623 (void)c;
e23d4159 624 return 0;
f56f821f
DV
625}
626
529ae9aa
NP
627int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
628 pgoff_t index, gfp_t gfp_mask);
629int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
630 pgoff_t index, gfp_t gfp_mask);
97cecb5a 631extern void delete_from_page_cache(struct page *page);
62cccb8c 632extern void __delete_from_page_cache(struct page *page, void *shadow);
ef6a3c63 633int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
529ae9aa
NP
634
635/*
636 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 637 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
638 */
639static inline int add_to_page_cache(struct page *page,
640 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
641{
642 int error;
643
48c935ad 644 __SetPageLocked(page);
529ae9aa
NP
645 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
646 if (unlikely(error))
48c935ad 647 __ClearPageLocked(page);
529ae9aa
NP
648 return error;
649}
650
b57c2cb9
FF
651static inline unsigned long dir_pages(struct inode *inode)
652{
09cbfeaf
KS
653 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
654 PAGE_SHIFT;
b57c2cb9
FF
655}
656
1da177e4 657#endif /* _LINUX_PAGEMAP_H */